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Abstract

Recent display applications for entertainment and business have made avail-
able new types of illumination using LEDs, DMDs and LCDs, which are bright,
energy efficient and cheap. Some of these devices are programmable and al-
low spatio-temporal control of the emitted light rays. With the advent of such
digital light-sources, illumination is becoming a flexible, configurable medium.
This has impacted computer vision and spurred techniques that control illumi-
nation for analysis of indoor areas, industrial environments, stage/studio sets,
underwater scenes, underground locations and outdoor scenes at night. In such
methods, the light-source’s programmability is often exploited to create easily
detectable features, such as bright stripes or binary patterns.

In this thesis, we extract illumination-based features for three new scenar-
ios by exploiting the motion, occlusion and strobing of light-sources. First, we
move a light-source in a smooth and random path. For a static scene, this cre-
ates a continuous set of intensities at each pixel. We exploit this continuity to
detect brightness maxima and minima at scene points and show how these ex-
trema features relate to geometric cues, such as surface normals and depths. For
our second approach, we occlude a light-source using moving opaque masks.
Each pixel’s brightness minima, due to the mask shadow, corresponds to a set
of blocked incident light rays. These shadow features can be used to render
the scene from the light-source’s point-of-view. The third technique exploits
the flickering emitted by a strobing source as a temporal feature that is easily
detected, even for scenes with fast moving objects. This enables active vision
for dynamic scenes, which we demonstrate using DLP illumination.

Our methods work with a variety of indoor and outdoor materials, real-
world textures and glossy/metallic objects. We are not restricted to distant
point sources and show results with outdoor illumination, sources with in-
tensity fall-off and area/line sources such as indoor fixtures. None of our ap-
proaches require a complex or calibrated setup. Some even allow the light-
source to be hand-waved in an unstructured manner. In addition, all of our
techniques are easy to implement, requiring only a few lines of code. The
work in this thesis demonstrates, for the first time, results such as iso-normal
clustering of indoor and outdoor scenes, reciprocal views from general, non-
programmable sources and very high-speed marker-less motion-capture and
photography. Finally, almost all natural and artificial light-sources in our world
either undergo motion (or are mobile), get occluded or exhibit strobing (at some
frequency). Therefore our algorithms have relevance for real-world illumina-
tion and any applications or extensions of these will have significant impact.
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Chapter 1

Introduction: The Ray Geometry of
Illumination
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Long before cameras existed, humans thought deeply about illumination.
Planning the optimal use of natural light was a key task in early architecture,
and it remains important today. Artificial light was derived solely from com-
bustion, and the desire to control such man-made illumination led to advance-
ments in optics, of which the Lighthouse at Alexandria was an ancient and stun-
ning example ([69]). Less marvelous but equally intricate are designs expressed
in the craft of making light-fixtures. These abound in the ruins of classical cities
and led to the field of modern lighting design. In addition, other areas of en-
deavor such as astronomy, art, navigation, war and communication developed
theories and models of light ([70]).

However, the most important breakthrough came hundreds of years later,
when work by a series of scientists in the 18th and 19th centuries created a
theory of electricity. The search for applications soon led to the first incandes-
cent lamp, and a lighting industry started to emerge. Many of the civilization-
changing inventions from this time, from cinema projectors to skyscrapers, de-
pended on electric lights. War advanced the field: one of the first battlefield
stereo devices in WW-II was a pair of searchlights looking skywards, allowing
anti-aircraft gunners to calculate the height of illuminated planes ([36]).

In the decades after the war, light-sources based on solid-state technology
were invented and illumination began to become digital in nature. The use of
lasers became wide-spread as a means of creating digital storage devices with
much higher capacity that magnetic disks would allow. MEMS technologies
and other innovations were and continue to be spurred by display and enter-
tainment applications as well as recent energy efficiency pressures. The new
forms of digital light-sources are important since they allow computer control
of different illumination characteristics. This trend of continued overlap be-
tween illumination and computation has implications for a multitude of fields
and, in particular, we concern ourselves here with the impact on computer vi-
sion and computer graphics.

1.1 Lighting in Computer Vision

In parallel to light-source development, cameras transformed from analog, un-
wieldy machines into devices creating digital images processable by computer.
Thus started the field of computer vision, which seeks all the information con-
tained in any set of images or video, with goals such as scene reconstruction,
object recognition, motion tracking, novel view synthesis and image relight-
ing. This thesis is concerned with the broad class of computer vision techniques
which use illumination changes to extract scene information. The input to these
algorithms are typically images of a scene taken under varying lighting condi-
tions, and have been recently termed as computational illumination techniques.

Even before the advent of digital illumination, classical methods in com-
puter vision, such as photometric stereo, demonstrated the value of images
taken under different lighting directions. Recently, with the popularity of pro-
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grammable digital projectors, a broad range of techniques have been proposed.
Illumination-based methods can be classified into two groups: techniques that
have an alternate camera-based solution, and techniques which recover scene
properties which simply cannot be obtained in the camera domain. The former
includes grid coding for scene reconstruction, which is especially useful for tex-
tureless surfaces where finding correspondences is hard. The latter spans both
older methods, such as photometric surface normal estimation, and more recent
spatial-frequency methods, such as separation of direct and global illumination.

Table 1.1 shows examples from both classes of approaches, along with the
light-sources that are modeled. The light-source types derive from a seminal
work ([49]) that classified sources by parameterizing the emitted rays as they
pass through two planes. Since the location of the ray as it strikes each plane
can be represented by four numbers, all types of illumination lie on a 4-D light-
source hypercube. What is immediately striking is that a significant portion
of the work in vision and graphics has been done for very limited types of
light-sources. These are singularities or vertices of the 4-D hypercube, such
as both near and distant point sources. Some approaches (such as recovering
light-transport) are only possible with the control provided by a programmable
light-source such as a laser or projector. In addition, a few methods require the
light-source to be completely calibrated. We would like to move beyond these
restrictions and model complex, general illumination.

1.2 Ray Geometry of Light-sources vs. Cameras

A camera can be completely defined by the geometry of its viewing rays ([28]).
Given correspondence between rays from multiple cameras, a vast array of
multi-view techniques can be applied to extract information from images. Sim-
ilar ray geometric models exist for light-sources, where the analogous prob-
lem to camera correspondences is finding the incident light ray at each scene
point. However, this ray correspondence is only easily obtainable for program-
mable light-sources, such as projectors. Therefore, light-source ray geometry is
usually ignored by most illumination-based approaches. Instead, these meth-
ods favor modeling photometry for scene recovery. This is a hard problem,
which partially explains why fewer algorithms exist for complex illumination
in Table 1.1. In contrast, we argue that the issue of ray correspondence should
not be bound with the problem of photometric modeling.

At first, the separation of photometry and ray correspondence may seem a
difficult problem to solve. However, structured light techniques easily achieve
this by projecting an illumination pattern onto the scene. The key assumption
here is that the bright intensity or high spatial-frequency of the pattern will
dominate the scene reflectance, allowing easy detection. This assumption may
not hold for degenerate scenes (such as made of mirrors or glass), but is broadly
applicable. Making a similar argument, we exploit the motion, occlusion and
strobing of light-sources to create easily detectable features, despite complex
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scene reflectance or dynamic objects. The challenge here is to decide which fea-
tures to compute and to explain why they relate to incident ray geometry. This
distinguishes our techniques from the trivial thresholding required for detect-
ing line stripes and binary patterns in structured light approaches.

In our setup, each pixel in an image (or set of images) is assigned a set
of light rays incident at the corresponding scene point. Typically, both light-
source shape and the scene properties determine the incident ray at each scene
point. However, we demonstrate that illumination variation due to light-source
motion, occlusion and strobing encode incident ray information directly in the
measured intensities. Once we obtain this incident ray information, we can
design algorithms with fewer reflection model assumptions or restrictions to
a particular light-source type. In addition, modeling illumination through ray
geometry allows us to leverage the large set of approaches in the camera-domain
to suggest algorithms in the light-source domain. This is possible since, in terms
of ray geometry, light-sources and cameras share many similarities.

In fact, light-sources are duals to cameras: they emit light rays instead of
collecting them. Previous work has acknowledged this idea for programmable
sources, such as projectors, whose equations of projection are inverse to those
of perspective cameras. In addition Figure 1.1 outlines a set of such proper-
ties. For example, consider a pin-hole camera, which is a collection of rays from
the scene that pass through a single point. A near point light-source can be
analogously described as a collection of rays emanating from a single location.
Similar parallels exist between orthographic cameras and distant light sources.
Area and linear sources have analogies in large aperture cameras. The concept
of focal length for a point-light source is easily demonstrated by creating sharp
and blurred shadows. Light-source fluctuation is measured over time, exactly
as camera frame-rate. In addition, light-sources can have varied spectral emit-
tance while a camera can record multi-spectral information. Finally, even the
intensity fall-off from a light-source can be compared to a stereo-rig whose dis-
parity is inversely related to the depth from the baseline.

While the duality of light-sources and cameras is a classic idea in vision and
graphics, we use it to frame the search for new computer vision algorithms. For
every algorithm that works purely in the camera-domain, there are two analo-
gous illumination techniques. The first, which we term the primary approach,
uses the light-source to achieve exactly the same result as the camera-domain
method. The second, which we term the dual approach, is able to utilize what is
different about the light-source to create a new result that would not be possible
in the camera-domain. The second class of approaches is interesting because
they show how light-sources can achieve a task better than the camera itself.
Table 1.4 lists some selected camera-centric techniques and shows the primary
and dual applications of each, with our approaches given in bold. We discuss
these in detail in the next section.
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Figure 1.1: Camera-Light source similarities: Light sources emanate rays while
cameras collect them. In (I) and (II) we illustrate this duality for point light
sources, which are analogs to perspective cameras, and distant light sources,
which are analogs to orthographic cameras. This duality exists for all geometric
shapes of light sources, as well as for other properties such as (III) focal length,
(IV) exposure time, (V) aperture size and (VI) baseline error.

1.3 Modeling Light-source Motion, Occlusion and
Strobing

In the first approach we consider what cues can be obtained from the uncali-
brated smooth motion of a light source. The observed intensities at scene point,
which we term an appearance profile, depend heavily on how the incident ray
geometry changes. For smooth changes in the ray direction, we will demon-
strate that the locations of maxima and minima in the profile contain geometric
information. Informally speaking, scene points that ’light up’ and ’go dark’
at the same time should experience similar changes in incident ray directions.
The advantage of using extrema over a feature such as, say, shadowgrams or
reciprocity pairs, is that they can be easily detected in images of scenes without
any complex set up or calibration. In fact, all our examples are illuminated by
a light-source waved by hand. Furthermore, since we require relative inten-
sity measurements to find brightness extrema locations, photometric camera
calibration is not needed. We show that surface normal information can be ob-
tained from varying distant lighting, and depth cues from near lighting.
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The second method we present will look at the occlusion of light-sources,
which span a much richer set of shapes or caustics, when compared to cameras.
We capture this geometry through the shadow-field of a non-programmable
light source. The shadow-field is obtained by using an opaque mask to block
rays from the light source. Therefore, our representation is purely geometric
and not photometric, since incident light rays are detected by not measuring
them. Ray reciprocity allows us to describe these rays as if they were viewed
by a virtual camera. The recovered light ray geometry depends on the mask
shape, the light source type and the relative motion between the two and we
have shown perspective, orthographic, catadioptric, pushbroom, and cross-slit
geometries. In addition, we show that recursively applying the algorithm al-
lows the estimation of off-diagonal elements from the light-transport matrix.

In the third approach we exploit the temporal dithering or strobing of cer-
tain types of illumination. Incident rays across the scene (and within a scene
point) can be disambiguated quickly by observing the rate and extent of their
dithering. This disambiguation can enable almost any active vision technique
for dynamic scenes. We present a broad framework for fast active vision using
Digital Light Processing (DLP) projectors. Our key idea is to exploit the flicker-
ing of illumination due to the DMD chip in a DLP projector, as observed by a
high-speed camera. The dithering encodes each brightness value uniquely and
may be used in conjunction with virtually any active vision technique achieving
significant speedups in performance.

1.4 Related Work
Lighting is a powerful cue for scene analysis using photometry methods. When
lighting is known it is possible to extract scene structure. Most reconstruc-
tion techniques first choose a reflectance model and then estimate its parame-
ters from images. This is the basis for Woodham’s classical photometric stereo
([111]) for lambertian scenes, as well as several extensions for non-lambertian
low parameter BRDFs, such as the micro-facet model and the dichromatic model
([46],[73],[26],[101],[9],[95],[55],[83]) or near point lighting ([37],[72],[54],[8],[7],
[99]). On the other hand, if the lighting is unknown, its estimation usually
requires additional, fundamental information about the scene. The class of ’in-
verse rendering’ algorithms that estimate low parameter BRDFs and lighting
([87],[56]) using scanned 3D scene geometry. Ramamoorthi’s thesis ([76]) pro-
vides a formal analysis of when exactly inverse rendering is possible for general
BRDFs and lighting that are represented using Spherical Harmonics. Hertz-
mann and Seitz, ([34]), recover the geometry of objects by estimating combina-
tions of “basis example spheres” that best describe scene BRDFs.

Multi-view stereo algorithms are widely used in computer vision ([30],[92]).
A difficult problem commonly faced in these methods is matching correspon-
dences between different views. This is especially challenging for regions with-
out texture (where matching is ambiguous) or with complex material properties
(where matching requires knowledge of the BRDF). Structured light techniques
provide a single view alternative to multi-view stereo. Scene point locations
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are obtained by intersecting viewing rays from a camera with rays from a light
source. Although these approaches avoid the correspondence problem, they re-
quire a programmable source to obtain incident light rays at each scene point.
Much work has been done on obtaining scene structure by either using projec-
tors or lasers ([110],[39],[6],[35],[119],[86]). In addition, techniques have been
proposed that exploit a projector’s control of the incident light field to recover
the light-transport matrix ([93], [94]) or portions of it such as the global compo-
nent ([65]) even in the case of large scene depths ([29]).

Illumination masking follows a ‘less is more’ trend where coded camera
apertures capture additional light-field information ([77]). Shadows can be
used for spatio-temporal correspondences across cameras ([14]). Light-field
rendering ([53],[27]) obtains new views by interpolating between densely sam-
pled images, with applications such as view synthesis ([118]), all-focus images
([66]), seeing past obstacles ([104]) and mosaicing both multi-viewpoint images
([91]) and new cameras (cross-slit ([123]), pushbroom ([117])). Shadow-based
approaches have been popular since they are invariant to material properties
([79], [88], [50]). Linear masks have been previously used for scene point trian-
gulation ([3], [4],[51]), while shadowgram methods reconstruct intricate objects
([114]) and multi-flash approaches obtain occluding edges ([105]).

Projectors are commonly used as programmable light sources for a variety of
active vision techniques including structured light range finding [110, 119, 15,
11, 116, 89], photometry-based reconstruction [121, 34], relighting [109], light
transport analysis [65, 104] and depth from defocus [120]. The intensity and
color of the scene’s illumination can be controlled over space and time depend-
ing on the task at hand. For instance, projecting a set of colored striped patterns
onto a scene alleviates the problem of finding correspondences for 3D recon-
struction [119]. Dual photography ([94], [23]) exploits Helmholtz reciprocity
([32], [121]) between every projector-camera pixel pair to render the scene from
the projector’s point-of-view. Since the full light transport is measured, any
scene relighting technique can be applied.

Digital Light Processing (DLP) technology (http://www.dlp.com) based pro-
jectors contain a key component called the Digital Micromirror Device (DMD).
These mirrors can switch between orientations in a few microseconds, enabling
high precision control of illumination. As a result, the DMD device has found
applications in areas ranging widely from microscopy to chemistry to holo-
graphic displays [17]. Nayar et al. [64] re-engineer a DLP projector into a
DMD-camera and demonstrate the notion of programmable imaging for ap-
plications including adaptive dynamic range and optical filtering and match-
ing. Based on the theory of compressive sampling, a single pixel camera has
been implemented where the DMD device used to compute optical projections
of scene radiance [106]. Jones et al. [42] modify a DLP projector using cus-
tom made FPGA-based circuitry to obtain 1-bit projection at 4800Hz for high
speed stereoscopic light field displays. McDowall and Bolas [58] use a specially
re-programmed high speed projector based on Multiuse Light Engine (MULE)
technology to achieve range finding at kilohertz rates.

8



C
am

er
a-

do
m

ai
n

A
pp

ro
ac

h
A

pp
lic

at
io

n
Li

gh
t-

so
ur

ce
ce

nt
ri

c
A

pp
ro

ac
h

Pr
im

ar
y

Li
gh

ti
ng

A
pp

lic
at

io
n

D
ua

lL
ig

ht
in

g
A

pp
lic

at
io

n
A

rb
it

ra
ry

V
ie

w
s

w
it

h
co

rr
es

po
nd

en
ce

s
Sc

en
e

R
ec

on
st

ru
ct

io
n

V
ie

w
Sy

nt
he

si
s

M
an

y
Il

lu
m

in
at

io
n

D
ir

ec
ti

on
s

(c
al

ib
ra

te
d)

Sc
en

e
R

ec
on

st
ru

ct
io

n
an

d
R

el
ig

ht
in

g
V

ie
w

Sy
nt

he
si

s
(D

ua
lP

ho
to

gr
ap

hy
,

Sh
ad

ow
C

am
er

as
)

Li
ne

M
ot

io
n

D
ep

th
Es

ti
m

at
io

n
(E

PI
s)

Li
ne

ar
lig

ht
-s

ou
rc

e
M

ot
io

n
D

ep
th

C
ue

s

A
rb

it
ra

ry
V

ie
w

s
w

it
ho

ut
co

rr
es

po
nd

en
ce

s
V

is
ua

lH
ul

l
M

an
y

Il
lu

m
in

at
io

n
D

ir
ec

ti
on

s
(u

nc
al

ib
ra

te
d)

Su
rf

ac
e

N
or

m
al

C
lu

st
er

s

C
od

ed
/S

yn
th

et
ic

ap
er

tu
re

Sc
en

e
R

ec
on

st
ru

ct
io

n
an

d
D

eb
lu

rr
in

g
O

cc
lu

de
d

Il
lu

m
in

at
io

n
Sc

en
e

R
ec

on
st

ru
ct

io
n

Il
lu

m
in

at
io

n
de

bl
ur

ri
ng

Sh
ad

ow
C

am
er

as

Ex
po

su
re

co
di

ng
(fl

ut
te

r
sh

ut
te

r)
D

eb
lu

rr
in

g
im

ag
es

St
ro

bi
ng

Il
lu

m
in

at
io

n
Fa

st
A

ct
iv

e
Li

gh
ti

ng
D

LP
Ph

ot
og

ra
ph

y

Ta
bl

e
1.

2:
Se

le
ct

ed
C

am
er

a-
do

m
ai

n
A

lg
or

it
hm

s
an

d
th

ei
rC

or
re

sp
on

di
ng

Li
gh

t-
so

ur
ce

D
om

ai
n

m
et

ho
ds

:I
n

th
e

fir
st

co
lu

m
n

w
e

lis
ts

om
e

im
po

rt
an

t
ca

m
er

a
do

m
ai

n
m

et
ho

ds
.

Th
e

du
al

it
y

of
lig

ht
-s

ou
rc

es
an

d
ca

m
er

as
su

gg
es

ts
co

rr
es

po
nd

in
g

lig
ht

-s
ou

rc
e

ce
nt

ri
c

al
go

ri
th

m
s.

Th
es

e
ei

th
er

ac
hi

ev
e

a
si

m
ila

r
go

al
as

th
e

ca
m

er
a-

do
m

ai
n

m
et

ho
ds

(w
e

ca
ll

th
is

a
pr

im
ar

y
ap

pl
ic

at
io

n)
or

th
ey

gi
ve

a
co

m
pl

et
el

y
ne

w
re

su
lt

fo
r

th
e

sc
en

e
(w

hi
ch

w
e

ca
ll

a
du

al
ap

pl
ic

at
io

n)
.T

he
m

et
ho

ds
in

tr
od

uc
ed

in
th

is
th

es
is

ar
e

sh
ow

n
in

bo
ld

.

9



1.5 Thesis Organization
Besides the introduction, this document has three chapters detailing technical
contributions, followed by a chapter on future work. Each chapter begins with
an abstract paragraph that motivates the broad problem and provides an outline
of the content. In addition, each chapter contains a summary section provid-
ing technical summaries of the methods described, required input and output,
comparisons to competing methods, implementation issues such as run-time,
overall advantages and disadvantages and potential for real-world application.
The abstract paragraph and the summary section in each chapter should be
of interest to those skimming the document.

Chapter 2 investigates the intensity at every pixel for a camera viewing a
scene under smoothly moving illumination. We introduce the concept of an
appearance profile and show empirically that its maxima and minima locations
contain surface normal information. An application is demonstrated for texture
transfer of non-linear effects such as specularities on velvet. We also look at
the appearance profiles for near-point lighting and show their maxima contain
depth information. In the last section, we discuss how the appearance profile
can be modeled using higher-order Taylor polynomials.

Chapter 3 introduces the idea of shadow cameras, which are created by the
relative motion of a light-source and occluding mask. The image of the scene
from the point-of-view of the shadow camera is provided by helmholtz reci-
procity. We develop a series of geometries for shadow cameras, from perspec-
tive and orthographic to multi-view and cross-slit. We demonstrate applica-
tions for removing distortions from dioptric and catadioptric cameras, as well
as a rendering application, where we demonstrate the capture of the geometry
of light-sources. We end the chapter by developing the shadow-camera idea
further and investigating the second order minima detected at each scene point.
This suggests the recovery of off-diagonal information in the light-transport
matrix, and we show a simple example to separate specular interreflection.

Chapter 4 introduces DLP projectors and details temporal dithering due
to the DMD chip when the projector illumination is observed with a high-
speed camera. We show a series of applications for high-speed active vision.
These include structured light reconstruction, illumination multiplexing and
demultiplexing for photometric stereo and colorizing and direct-global sepa-
ration. We also briefly introduce a motion deblurring framework which we
term ’flutter-flash’. The next part of the chapter extends the flutter-flash idea to
created strobe photographs of fast-moving scenes. We show how strobe pho-
tographs under DLP illumination have more high-frequency information that
those taken under fluorescent illumination. We show applications such as sum-
marizations and motion illustrations of fast scenes.

In Chapter 5, we discuss future applications of this work and attempt to pre-
dict how current trends in illumination will affect a variety of fields. We choose
to focus on possible applications for hand-held devices, tracking, light-fixtures
and architecture. We conclude by discussing the idea of camera analogies, of
which the set of light-sources is an example.
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Chapter 2

Motion: Geometric Cues from
Smoothly Varying Illumination
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Moving light-sources exist all around us: the day sky contains both highly
constrained motion (such as the sun) and random patterns (such as from clouds).
At night, humans carry illumination in their modes of transport (such as head-
lights in cars). Previous work has modeled the location and extent of these
light-source, but in this section we investigate the motion of the light-source
itself. For the first time, we demonstrate modeling the derivatives of observed
static scene appearance as the illumination changes. We restrict ourselves to
point light sources, either distant (like the sun) or near (such as an LED).

Our key idea is to associate with each scene point (observed as a pixel) an
incident light ray. In general, estimating the ray from observed intensities is
hard, since the light is affected by scene BRDF before being viewed by the
camera. However, as the light-source moves, each pixel generates a sequence
of intensities, which we term an appearance profile. Inflections points (peaks
and troughs) in the intensity profile over time can be corresponded to inflec-
tions or changes in the direction of the incident light ray. These intensity peaks
and troughs can be detected directly from images without modeling scene re-
flectance or material properties. Depending on the type of light-source and its
motion, these intensity extrema provide scene information. We first show that
distant light source motion allows us to group scene points according to their
surface normal. In Section 2.2, we demonstrate that a near point source mov-
ing in a line or plane can group scene points according to depth information.
Finally, in Section 2.3, we turn to modeling the appearance profile itself as a
Taylor series polynomial, allowing image rendering and relighting.

2.1 Smoothly Moving Distant Lighting

A static scene under varying distant lighting gives rise to a smooth intensity
or appearance profile at each scene point. We first show empirical evidence
suggesting that the locations of the extrema of the appearance profile provide
a strong cue for the scene point’s surface normal. Based on this observation
we derive a simple transformation of the appearance profiles and introduce a
distance metric that can be used with any unsupervised clustering algorithm
to obtain iso-normal clusters of a scene. We also present a formal analysis for
the extrema occurring in surfaces that can be modeled using linearly separable
model, which represents a large class of BRDFs. We show results of applying
our algorithm to difficult indoor and outdoor scenes containing a variety of
complex geometry and materials.

2.1.1 Appearance Profiles and their Extrema

Extrema are said to be shared between two appearance profiles if they occur at
the same time instance in both profiles. Intuitively, shared brightness extrema
are important since scene points that share the same normal should ‘light up’
and ‘go dark’ at the same time. An important factor that determines where
extrema occur in a profile is the path of the light source. Consider a distant
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Figure 2.1: Structured versus unstructured paths for the light-source. Engi-
neered setups such as a gantry may produce paths such as the spiral shape
shown on the left. In contrast, in our method the user hand-waves the light
source. This results in unstructured paths, such as the three shown on the right.

point light source that is being waved by a user. The trajectory of the light
source is unstructured and it contrasts with the light source paths created by
gantry setups used in many previous papers (such as [103]). While a structured
path may have a regular shape, such as a spiral (see Figure 2.1), an unstructured
path created by ’hand-waving’ the light source may not have any standard,
recognizable shape. Since the light source changes its position smoothly, but
randomly, at every time-step the intensities at every scene point are generated
stochastically. The empirical evidence in this section will show that iso-normal
profiles produced by such unstructured paths share many extrema.

2.1.2 Shared Extrema in Iso-normal Profiles

We investigate the extrema present in profiles generated by BRDF simulations,
rendered scenes, measured BRDFs and real textures. These experiments pro-
vide strong empirical evidence that shared extrema locations can be exploited
to obtain iso-normal clusters.

BRDF Simulations: In Figure 2.2 profiles are generated for 50 unique sur-
face normals that were sampled uniformly from the hemisphere of directions.
The simulations consist of four BRDF models: Lambertian, Oren-Nayar, Torrance-
Sparrow and Oren-Nayar + Torrance-Sparrow. The user creates a smooth, un-
structured path for the light source on the hemisphere of directions. The ma-
terial properties were varied (roughness σ from 0 to 1 and albedo ρ from 0
to 1) for each of these models producing over 20,000 profiles for each normal.
The top row of Figure 2.2 shows some of these profiles for a particular sur-
face normal which demonstrate significant variation in the profile shape due to
changing material properties. Despite these differences extrema locations were
found that were common to over 95% of a normal’s profiles and therefore in-
sensitive to the changes in albedo and roughness. Furthermore, these shared
extrema locations were unique to a particular normal. In the bottom row of
Figure 2.2, profiles from two different normals are shown, with their shared
extrema locations marked on the x-axis.

Rendered Scene: A scene was rendered using a commonly used ray-tracing
tool ([75]) generating profiles under conditions similar to real scenes, with ef-
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Figure 2.2: Simulations showing the link between extrema and surface nor-
mal: Appearance profiles are simulated for four BRDFs over a range of 20,000
material properties (only a few are shown for clarity). Profiles are only shown
for two normals, although we simulated profiles for 50 (marked by blue dots
on the hemisphere, on the left). In the graphs above, the extrema location of
a profile is marked on the time axis by a colored dot. Note that profiles from
the same local normal (top row) share most of the extrema locations, whereas
profiles from different normals (bottom row) do not.

fects such as cast shadows and interreflections. In Figure 2.3 such a scene is
shown consisting of three piecewise planar objects: a pyramid, a box, and a di-
amond. This was rendered using the Oren-Nayar and Torrance-Sparrow mod-
els whose material properties were varied (roughness σ from 0 to 1 and albedo
ρ from 0 to 1) to create 100 instances of the scene, two of which are shown
in Figure 2.3. A light source moving in an unstructured path was simulated,
producing 40 renderings of each such scene instance. There are nine unique
normals in our scene and, unlike the previous scenario, each normal was as-
sociated with at least 2,000 profiles. On the left of Figure 2.3, four images of
the rendered scene are shown with different material properties. When the ob-
jects are rendered with the Oren-Nayar model, increased roughness makes the
objects appear flatter and darker. Similarly sharp highlights in the Torrance-
Sparrow model, such as on the right facet of the green pyramid, become blurred
as roughness increases. On the right of Figure 2.3 profiles from three different
normals are plotted and, for clarity, only the maxima locations are marked on
the x-axis. Even though all the profiles vary significantly with change in mate-
rial properties, the iso-normal profiles share the same extrema.

Measured BRDFs: The two previous experiments dealt with profiles gen-
erated from artificial scenes. Next, 25 real materials were selected from a BRDF
database measured by Matusik et al ([57]). To create appearance profiles from
these measured BRDFs, the light source path was simulated by the user, simi-
lar to the previous cases. For each material, the hemisphere of directions was
sampled uniformly to create 25 unique normals. Each normal was used to gen-
erate profiles whose material properties corresponded to the measured BRDFs.
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Figure 2.3: Profiles from iso-planar regions of rendered scenes show the link
between extrema and surface Normal: Three piecewise planar shapes are ren-
dered using both the Oren-Nayar general lambertian model, as well as the
Torrance-Sparrow off-specular model under smoothly moving distance light
source. Varying the roughness parameters σ in both models produced 2,000
profiles, of which we show a few here. Profiles from three normals in the ren-
dered images are shown, and iso-normal profiles have the same color. These
experiments indicate that iso-normal profiles share the same extrema. The com-
mon maxima for each of normal is marked using the same profile color.

For each of these normals, over 90% of the profiles shared their extrema, and
in Figure 2.4 we show 5 such profiles from two such different normals. These
experiments demonstrate that the extrema feature has significance beyond the
commonly used BRDF models.

Real Textures: In addition to the above simulations, real experiments were
conducted with four anisotropic textures: silk, crepe satin, mink velvet, and
royal velvet. These materials cannot be modeled by the Oren-Nayar and Torrance-
Sparrow BRDFs. The textures were attached on a planar board so that they
all shared the same surface normal, as shown in Figure 2.5. The profiles from
these textures were measured for six different orientations of the board, and
some of these are shown in the figure. These materials have complex appear-
ance effects; for example, the maroon mink velvet exhibits strong vertical spec-
ularities which change in position and width as the orientation of the board
is changed. Even though the profiles are drastically different from each other,
they still share some extrema because they have the same surface normal.
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Figure 2.4: Profiles from real, measured BRDFs: Matusik et al ([57]) measured
a large number of real world materials by using spheres, as shown on the left
in a figure reproduced from their paper. Profiles were created from these mea-
surements by simulating the path of a hand-waved light source and these are
shown for two different surface normals. In each graph, the profiles for five
materials share extrema locations (given by red dots) and these locations are
different for the two normals.

Figure 2.5: Real profiles from different materials show the link between ex-
trema and surface Normal: Six experiments are conducted by placing textures
at different orientations with respect to the camera. Note that the appearance
of the different patches vary greatly, even though they are all flat on the board.
Some profiles are shown from each of the textures in a color-coded fashion.
Even though these materials are anisotropic (satin and velvet), their profiles
still share extrema, which are marked by black dots on the x-axis.
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In conclusion, we have presented four sets of experiments providing strong
empirical evidence that shared extrema can be used as a material-invariant cue
for a scene point’s local surface normal. In the next section, an algorithm is
presented that exploits this feature to produce iso-normal clusters.

2.1.3 Extrema in Linearly Separable BRDF Models

Here, we consider static scenes described by the class of linearly separable
BRDFs ([62]), which include the commonly used lambertian, Oren-Nayar, Torrance-
Sparrow and dichromatic models. If such a scene is illuminated by a smoothly
moving distant light source, the observed radiance of a scene point at a time
instant t can be modeled as a dot product between “material terms” Mi (func-
tions of material properties like diffuse and specular albedo ρ, roughness σ) and
“geometry terms” Gi (functions of surface normal n, viewing v, and illumina-
tion directions s(t)) [62]:

E(t) =
k∑
i

Mi(ρ, σ)Gi(n,v, s(t)) . (2.1)

The above linearly separable BRDF model represents a broad class of BRDFs
(since no specific expressions for Mi’s or Gi’s are assumed) and many well
known BRDFs used in computer vision (lambertian, Oren-Nayar, dichromatic)
are special instances of this model ([16],[21],[82],[43]). The extrema of the ap-
pearance profile E(t) are found by setting its first order derivative E

′
(t), with

respect to time t, to zero:

E
′
(t) =

k∑
i

Mi(ρ, σ)G
′

i(n,v, s(t)) = 0 (2.2)

One solution to this linear system occurs when ∀i G
′

i = 0 , at a particular
time instant t, irrespective of material terms Mi (which are assumed to be non-
zero). These extrema are invariant to material properties, and we call them
Geometry-Extrema. All other solutions to Eq. 2.2 are Material-Extrema since
their time of occurrence depends on the material properties of the scene point
Mi’s. Two questions remain to be answered before we can achieve our goal:
(a) If two scene points share all their Geometry-Extrema, does it follow that
they are iso-normal? (b) How can we tell if the shared extrema between two
scene points are Geometry-Extrema or Material-Extrema? We now show that
the smooth, unstructured path of the light source addresses these issues.

Geometry-Extrema and Iso-Normal Clusters

Let two scene points have appearance profiles E1(t) and E2(t) and normals n1

and n2 respectively, such that n1 6= n2. Let a single shared Geometry-Extrema
occur at some time instance t in the two profiles. Then, from Eq. 2.2,
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∀i Gi
′
(n1, s(t)) = 0 ; Gi

′
(n2, s(t)) = 0 . (2.3)

Since in the above discussion the normals at the two scene points are fixed,
we can rewrite Equation 2.3:

∀i G
′

i1(s(t)) = 0 ; G
′

i2(s(t)) = 0 . (2.4)

The terms G
′

i1 and G
′

i2 are functions on the hemisphere of directions. The
two equalities in Equation 2.4 only hold when s(t) is a root of both these func-
tions. Let us assume that the set of common roots to both G

′ terms is finite.
Since the light source is being hand-waved, the light source positions s(t) are
being generated randomly at every time step, on the hemisphere of directions.
The probability that such a randomly generated s(t) intersects the finite set of
common roots is low. Even if such a rare extrema occurs a few times, it would
be very unlikely to occur frequently unless the two scene points have the same
surface normal. Therefore, if two profiles share many Geometry-Extrema, it is
likely that the corresponding scene points are iso-normal. The longer the pro-
files become, the greater the number of shared Geometry-Extrema will be and
therefore the likelihood of iso-normality increases.

Increasing Shared Geometry-Extrema

The above discussion suggests that we should group together those profiles
that share all their Geometry-Extrema to get iso-normal clusters. However, this
requires the ability to distinguish between Material-Extrema and Geometry-
Extrema in a profile. We avoid this difficult problem and instead show that pro-
files created by hand-waving a light source are dominated by shared Geometry-
Extrema while having negligibly few shared Material-Extrema.

Consider a light source passing directly over a scene-point’s normal at time
t. This would give maxima in foreshortening term f(n, t) = n.s(t). Note that
every geometry term in the linear separable model has to have a foreshortening
term in it. Therefore the G terms in our appearance profile model can be written
as:

Gi(n, t) = g(n, t).f(n, t) (2.5)

where f is the foreshortening of that particular point. Since we are only
observing a single scene point, we will remove the normal variable n from the
equations. Taking the derivative, with respect to t, we obtain,

G
′
(t) = g

′
(t).f(t) + g(t).f

′
(t) (2.6)

Consider a situation where a foreshortening extrema occurs at some time ti,
and therefore, f

′
(ti) = 0. If we assume that the BRDF term g(t) stays constant

for a small time interval around ti, then we get a Geometry-Extremum at ti,

G
′
(ti) = 0.f(ti) + g(ti).0 = 0 (2.7)

18



Figure 2.6: Increasing foreshortening extrema increases geometry-extrema:
Paths of the light source that go directly over the scene point’s normal, such as
on the left, create a foreshortening maxima in the profile. In fact, any curved
path, such as on the right, creates foreshortening maxima, even if they do not
cross the pole. If such curved paths contain small changes in direction, as on the
right hemisphere, these create foreshortening minima. We demonstrate in the
paper how increasing foreshortening extrema results in increased geometry-
extrema in the profile.

Figure 2.6 shows the types of light source paths that create foreshorten-
ing maxima and minima, and therefore create Geometry-Extrema. Note that
curved paths which do not go over the pole of the hemisphere also create fore-
shortening maxima. In addition, curved paths with changes in direction, as on
the right of Figure 2.6 create foreshortening minima. Since real scenes contain
several different surface normals, an unstructured, random motion of the light
source (as opposed to a structured one) will eventually create paths such as in
Figure 2.6 at every scene point. In practice, we observe that these types of paths
generate enough Geometry-Extrema to create accurate clusters.

Reducing Shared Material-Extrema

While hand-waving a light-source produces many shared Geometry-Extrema,
it is critical that Material-Extrema are not shared across profiles. Consider a
profile at scene point P which has a Material-Extrema at time t,

E
′

P (t) =
k∑
i

Mi(ρ, σ)G
′

i(n,v, s(t)) = M̃P.G̃
′

P = 0. (2.8)

Here M̃P is a vector of Mis, and G̃
′
P is a vector of G

′

is. If the profile at P
shares this Material-Extrema with another profile at Q at time t, then,

E
′

Q(t) = M̃Q.G̃
′

Q = 0. (2.9)

There are four cases in which coincident Material-Extrema can occur, which
are expressed in terms of properties that are shared or not shared between scene
points P and Q, as shown in Figure 2.7. We explain each case below:
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Figure 2.7: Random hand-waving decreases material-extrema: Coincident ma-
terial extrema can be represented by the following four cases, where certain the
geometry terms Gs lie on specific hyperplanes defined by Ms. By hand-waving
a light source we ensure that the Gs are randomly generated, and therefore the
likelihood that these scenarios occur many times is low. Therefore the appear-
ance profiles created do not have large numbers of coincident material extrema.

Case 1: Consider the situation where P and Q have identical material and
geometry properties. This is the trivial case, where profiles from both scene
points share all extrema and shared material extrema does not confuse iso-
normality and instead supports it.

Case 2: In this scenario, the scene points have the same material terms,
M̃P = M̃Q = M̃, but different geometry derivative terms, G̃

′
P and G̃

′
Q. Co-

incident Material-Extrema occur at time instance tj when

M̃.G̃
′

P(s(tj)) = 0; M̃.G̃
′

Q(s(tj)) = 0 (2.10)

Case 3: If P and Q have the same geometry derivative terms, G̃P

′

= G̃Q

′

=

G̃
′ , but different material terms M̃P and M̃Q, then coincident Material-Extrema

occur at time instance tj when

M̃P.G̃
′
(s(tj)) = 0; M̃Q.G̃

′
(s(tj)) = 0 (2.11)

Case 4: In the case where the scene points have different geometry terms
(G̃′

P(s(tj)) and G̃
′
Q(s(tj))) and different material terms (M̃P and M̃Q), coinci-

dent Material-Extrema occur when:

M̃P.G̃
′

P(s(tj)) = 0; M̃Q.G̃
′

Q(s(tj)) = 0 (2.12)
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In the above four cases, for Material-Extrema to occur, the geometry terms
G̃

′
P(s(tj)) and G̃

′
Q(s(tj)) must occur on two specific hyper-planes in n dimen-

sions, whose normals are defined by M̃P and M̃Q. Since we are hand-waving
the light source along an unstructured path, the light source positions s(tj) are
generated randomly. The likelihood that two randomly generated geometry
terms occur on two specific planes at the same time is small. However, even if
this unlikely event occurs a few times, it is less likely to occur frequently. There-
fore, shared Material-Extrema between the two points P and Q are rare.

2.1.4 Algorithm to Create Iso-normal Clusters

Our algorithm is extremely simple to implement and is summarized in Table 1.
It has four steps, 1) Detect brightness extrema, 2) transform the appearance pro-
files (Figure 2.8) and 3) use a common similarity metric to 4) cluster the scene
with any unsupervised clustering technique from machine learning. We write
it out in pseudocode below.

Step 1 (Input):

While acquiring frames by randomly waving a light,

Detect intensity extrema at each pixel and
store their occurrences in time.
(No need to store whole image sequence)

end

Step 2 (Transformation):

Construct a feature vector from each scene point’s profile by piece wise
linear interpolation of its extrema stored in Step 1 (Figure 2.8).

Step 3 (Metric):

Compute distance metric between (normalized) feature vectors ~a and ~b

using dot-product: Distance = 1 - ~at~b.

Step 4 (Output):

Cluster the normals based on the metric in Step 3.

Transformation applied to profiles: From the discussion in the previous
sections, it may appear obvious that extrema locations in a profile should be
directly used for clustering. However, it is not clear how to compare profiles
with different numbers of extrema. We propose a transformation of the appear-
ance profiles that involves linearly interpolating between extrema locations, to
create a new profile made of line segments, as shown in Figure 2.8. The slope
of each line segment is the sign of the profile’s derivative in that segment: it
is either +1 or −1. There is no difficulty in comparing profiles with different
numbers of extrema, since all the transformed profiles have the same length.
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Figure 2.8: Transformation applied to appearance profiles: This illustration
shows the effect of transformation on two hypothetical appearance profiles.
Consider the ’segments’ between extrema. The slope of transformed profile is
the sign of the first derivative of a segment. Therefore two segments that have
positive first derivative (monotonically increasing), get the same positive slope
of 1. Note that in segments where there are no material dependent extrema, the
transformed values are identical.

Distance Metric between Profiles: To cluster the transformed profiles we
need to specify a distance metric. We recommend the “dot-product” metric
which has been shown to accurately match extrema locations of profiles ([84]).
Mathematically, if A and B are the transformed appearance profiles of two
scene points, the “dot-product” metric is simply 1 − aT b, where a and b are
the unit vectors obtained by normalizing the profiles A and B.

Bounding error due to Material-extrema: Here, we show the dot-product
distance between transformed iso-normal profiles becomes zero as their length
becomes very large. On the other hand, transformed profiles from different
normals will have many more unshared extrema compared to shared extrema,
and therefore their dot-product distance will not go to zero. Consider two ap-
pearance profiles A and B from scene points that share the same surface normal
in Figure 2.9. Consider two consecutive geometry-extrema located at frames T1

and T2. We say the intensity values between T1 and T2 in the appearance profile
A are part of a segment. Let i be an index for values in this segment. Therefore,
i varies between 1 and T2−T1 + 1. Let p be the frame location of the ithp value in
the segment. Now, according the transformation described before, we linearly
interpolate between extrema locations with a slope whose magnitude is fixed,
and whose sign is the sign of the gradient of the profile. In this discussion, we
fix the magnitude of the slope to be 1, but any constant could be used. Then,
the value of the transformed profile of A at p is:
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Figure 2.9: Transformation bounds error due to material-extrema: In the fig-
ure above, the red profile has a material-extrema at location p. Because of the
material extrema, the intensities in the red and blue profiles vary drastically.
This error can be arbitrarily large because we make no assumptions about the
BRDF of the scene. We propose a transformation that only takes into account
the location of the extrema, not the intensity value at that extrema location.
Therefore, after transformation the error is constant, irrespective of the inten-
sity value variation between the blue and red profiles.

Atransf (p) = ip (2.13)

Now let us say B has a material dependent extrema at location Tk. Let j be
the index of values in the profile B, for values in the segment between Tk and
T2. The index j varies from 1 to T2 − Tk + 1. Since B has material-dependent
extrema between T1 and T2 the absolute value of the transformed B profile at
p becomes less than the absolute value of the transformed A profile at p (see
Figure 2.9). This is because the transformed B profile starts at Tk, while the
transformed A profile starts at T1, and TK > T1. If jp is the index of the pth value
of the transformed profile B, then:

Btransf (p) = −jp (2.14)

and therefore for the Figure 2.9,

Btransf (q) < Atransf (q) (2.15)

Note that the example we have shown has profile A is monotonically in-
creasing within the segment. In the case where A is decreasing in the segment,
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the signs for the equations above change. Therefore, we extend for any point q,
between T1 and T2:

‖Btransf (q)‖ < ‖Atransf (q)‖ (2.16)

If we normalize the profiles, then the only error between A and B comes
from the segments such as in Figure 2.9, with material-dependent extrema. Let
the set of locations in the segment be P . If the error in the values at locations
in P are removed, then the new appearance profile so obtained is identical to
A, and hence the dot-product distance becomes 0. This would mean the actual
dot-product of the unit profiles is 1. Let the error due to material-extrema for
each location i ∈ P in B be ei. For those values:

Btransf (i) = Atransf (i) + ei, i ∈ P (2.17)

For any other location, i 6∈ P . For segments without material dependent
extrema, the error is zero and therefore:

Btransf (i) = Atransf (i), i 6∈ P (2.18)

Let the length of the profiles A and B be d. The dot-product between the
two unit profiles:

F =

d∑
k=1

Atransf (k)Btransf (k)

(
d∑

k=1

(Atransf (k))2
d∑

k=1

(Btransf (k))2
) 1

2

(2.19)

From Equation 2.16,

F =

d∑
k=1

Atransf (k)Btransf (k)

(
d∑

k=1

(Atransf (k))2
d∑

k=1

(Btransf (k))2
) 1

2

>

d∑
k=1

Atransf (k)Btransf (k)

(
d∑

k=1

(Atransf (k))2
d∑

k=1

(Atransf (k))2
) 1

2

(2.20)

and from Equations 2.17 and 2.18, this becomes

F >

∑
k 6∈P

(Atransf (k))2 +
∑
k∈P

Atransf (k)Btransf (k)

(
d∑

k=1

(Atransf (k))2
d∑

k=1

(Atransf (k))2
) 1

2

(2.21)

Adding and subtracting a term in the numerator:
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F >

∑
k 6∈P

(Atransf (k))2 +
∑
k∈P

(Atransf (k))2 −
∑
k∈P

(Atransf (k))2 +
∑
k∈P

Atransf (k)Btransf (k)

d∑
k=1

(Atransf (k))2

(2.22)

Since the sum of the first two terms is the denominator, we can simplify
further,

F > 1 +

−
∑
k∈P

(Atransf (k))2 +
∑
k∈P

Atransf (k)Btransf (k)

d∑
k=1

(Atransf (k))2
(2.23)

and from Equation 2.16

F > 1 +

−
∑
k∈P

(Atransf (k))2 −
∑
k∈P

Atransf (k)2

d∑
k=1

(Atransf (k))2
(2.24)

Since F is the expression for the dot-product, and we use the distance metric
specified by 1 − F , then we can an expression for, D, the distance between
profiles:

D = 1− F <

∑
k∈P

(Atransf (k))2 +
∑
k∈P

Atransf (k)2

d∑
k=1

(Atransf (k))2
(2.25)

or,

D <

2 ∗
∑
k∈P

(Atransf (k))2

d∑
k=1

(Atransf (k))2
(2.26)

We want the dot-product distance between to be zero when A and B are
generated by the same normal. Recall that we previously introduced randomly
waving a light source as a way to create profiles with lots of geometry-extrema
and few material-extrema. Since profiles will have far more segments without
material-extrema than with. Therefore, for a very long profile:
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d∑
k=1

(Atransf (k))2 >>
∑
k∈P

Atransf (k)2 (2.27)

Therefore D ⇒ 0 as the profiles become long. We can explain this result
more intuitively by recalling Equation 2.14 that relates the transformed values
of the profile to indices within a segment. Therefore Equation 2.26 can be writ-
ten in terms of these indices:

D <

2 ∗
∑
k∈P

(ik)2

d∑
k=1

(ik)2
(2.28)

Note that we are summing the squares of the indices in each segment. In
the numerator we do this for segments with material-extrema, and in the de-
nominator we do this for segments without material-extrema. Now, the sum of
squares of n positive numbers depends on the n3. To make our expression con-
cise, we say the sum of squares is given by a function, S(n3). Since the number
of indices in each segment depends on the length of the segment (see Figure
2.9), the terms in the numerator and denominator depend on the lengths, L, of
the segments:

D <

2 ∗
∑
k∈P

S((Lk)3)

d∑
k=1

S((Lk)3)

(2.29)

If profiles are created by the unstructured method discussed previously,
then the lengths of segments with material extrema are much smaller than those
without material-extrema. This is the reason why the distance between profiles
A and B from the same normal goes to zero. If the profiles are from different
normals, then there is no such ratio between material-extrema segments and
geometry-extrema segments. In this case the distance D does not go to zero.
With long profiles, our distance metric therefore can be used with any machine
learning algorithm to create iso-normal clusters of scenes.

Finally, one of the parameters that needs to be decided by our algorithm is
the number of clusters, k. Calculating the number of clusters automatically is
an unsolved problem in machine learning. It may be possible to use domain
specific knowledge about appearance profiles to calculate the right k for our
clustering algorithm, but that would require some knowledge of scene proper-
ties. Instead we advocate a well-known and simple method to decide k called
hierarchical agglomerative clustering, which involves merging clusters. First,
over-cluster the scene with a large k. In successive steps, clusters are merged
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Figure 2.10: Setup: Our acquisition setup with a Canon XL2 video camera, a 60
watt light attached to a wand. In real experiments the camera and light source
are further away to satisfy orthographic assumptions.

Figure 2.11: Choosing the number of clusters: Here the number of clusters, k,
are varied for a particular scene. In each case the clusters created are still iso-
normal. Merging the clusters at each step allows us to create bigger iso-normal
clusters. The merging is stopped when the distance between cluster centers is
larger than a user-defined threshold.

if their distance is less than some user-defined threshold. However, there are
many cases, such as smoothly moving cast shadows and curved surfaces, for
which there are an infinite number of valid clusters in the scene. Clustering
simply gives a piecewise approximation, and the best choice of a k for the al-
gorithm is hard to obtain in such cases. In these scenarios we suggest the user
input a reasonably large value of k. Although this over-clusters the scene, it
makes sure that the sub-clusters produced are consistently iso-normal.

2.1.5 Experiments with Real Scenes

We will now demonstrate our algorithm using a wide range of real indoor and
outdoor scenes with complex scene structure and material properties. Our
setup consists of a Canon XL2 digital video camera observing a static scene
as shown in Figure 4.13. As discussed before, number of clusters is decided
using a simple merging technique, For example, in Figure 2.1.5 we cluster a
painted house model where the number of clusters, k, was automatically se-
lected when the distance between clusters became greater than a user-defined
threshold (which was 0.5 in this experiment).
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Our algorithm was first tested on piecewise planar scenes consisting of real
textures from the CURET database ([13]). The CURET patches are arranged in
a scene and light source is waved, creating 200 video frames. Note the boxed
regions at the top of Figure 2.12. These textures are artificial grass and real
straw, whose appearances are quite complex; for example, artificial grass has
many specularities and is also rough. The second row shows steel wool and real
wool, which are 3D textures with uneven height from the patch surface. Our al-
gorithm clustered all these textures properly, even though their material prop-
erties were very different. In Figure 2.13, our algorithm clusters anisotropic
materials, such as velvet, satin, shiny paper and fur, implying that our method
works even in some cases that are not described well by our illumination model.
Results are also shown for non-planar objects which contain an infinite number
of normals. In these cases, our method creates a piecewise planar approxima-
tion of the continuous curved surface.

In Figure 2.14 we show more complex planar scenes, containing occlusion,
cast shadowing and inter-reflection. In these regions, our method may over-
cluster the scene, but note that the smaller clusters are still geometrically con-
sistent. Clustering was also demonstrated on some everyday, indoor scenes
such as the chair and table shown in Figure 2.15. Even though these are non-
lambertian scenes with materials such as wood, plastic, metal and smooth tile,
our algorithm creates meaningful clusters. In Figure 2.16, clustering results ob-
tained for outdoor images of a scene collected from the WILD database ([63])
are shown. Note that this scene does not satisfy many of our assumptions. For
example, it is illuminated by the sun and sky instead of a randomly-moving
point light source. There is also significant depth in the scene (see [63]), vi-
olating the orthographic assumption. A good result is still obtained because
the diverse and random weather illumination (sunny, cloudy, fog, mist) creates
appearance profiles with enough intensity variation to produce valid clusters.

We believe iso-normal clusters will enable a variety of applications in vi-
sion and graphics. One such application is transferring texture in videos. The
challenge here is to transfer appearance that is consistent under varying illumi-
nation. Profiles within a cluster share the same intensity extrema and therefore
the corresponding scene points ’light up’ and ’go dark’ together. Transferring
profiles within a cluster creates new pixels whose brightness varies consistently,
as shown in Figure 2.17. The complex appearance effects of the materials are
preserved through the length of this video sequence.
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Figure 2.12: Results obtained when our algorithm is used to cluster materials
in the CURET database. Image sequences of real CURET textures were ob-
tained by waving a light source (We did not use the still images distributed by
Columbia University). Notice the top row containing materials such as artificial
grass and straw and the middle row with examples of real wool and steel wool.
Despite significant appearance differences, these samples cluster together accu-
rately because they share the same surface normal.

Figure 2.13: Clustering curved surfaces with complex (possibly anisotropic)
materials When anisotropic BRDFs are present in the scenes, our method still
produces meaningful clusters. Furthermore, for curved surfaces, our method
produces a piecewise planar approximation.
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Figure 2.14: Clustering surfaces with cast shadows. When complex effects
such as cast shadows and inter-reflections are present in the scenes, our method
works for simpler scenes such as on the left. For more complex scenes, such as
on the right, our method may fail to group all pixels in the scene that have the
same normal. Instead, the algorithm simply over clusters the scene into smaller
iso-normal clusters.

Figure 2.15: Clustering indoor scenes. The following are three indoor scenes
containing non-lambertian objects, such as the metal table with a wood top, a
metal door, reflective floor tile, plastic chairs and a texture cotton cloth placed
on the table. In spite of all of these our clustering algorithm does well. Note:
some of the clusters have been merged by the user.
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Figure 2.16: Clustering WILD database: Note the complex appearance effects
that occur in this data set. Our transformation of the appearance profile and
the dot-product distance metric does significantly better than using Euclidean
distance metric on raw profiles. In both cases, k-means was used to cluster
appearance profiles. Note: some sub-clusters were merged by the user.

Figure 2.17: Texture transfer of complex materials (such as velvet and satin)
between similar surface normals in a scene. A patch of the original scene is
chosen by the user and a simple repetitive texture synthesis method is used to
transfer this patch onto other areas of the scene with the same surface normal.
Note the consistency in geometry and lighting in the transferred regions. Please
see video at [47] for many more lighting variations.

31



2.2 Depth Cues from Uncalibrated
Near Point Lighting

While in the previous section we modeled the motion of a distant source (like
the sun), here we consider a stationary scene illuminated by a point source that
is moved approximately along a line or in a plane. We observe the brightness
profile at each pixel and demonstrate how to obtain three novel cues: plane-
scene intersections, depth ordering and mirror symmetries. Our cues are ob-
tained with respect to the light source path and not the camera. In practice, we
extend our results to non-lambertian results by applying heuristics to remove
the effect of sharp specularities and glossiness. We show results on a variety of
indoor and outdoor scenes.

2.2.1 Maxima in Near Point Appearance Profiles

Let a static scene be illuminated by an isotropic point light source moving in
a straight line (see Figure 2.18) at constant speed. At a line position d = i, the
source S is nearest to scene points lying on a plane perpendicular to the light
source path. In this section, we show that maxima will occur in the brightness
profiles of all of these scene points, owing to a minimum in the inverse-square
fall-off from the point light source. By simply detecting brightness maxima
occurring at every light source position (or frame), we obtain plane-scene inter-
sections. Our results appear to be created by intersecting the scene with a plane
that is translating along the source path. This is similar in spirit to structured
light striping where a sheet light is swept across the scene.

Figure 2.18: Detecting a plane-scene intersection using brightness maxima:
Consider a light source moving in a line in front of a scene. At any line posi-
tion d = i, the scene points that are closest to the light source path will display
a maxima in their profiles. We use this maxima to create plane-scene intersec-
tions, similar to structured light line striping.

Let us assume, without loss of generality, that the light source has unit in-
tensity. If the BRDF is given by B, the foreshortening by f , the incident light
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angles by θs and φs, the viewing angles given by θv and φv, and the distance
between the light source and the scene point at line position d by R(d), then the
brightness profile E(d) at a scene point is:

E(d) =
B(θs(d), φs(d), θv, φv).f(d)

(R(d))2
=

F (d)

(R(d))2
(2.30)

where the F term contains both BRDF and foreshortening. Taking the deriv-
ative with respect to position, d, gives us an expression for when the maxima of
E(d) should occur,

E
′
(d) =

(R(d))2 F
′
(d)− 2 R

′
(d)R(d) F (d)

(R(d))4
= 0 (2.31)

2.2.2 Plane-Scene Intersections for a Lambertian Scene

Without loss of generality, consider a scene point located at the origin, P =
(0, 0, 0), and let the light source move along a line parallel to the z-axis, and let
its 3D position be ~S(d) = (D, 0, d) where D is its closest distance to the origin.
The distance from the scene point to the light source is R(d) = (D2 + d2)0.5. For
a scene point with albedo ρ and surface normal ~n = (nx, ny, nz) we write:

F (d) =
ρ ~n.(~S(d)− ~P )

R(d)
(2.32)

An iso-planar maxima occurs if F
′
(d) is zero when the light source reaches

the closest distance to the scene point. Consider the expressions for F
′
(d) and

R
′
(d),

F
′
(d) =

ρR(d).(nz)− ρR
′
(d)(Dnx + nzd)

(R(d))2
(2.33)

R
′
(d) =

d

R(d)
(2.34)

Putting these into E
′
(d),

E
′
(d) =

−ρ(2nzd
2 + 3Dnxd−D2nz)

(R(d))5
(2.35)

Setting E
′
(d) = 0 gives us a quadratic equation in d with two possible so-

lutions. By checking the sign of the second derivative, E
′′
(d), for all possible

normals, we found that one of these solutions is always a maxima and is given
by,

dmaxima = D

−3
4

+
√

(3
4
)2 + 1

2
(nz

nx
)2

nz

nx

 (2.36)
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Figure 2.19: Plane-scene intersections on a lambertian pot: In this figure we
show results of our method applied to a Lambertian clay pot. We obtain both
horizontal and vertical plane intersections by moving a near point light source
as shown by the marked paths. These results are similar to those obtained from
structured light. The discontinuity in the result for horizontal planes is due to
merging the intersections for the right and left halves of the pot. These were
done separately to avoid blocking the camera view.

Ideally, iso-planar maxima should occur when d = 0, since that is when the
light source is closest to the scene point and R(0) = D. Therefore, Equation 2.36
represents the error in the iso-planar maxima location. However, simulations
show that this error remains bounded as nz

nx
is varied. For instance, dmaxima is

zero when nz

nx
→ 0 and becomes D√

2
when nz

nx
→ ∞. Although we will investi-

gate this bound more thoroughly in future work, here we assume the error is
negligible if the light source path is close to the scene point (D is small).

In Figure 2.19 we show both horizontal and vertical plane-scene intersec-
tions for a lambertian pot, created by moving the light source first sideways
and then upwards. We code the planes from blue to red, obtaining a continuum
of color coded plane-scene intersections. For the second result, we merged two
experiments for the left and right halves of the pot, to avoid blocking camera’s
view of the scene. Although these results appear similar to structured light im-
ages obtained by sweeping a plane over the scene, they were obtained by a user
hand-waving a near point light.

Shadows and Specularities: Non-isoplanar brightness maxima are usually
rare in lambertian scenes illuminated by a near light source. In fact, for a max-
ima to occur when R

′
(d) 6= 0, a fortuitous occurrence of values for R

′
(d), R(d),

F (d) and F
′
(d) would be required in Equation 2.31, which is less likely. How-

ever, scenes with sharp specularities still show non-isoplanar maxima. Fortu-
nately, since specularities are characterized by a rapid rise in brightness, these
are detected by thresholding the second derivative of the measured intensities.
Shadows are handled by repeating the experiment with different parallel light
source paths. Since a scene point shadowed in one experiment may be illumi-
nated in another, we usually detect an iso-planar maxima.
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Figure 2.20: Plane-scene intersections for rendered scenes: We used a ray trac-
ing software ([75]) to render two objects using both the Lambertian + Torrance-
Sparrow and the Oren-Nayar models. For each set of images, we created plane-
scene intersections, and we show two examples of these at the top of the figure.
We fit a plane to each intersected region and measure the plane fit error. The av-
erage of these errors is plotted, as a percent of the longest distance contained in
the object. These empirical results support the idea that the plane-intersection
algorithm can be used with a variety of non-lambertian scenes.
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Figure 2.21: Plane-scene intersections for real scenes: At the top of the figure
we show horizontal and vertical plane-scene intersections for a painted house,
even though this scene demonstrates glossy specularities. We also show plane-
scene intersections for an office desk made of metal and plastic. At the bottom
we show the sub-surface scattering effects of a wax candle, by shining a point
laser. Our method is able to create horizontal plane-scene intersections for this
object with complex BSSRDF ([25]) appearance.
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2.2.3 Experimental Results for Plane-Scene Intersections

In Figure 2.20, we show plane-scene intersection results for simulated scenes
created using a ray-tracing tool ([75]). We rendered the bunny and dragon mod-
els by varying the parameters of the Oren-Nayar model (facet angle from 0 to
π
2
) and of a Lambertian + Torrance-Sparrow model (σ of facet distribution from

0 to 1). The light source was moved along the x− and then y− axes to create
horizontal and vertical plane-scene intersections. Using ground-truth, we fit a
plane to the 3D locations of scene points in the plane-scene intersections and
plotted the sum-of-squared errors. The low errors indicate the robustness of
our technique for non-lambertian BRDFs.

At the top of Figure 2.21, we show horizontal and vertical plane-scene inter-
sections for a painted house model, which are detected despite glossy spec-
ularities in the scene. Our algorithm also produces good results for scenes
with sharp specularities, such as the metal office desk in Figure 2.21 and for
rough objects with cracks, such as an earthen pot in Figure 2.21 . We are also
able to create plane-scene intersections for objects with sub-surface scattering
(since BSSRDF ([25]) is smooth) such as a wax candle shown in Figure 2.21. The
scattering effects are demonstrated using a laser pointer, and horizontal plane-
scene intersections are shown.

2.2.4 Weaker Cues from Planar Light-source Motion

The cues in the following section can also be obtained from the smooth motion
of a near point light source. However, unlike plane-scene intersections, they
cannot be applied to scenes with non-homogeneous BRDF, and therefore we
term them as weak cues.

Depth Ordering for Homogeneous Scenes

A scene with homogeneous BRDF is illuminated by a point source moving in a
plane. Intuitively, scene points closer to the light source tend to be brighter than
scene points further away. If we somehow manage to remove the effect of BRDF
for any two scene points, then their appearance would depend only on their
distances to the ”base plane” containing the light source path. Although this is
not possible generally, we will provide two heuristics to achieve good results
for depth ordering: a) Move the light source over a large area of the base plane
and b) Bring the base plane as close as possible to the scene. We support our
method with strong empirical evidence using both simulations and real scenes.

Integrating the Brightness Profile

Consider a scene point P illuminated by a light source moving in a plane. As
before, we will assume the light source has unit intensity and let F contain both
the BRDF and foreshortening and R(d) be the distance between the source and
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Figure 2.22: Overlap of incident angles for a simple 2D scene: A light source
moving in a line illuminates a 2D scene with homogeneous BRDF. Let scene
point P be at a greater depth than Q and let both have the same surface normal.
Some of the incident angles at P are repeated in Q, and we show these overlapped
angles in gray. Because of inverse-square fall-off, the measured intensities in the
overlapped region will be higher in Q than in P. We extend this idea to create
scene depth ordering for 3D scenes as well.

this scene point at position d. Let Sp be the sum of the P ’s intensities along the
light source path from positions d1 to dn,

Sp =
dn∑

d=d1

Fp(d)

(Rp(d))2
. (2.37)

Let there be another point Q whose perpendicular distance to the plane con-
taining the light source is less than that of P . At different light source positions,
P and Q may observe identical incident angles. We term these as overlapped
incident angles, and they are shown in gray in Figure 2.22. In this simple 2D
scene, for an infinite path, all the incident angles at P and Q will overlap and,
Sp < Sq.

This result is harder to demonstrate for real 3D scenes where P and Q can
have different surface normals. To make the analysis easier, we assume that
Rp(d) > Rq(d) for all positions along the light source path (Figure2.23). We
will show that this drawback is not severe since, in practice, we get good depth
ordering results for scenes with a variety of geometries.

Sp and Sq consist of two components, one of which (denoted by O) comes
from overlapped incident angles, as in the gray region in Figure 2.22. The other
comes from non-overlapped or different incident angles (denoted by N ). Since
the order of the summation does not matter, we let the overlapped angles occur
from d1 to di, and the non-overlapped from di+1 to dn. We separate the summa-
tion accordingly as:

Sp =

di∑
d=d1

Fp(d)

(Rp(d))2
+

dn∑
d=di+1

Fp(d)

(Rp(d))2
(2.38)

which we write concisely as Sp = Op + Np. Similarly for scene point Q we
have Sq = Oq + Nq. The overlapped terms, Op and Oq, have the same incident
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Figure 2.23: Assumption for obtaining valid depth orderings: A light source
moving in a line illuminates a scene with homogeneous BRDF. Our depth or-
dering method works for scenes where any point at a greater depth than Q must
be further away from the light source at every time instance. This restricts us to
a non-planar region around Q as shown.

angles. Since P is further away than Q, the inverse-square fall-off from the light
source ensures that Op < Oq. Therefore, Sp < Sq if Np < Nq. Consider a pair of
the summation terms from Np and Nq. If the inequality holds for each of these
pairs, then,

Fp(d)

(Rp(d))2
≤ Fq(d)

(Rq(d))2
(2.39)

Depth Ordering for Lambertian Scenes

When does Equation 2.39 hold? We answer this question by first investigating
depth ordering for lambertian scenes. We divide the problem into two cases,
based on whether the local geometry between the scene points P and Q is con-
vex or concave.

Convex neighborhood: If the normals at P and Q are given by np and nq

and if the 3D position of the light source is s(d) then we can rewrite Equation
2.39 as,

np.(s(d)−P)

nq.(s(d)−Q)
≤
(

Rp(d)

Rq(d)

)3

(2.40)

For a convex object, a scene point’s foreshortening to the light source is
higher than one farther away. Therefore the LHS of Equation 2.40 is always less
than one, and our method always works for pairs in a convex lambertian neigh-
borhood. In Figure 2.24 we show simulations of depth orderings for convex
objects of different curvatures demonstrating above 97% accuracy with small
errors occur due to violations of the assumption in Figure 2.23. We also present
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Figure 2.24: Simulations of convex and concave Lambertian objects: Our
depth ordering method always works for convex lambertian objects. We show
results with very low errors on renderings of a convex shape whose curvature
we gradually increase. We also render concave objects at different curvatures.
Although the depth orderings are much worse in this case, they stabilize and
do not degrade with time. In addition, bringing the light source closer creates
better orderings for shallow concave objects.

results on non-lambertian convex objects, such as corduroy and dull plastic
(Figure 2.26).

Concave neighborhood (shadows and interreflections): The foreshorten-
ing of P and Q are now opposite to the convex case, and the LHS of Equation
2.40 is always greater than 1. In fact, the further the two points are, the larger
the left hand side of the equation will be. Fortunately, our method still per-
forms well thanks to the effect of shadows. We rewrite Equation 2.40 by adding
a visibility term, V (d),

V (d)
np.(s(d)−P)

nq.(s(d)−Q)
≤
(

Rp(d)

Rq(d)

)3

(2.41)

Since P is further away from the light source than Q, it is more often in
shadow. Whenever this happens, V (d) = 0 and Equation 2.41 is true. Concave
depth ordering has more errors than the convex case (Figure 2.24), the results
are still reasonable (above 82%). In addition, the closer we bring the light source
to the scene, the better the results get since the RHS of Equation 2.41 increases.

Experimental Results

In Figure 2.25, we have rendered three scenes (buddha, bunny and dragon),
using ray tracing ([75]). As before, we varied the roughness parameters for the
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Figure 2.25: Depth ordering for rendered scenes: We used the PBRT software
([75]) to render three scenes using both the Lambertian + Torrance-Sparrow and
Oren-Nayar models. We covered the space of roughness parameters for each
of these models. Using ground truth depths for these scenes, we measured
the percentage of correctly ordered scene points and we plot the results above.
These results provide empirical evidence supporting the use of our method
with diffuse non-lambertian BRDFs.
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Oren-Nayar model (facet angle from 0 to π
2
) and the Lambertian + Torrance-

Sparrow model (σ of facet distribution from 0 to 50), getting 10 sets of images,
each with 170 different light source locations. We compare the depth ordering
with ground truth depth and show accuracy above 85% for the Oren-Nayar
model and above 75% for the Lambertian + Torrance-Sparrow model. In Figure
2.27 we display the ordering for a polyresin statue containing shadows and
interreflections as a ”pseudo depth” in Maya. We have shown different views
as well as its appearance under novel lighting. Finally, an advantage of our
method is that these depth orderings are with respect to the light source and
not the camera. We obtain orderings from different planes, without camera
motion and avoiding the difficult problem of scene point correspondence. In
Figure 2.28 we show ordering results for a wooden chair, for three planes.

Mirror Symmetries in Homogeneous Scenes

In this section, we will investigate a way of finding mirror symmetry pairs for
scenes with homogenous BRDFs. Although our method is simple, it is useful
for objects that have the mirror symmetry in their shapes and produces very
sparse pairs otherwise.

Mirror Symmetry Pairs in Lambertian Scenes: Consider a homogeneous
Lambertian scene containing a mirror symmetry, viewed by an orthographic
camera. Let the scene be illuminated by a point light moving in a plane par-
allel to the viewing direction. Reflecting the scene across such a plane does
not change incident elevation angles and light source distances at scene points.
Therefore, all the reflected pairs will have identical appearance over time and
can be easily located. We show the result of matching identical profiles for a
homogeneous Lambertian pot at the top of Figure 2.29. The pot has a reflection
symmetry across a vertical plane passing through its center and perpendicular
to the image plane. We wave a point light source in this plane and mark the
matched scene points with the same color. Note that if the light source was
moved in a different plane, different symmetry pairs would be obtained. How-
ever, these would most likely be sparse, since the reflection plane would not
coincide with the mirror symmetry of the object.

Shadows and Inter-reflections: A scene with mirror symmetry has the same
geometry across the plane of reflection. Therefore, geometric appearance effects
such as shadows and inter-reflections will be identical between symmetry pairs,
creating identical intensity profiles.

Isotropic BRDFs: In homogeneous non-lambertian scenes the effect of the
incident azimuth angles must be considered. In general these will be differ-
ent for the scene and its reflection. However, the absolute difference between
the azimuth angles are the same, and therefore our method works for isotropic
BRDFs. We find symmetry pairs by matching identical intensities for an of-
fice desk at the bottom of Figure 2.29, even though this scene contains non-
lambertian materials such as metal and plastic.
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Figure 2.26: Depth ordering results on real convex scenes: We acquired im-
ages by waving a near point light in a plane. For each scenes we display the
depth ordering obtained as a ”pseudo depth”, by plotting the ordering in 3D.
The objects presented are made up of a variety of materials such as plastic and
corduroy.

Figure 2.27: Depth ordering results for a statue: In the top row we show
a polyresin statue and a 2D depth ordering image obtained from an uncali-
brated near light source moving in a plane. We visualize the ordering as a
”pseudo depth” in the bottom row, applying novel lighting, viewpoint and
BRDF. Although this object has complex effects such as interreflections and self-
shadowing, our depth ordering is accurate, as we show in the close-up. Please
see [47] for many other view points.
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Figure 2.28: Depth ordering from different viewpoints: Here we show depth
ordering of a wooden chair from the viewpoints of three different planes.
Brighter scene points are closer than farther ones. The second depth ordering is
from the camera point of view, and is similar to conventional depth results ob-
tained from stereo algorithms. We also get the orderings from the left and right
planes without moving the camera. This allows us to obtain novel visualiza-
tions of the scene, while avoiding the problem of scene point correspondence.

Figure 2.29: Symmetry pairs in real scenes: We show two real scenes, a lam-
bertian pot and a office desk. A near point light source was hand-waved ap-
proximately in the plane of mirror reflection that is perpendicular to the image
plane. We match identical profiles in the scene and mark them with the same
color, giving us symmetric pairs in the scene.
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The appearance profile at each point in a scene depends both on local prop-
erties, such as the BRDF and geometry, and on a variety of global factors such
as cast shadows, inter-reflections and sub-surface scattering. In the last two sec-
tions, we show how the maxima and minima of the profile contain geometric
cues and act as invariants to other effects. In this section, we focus on modeling
the appearance profile, rendering new images.

We propose a general representation for the appearance profile. We derive
an analytic approximation of the appearance profile using Taylor series, for re-
lighting from a fixed viewpoint. This Taylor polynomial representation is non-
linear and data-dependent which results in a compact low-dimensional repre-
sentation of appearance with fewer terms than other methods like PCA and
spherical harmonics. In addition, Taylor representations of appearance pro-
files can exploit localized appearance variation both in the angular and spatial
domain by changing the center of expansion. Since we do not need regular
sampling to compute a Taylor polynomial representation, we are able to collect
input images in an uncalibrated setup, by simply waving a light-source around
a scene. We demonstrate our method by relighting textures and scenes with
several different appearance effects including sub-surface scattering.

2.3 Modeling the Appearance Profile

Radiometric reflectance models the interaction of light with scenes. Some mod-
els, such as the BRDF, explain local effects at a particular scene point and do not
take into account interactions between different parts of the scene. Others such
as the BTF and the BSSRDF are global models that explain the scene as a whole.
Each of these explicitly model different physical properties of the scene includ-
ing material roughness, occlusion and scattering. As a result, the more phe-
nomena a model tries to describe, the more complex and higher-dimensional it
becomes. For example, the BSSRDF, which models sub-surface scattering, has
eight parameters which makes it difficult to fit the model to data ([40]).

Instead, we model general appearance variation, in particular under vary-
ing illumination, simply as a profile (curve) of viewing and lighting directions.
The appearance profiles implicity model all the effects present in the scene, such
as specularities, shadows, inter-reflections and sub-surface scattering. As we
will show, the appearance profile is at most four dimensions. We will present
two kinds of appearance profiles for relighting scenes and will assume fixed
viewing direction. If we denote the measured intensity at a scene point by I
and the illumination direction in polar coordinates by (θs, φs), the appearance
profile A is written as,

I = A(θs, φs). (2.42)
This appearance profile is defined at each scene point and it maps illumina-

tion directions to a single intensity. We will show relighting of fixed viewpoint
BSSRDF and fixed view point BTF scenes using the above appearance profile.
This analytic form of the appearance profile is similar to the concept of ’ap-
parent BRDF’ ([48]). Note, however, that unlike apparent BRDF which only
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Light Transport Function Appearance profile
2D Fixed Viewpoint BRDF 2D A(θs, φs)
3D Isotropic BRDF 3D A(θv, θs, (φv − φs))
4D Anisotropic BRDF 4D A(θv, φv, θs, φs)
4D Fixed Viewpoint BTF(x, y, θs, φs) 2D A(θs, φs)
6D BTF(x, y, θv, φv, θs, φs) 4D A(θv, θs, φv, φs)
6D Fixed Viewpoint BSSRDF (u, v, x, y, θs, φs) 2D A(θs, φs)
6D Fixed View BSSRDF Zoom (u, v, x, y, θs, φs)4D A(x, y, θs, φs)
8D BSSRDF(u, v, x, y, θv, φv, θs, φs) 4D A(θv, θs, φv, φs)

Table 2.1: Appearance Functions: In this table we show some common re-
flectance profiles in increasing order of dimensionality. Note that the corre-
sponding appearance profiles all have dimensions lesser than or equal to 4D.
We focus on those scenes with fixed viewpoints, such as fixed view BSSRDF and
fixed view BTF and show that the appearance profile is able perform accurate
relighting of these scenes. We also show results with fixed view BSSRDF tex-
tures that have smooth variation in space, virtually ’zooming’ into the texture.

adds visibility to the BRDF, the appearance profile can implicitly model a much
wider variety of effects including sub-surface scattering and spatial variation
(See Table 1). It is able to do this since every scene point has its own specifically
tailored appearance profile that explains the observed intensities. The power
of the appearance profile comes from this specificity. The second appearance
profile that we will present allows us to model scenes in which the appearance
varies smoothly around location (x, y) as

I = A(x, y, θs, φs). (2.43)

In general, appearance profiles may not be continuous because of non-smooth
effects such as sharp shadows and specularities. Consider scenes containing
only smooth effects such as soft shadows and sub-surface scattering. The do-
main of such scenes is broad, and includes important areas for graphics such as
homogeneous BSSRDF scenes and textures. In the rest of this section, we will
show how to use Taylor polynomials to accurately model such appearance pro-
files. The major advantage of appearance profiles is that its dimensionality is at
most 4. This low-dimensionality makes subsequent parameter estimation more
feasible. Table 2.3 shows some common light transport functions of higher or-
der that can be represented by profiles of equal or lower dimensionality.

2.3.1 Taylor Series of Appearance Profiles

We approximate the appearance profile using the Taylor series polynomial. The
Taylor polynomial has many advantages as a tool for understanding appear-
ance profiles. It is a single model for all the measured intensities, as opposed to
local models such as splines. The coefficients of the polynomial are powers of
the viewing and illumination directions, and therefore rendering novel images
simply means creating new coefficients. Polynomial fitting is robust to noise in
a least squares sense. In addition, polynomial calculations are fast in hardware
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and rendering is easy. Finally, operations such as differentiation and integration
that are hard on analytic reflectance profiles can be performed easily on their
corresponding polynomial approximations.

Consider the appearance profiles A from Equations 2.42 and 2.43. Since the
Taylor expansion of this profile is multivariate, let the centers of expansion be
(θsc , φsc) and (xc, yc, θsc , φsc). Then, using the power notation for derivatives of
[108], their Taylor series approximations are

A(θs, φs) =
p∑

j=0

{
1
j!

[
(θs − θsc)

δ

δθs
+ (φs − φsc)

δ

δφs

]j

A(θsc , φsc)

}
, (2.44)

A(x, y, θs, φs) =
p∑

j=0

{
1
j!

[
(x− xc)

δ

δx
+ (yv − yc)

δ

δy

+(θs − θsc
)

δ

δθs
+ (φs − φsc)

δ

δφs

]j

A(xc, yc, θsc , φsc)

}
. (2.45)

Such an expansion of A produces an order p Taylor series. Each additional jth

order produces derivatives of A up to order j. Re-arranging and expanding
the above equations so that all terms with the same derivative order of A are
grouped together allows us to write the Taylor polynomials in the following
notationally simplified form:

A = D0 +
n∑
i

Ci.Di . (2.46)

where the Cis are the power terms and the Dis are the partial derivatives of A
evaluated at the center of expansion. For example, in Equation 2.44,

Ci = K.(θs − θsc)
a.(φs − φsc)

b, 0 ≤ a, b ≤ p, K ∈ R (2.47)

Di =
δe

δeθs

.
δf

δfφs

A(θsc , φsc), 0 ≤ e, f ≤ p. (2.48)

For a profile of m variables, an order p Taylor polynomial will have n =(
m+p

m

)
terms. For instance, the fourth order Taylor polynomial of the 4D appear-

ance profile A will have 70 terms. Given k samples of A, where k > n, at known
illumination and viewing directions (known Cis), estimating the Dis becomes
simply solving a linear system of equations,

1 C11 C12 ... C1n

.

.

.
1 Ck1 Ck2 ... Ckn




D0

.

.

.
Dn

 =


A1

.

.

.
Ak

 (2.49)

Two properties are essential to accurately approximate a profile with a Tay-
lor polynomial: boundedness and continuity (Pg 94. [20]). Boundedness is
important since by Taylor’s theorem, the residual error, Rn, of a n term Taylor
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series expansion of a bounded profile goes to zero as n goes to infinity. Appear-
ance profiles are all bounded, since the radiance from a scene onto the image
plane can never be infinity (conservation of energy), and therefore is always
smaller than some large positive number. Not all appearance profiles satisfy
the second, harder condition of continuity, for instance due to sharp shadows
and point specularities. Therefore we only apply the Taylor polynomial repre-
sentation to smooth appearance profiles.

What are the advantages of a polynomial model for appearance? Consider
scenes containing effects such as soft cast shadows, glossy specularities and
sub-surface scattering. The variation in appearance at the scene point is smooth,
which means that higher order derivatives of the appearance profile vanish.
Therefore, a finite Taylor polynomial exists that accurately models the appear-
ance at each scene point ([20]). In addition, varying the center of expansions
allows localized approximations of the appearance profile. Therefore, Taylor
polynomials can result in compact representations for a variety of scenes, which
we will now first verify with analytic models.

For example, consider the appearance profile of isolated convex objects whose
surface reflectance can be modeled with isotropic BRDFs. Taylor polynomial
approximations of the appearance profile of such objects can be analytically
computed using specific BRDF models. Figure 2.30 shows rendered spheres of
three common BRDFs, Phong, Torrance-Sparrow and Oren-Nayar, along with
their Taylor approximations. By increasing the complexity of the models, we
show in the middle row of Figure 2.30, that the number of terms needed in
the Taylor polynomial grows linearly. Therefore, we can safely assume that the
number of terms required will not be infinity for other BRDF models commonly
used in vision and graphics. From the bottom row of Figure 2.30 it is clear that
the normal direction is a good candidate for the center of expansion of the Tay-
lor polynomial for general appearance profiles.

We just showed that Taylor polynomial representation works well for sim-
ple BRDFs. Real scenes, however, contain various smoothly varying appear-
ance effects that are still challenging to model. How well do Taylor polyno-
mials capture smooth appearance effects? To answer this question we isolated
these effects in experiments summarized in Figure 2.31. We have shown images
from four different videos, each of which captures a specific appearance effect
under varying illumination. In particular we have investigated soft shadows,
glossy specularities, sub-surface scattering and inter-reflections. These effects
are smooth effects since the intensities in the images vary smoothly, without the
kind of drastic change in appearance displayed by scenes with point specular-
ities or sharp shadows. For the reported experiments, we used Taylor polyno-
mials of orders less than 10. These results clearly demonstrate that our Taylor
polynomial representation can be applied widely.

Consider an n term Taylor polynomial that accurately represents an appear-
ance profile for each scene point. Let us construct a set of basis images whose ith

basis image contains all the Di terms for every scene point. From the definition
of the Taylor series, the derivatives of the appearance profile evaluated at the
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Figure 2.30: Taylor polynomials of common BRDFs: In the first two columns
the Phong model’s metallic parameter, n, is varied from top to bottom. The cen-
ter two columns show Oren-Nayar model with different illumination directions
and roughness parameter ρ. Finally, in the last two columns we render spheres
using the Torrance-Sparrow model and compare with the images rendered us-
ing the Taylor polynomial representation. The right-top two graphs explore the
variation of model parameter values corresponding to increased roughness and
increased metallicity compared to the number of terms needed for 1% error be-
tween the original analytic form and its Taylor polynomial representation. The
results show that the number of terms needed for a good Taylor approxima-
tion does not increase exponentially with increase in model complexity. In the
right-bottom two graphs above, we explore how the error between the analytic
model and center of expansion in the Taylor Series varies. In both cases the
error is least around the surface normal direction of the scene point.
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Figure 2.31: Taylor representations of isolated effects: In each of the four rows,
we show frames that were generated by Taylor polynomial representations of
smooth appearance effects such as inter-reflections, sub-surface scattering, soft
shadows and glossy specularities. The results show that the Taylor polyno-
mial representation can capture these global effects and is applicable to general
scenes containing all these effects.

center of expansion form the basis for the scene appearance space. We propose
using these non-linear data-dependent bases for representing the appearance
profile instead of other general linear bases such as PCA and spherical harmon-
ics. Due to its non-linearity, these derivative bases can better capture the overall
appearance variation in lower order terms. Unlike PCA, the coefficients of this
basis are the powers of the viewing and illumination directions, and therefore
have physical meanings. This provides us intuitive means for rendering image
from novel viewpoints and under novel illumination conditions. Compared to
spherical harmonics, our basis is data-dependent, since the appearance profile
derivatives are specific to the given data. This allows us to have comparable
accuracy to spherical harmonics with far fewer terms. We show these compar-
isons in Figure 2.32.

2.3.2 Taylor Series of Texture Appearance

Textures can be described by a 6D profile known as the Bidirectional Texture
profile (BTF) ([12]). Many textures are roughly planar and tend to have smooth
appearance variation. Therefore local approximation methods such as the 2D
appearance profile described in Equation 2.42 work extremely well. In this sec-
tion we describe different applications of our Taylor polynomial representation
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Figure 2.32: Comparing taylor polynomial accuracy with other techniques:
We compare the effectiveness of the Taylor polynomial model representation
with two other techniques, PCA and spherical harmonics. We use the gravel
texture example and selected a light source position between grazing and nor-
mal directions, since such an image displays both significant shadows and spec-
ularities. Note that our method performs better than spherical harmonics with
far fewer terms, and compares slightly better than PCA.

for texture relighting, synthesis, measurement and rendering. We used textures
measured by Koudelka et al. ([48]) in these experiments.

Texture Relighting: Consider capturing the appearance variation of a tex-
ture sample under varying illumination with an orthographic camera from a
fixed viewpoint. In this case the BTF reduces to a 4D profile and the appear-
ance profile at every location becomes a 2D profile of lighting directions. In
Figure 2.33 we present three different textures illuminated from various light-
ing directions. The synthetic images are rendered using illumination directions
that are not used to calculate the coefficients of the Taylor polynomial. The er-
ror between the synthetic image and the actual image is shown. For all of these
examples, 98% of the pixels were within 20 gray scale values of the original
video. We are able to model high frequency effects such as shadows and glossy
specularities that give rise to dramatically different texture appearances.

Appearance Consistent Texture Synthesis: Consider the derivative basis
images explained in the previous section. Each basis is an array of derivatives
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Figure 2.33: Texture relighting: Some examples of relighted textures from a
database of real textures. ([48]) The second and third rows represent two dif-
ferent grazing angles. Note the drastic change in appearance in the textures.
98% of the pixels in the rendered images were within 20 gray scale values of
the original frames.
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Figure 2.34: Texture synthesis: By applying the texture synthesis work of [19]
to the derivatives in the Taylor Polynomial, we are able to synthesize textures
under different illuminations. In the top row, we show original 196x196 size
images of a sponge texture, and the 453x453 size synthesized textures. We in-
creased the frame rate of the original video from 15fps to 30fps for the synthe-
sized texture. Furthermore, we can perform a 4D Taylor expansion using both
illumination directions and spatial locations as variables. This allows to us ef-
fectively zoom in to textures that exhibit spatially smooth appearance variation
such as sub-surface scattering.

of a specific order. If we apply texture synthesis algorithms on these elements,
we can synthesize a novel set of basis images. Therefore, instead of creating one
new synthesized texture at a particular illumination direction, we can create a
whole space of textures whose incident lighting can be changed by varying the
coefficients of the Taylor polynomials. We use the data-dependent texture syn-
thesis algorithm of Efros and Leung ([19]). The relighting process now creates
synthesized images of a user-defined size whose appearance under varying il-
lumination is consistent with the source texture. On the left of Figure 2.34 we
show a texture of sponge under different light source directions and also its cor-
responding larger, synthesized texture. Again, note that these images are not
synthesized individually for different lighting conditions but are relighted after
a single pass of texture synthesis.

Virtual Zoom for BSSRDF: In the case of BSSRDF textures, the appearance
of the object changes smoothly across the spatial domain (the surface) as well
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Figure 2.35: Modeling BRDF: Averaging the intensities across a BTF gives us
the BRDF of that material. In this example we sample the BRDF of the ’sponge’
texture from [48], and model it using a 4D Taylor polynomial of 35 terms. On
the left, we show the intensity error histogram between the predicted values
of the BRDF and the ground truth, showing that 98.4% of the pixels are within
20 gray scale values of ground truth. The figure on the right shows 20 ran-
domly picked BRDF values in blue, plotted with their corresponding ground
truth in red. These results show that the Taylor polynomial representation also
accurately models BRDFs.

Figure 2.36: Relighting homogeneous BSSRDF scenes: In this example, a wax
rose with BSSRDF effects is illuminated by a distance light source. Taylor poly-
nomial representations of each scene point allows us to recreate the scene ac-
curately, as shown by the center image. Sub-surface scattering is a smoothing
process, and therefore any other effect in a homogeneous BSSRDF scene, such
as shadows, are much easier to model with Taylor polynomials.
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as across the angular domain (the incident light source directions). We exploit
this smoothness by using the appearance profile described in Equation 2.43 to
model the variation in appearance across location and illumination. Therefore
we can now apply a 4D Taylor expansion of the BSSRDF texture to virtually
zoom into the texture and expand the effects both in space and across light
source directions. This allows us to create synthetically zoomed-in images as
shown in Figure 2.34.

BRDF Modeling: Here we introduce a novel and simple method to model
the BRDF of textures. The key idea is that the Taylor model does not need uni-
formly spaced measurements to calculate the coefficients. We use the texture
database of Koudelka et al. ([48]), but we sample the database non-uniformly.
We then model the BRDF as a 4D Taylor polynomial, and use it to predict novel
values of the BRDF. The results show that the BRDF can be interpolated accu-
rately at arbitrary viewing and illumination directions that are along the path
of the hand-waved camera and light source.

2.3.3 Relighting Homogeneous BSSRDF Scenes

The Bi-directional Surface Scattering Distribution profile (BSSRDF) is an 8D
profile that takes into account sub-surface scattering in the material ([67]). A
variety of substances, such as marble, soap, wax, milk, and skin exhibit sub-
surface scattering effects. Modeling these has proved hard in vision and graph-
ics because of the high dimensionality of the profile. Measuring the BSSRDF
accurately for rendering has required significant effort([40],[25]). From the pre-
vious sections, we have noted that fitting Taylor polynomials becomes more
accurate in scenes with smoothly varying appearance. Translucent objects, in
particular, can be modeled well, since the sub-surface scattering blurs sharp
appearance effects. For example, highlights become glossy, attached shadows
are smeared and sharp cast shadows are softened. In this paper, we only con-
sider homogeneous scenes, making the problem easier since the distribution of
scattering only depends on scene geometry. In Figure 2.36, we show rendered
images of a wax object using the Taylor polynomial representation method. Al-
though the BSSRDF is high-dimensional, we are able to accurately interpolate
along the path of the light source to synthesize the appearance with finer angu-
lar resolution for the incident light source directions.
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Figure 2.37: Varying some aspects of our algorithm: Here we show the vari-
ation in the quality of results as we change different parameters. The top row
illustrates the scene, as well as two views of the light source path on the unit
sphere. In the second row, the length of the video is changed to include pro-
gressively increasing numbers of extrema. As the numbers of extrema increase
the resulting clusters become more iso-normally consistent. In the last row, we
show how the results change as the sampling of the profiles changes. Note that
iso-normal clusters occur even while sampling every fifth frame.

2.4 Chapter Summary and Discussion

In this chapter, we showed that, for a static scene, the smooth, continuous mo-
tion of a light-source produces a sequence of intensities at each pixel, which
we termed an appearance profile. The locations in time of the intensity extrema
(brightness maxima and minima) of this appearance profile can provide geo-
metric cues, even when the material properties, lighting positions and camera
calibration are all unknown. We also demonstrated a Taylor series model for
the appearance profile for rendering.
Technical summary: In Section 2.1, we modeled the appearance profile intensi-
ties using the linearly separable BRDF model, which can represent a large group
of materials. Setting the derivative of this model to zero determines the loca-
tions (in time) of brightness maxima and minima. For smoothly varying distant
lighting, we derived a relationship between the intensity extrema locations and
a scene point’s surface normal, enabling iso-normal clustering of pixels. We also
described an extension in Section 2.2 for point light sources with inverse-square
intensity fall-off that move in a line. In this case, the intensity maxima locations
obtain intersections of planes with the scene. Finally, as described in Section
2.3, the profile’s Taylor series expansion allows interpolation and rendering of
textures and other scenes.

56



Figure 2.38: Material vs. geometry variation: We analyze how the clustering
result changes as the number of shared extrema are increased, in a scene with
two planes. In all cases, increasing the shared extrema creates better clustering.
In the first six rows, drastically different materials allow easy disambiguation
of the two planes. Fewer extrema are needed to disambiguate the two planes,
irrespective of the angle between the planes. In contrast, in the last four rows,
more extrema are needed as the angles between the plane increases since the
materials are identical.
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Input and Output: All these methods assume a static scene with a smoothly
moving light source. For iso-normal clustering and depth cues, no other infor-
mation about the scene is required. Taylor series modeling requires the light
source location at each frame. The output for iso-normal clustering in Section
2.1 are groups of pixels with the same surface normal. The depth cue outputs
in Section 2.2 are clusters of pixels that share a depth-related property (such
as ordering in terms of perpendicular distance from a plane). The output for
Taylor series modeling are the coefficients of the Taylor expansion.
Applications: The ease of use and accuracy of the clustering algorithm has
motivated applications in vision and graphics. Sato et al. ([85]) obtain surface
normal information directly from images taken under varying illumination, uti-
lizing our extrema feature. A real-world application is for time-lapse video of
outdoor scenes, where the sun moves smoothly: we show clustering for an
outdoor scene in the WILD database ([63]). In addition, Sunkavalli et al.([97])
extends this idea by exploiting the relationship between profile extrema and
light-source position to relight web-cam data.
Alternative methods: To our knowledge, no known single-view method exists
to recover geometric properties of scenes with general, unknown BRDFs and
unknown illumination. Healey’s method ([31]) and Hertzmann and Seitz ([33])
are closest, but while the former deals with only Lambertian scenes, the later
requires example objects. Many methods, could be applied to model the ap-
pearance profile, and our selection of Taylor series was to have control over the
point of expansion, which could increase the quality of the rendered images.
Implementation Issues and Discussion: The clustering algorithm based on
brightness extrema produces results for many real-world surfaces. Detecting
the extrema (maxima and minima) locations in time does not require storing all
the data and can be obtained instead by using a sliding window. Furthermore
data collection in these methods is easy, requiring a user to just hand-wave the
source. However analytically proving that our method will work for scenes
with arbitrary materials and geometry is difficult. Here, we will both describe
some of the iso-normal clustering algorithm’s limitations (which hold broadly
for depth cues and Taylor series modeling), as well as suggest certain heuristics
supported by empirical evidence:

1. Sampling Rate: We also need to address the issue of sampling in our
appearance profiles. We have used the continuity of the smoothly moving light
source to capture extrema locations. However, in reality, incident intensity is
measured through discrete frames of the camera and, therefore, we can only
obtain a sampled version of the actual appearance profile. What is the mini-
mum sampling rate of the appearance profile such that clustering still gets valid
iso-normal clusters? Consider a scene illuminated by a light source waved by
a user, as in Figure 2.3.3. In the last row the sampling of the profile is slowly
increased, and the results of clustering at each step is shown. Although at very
low sampling rate the clustering breaks down, it remains robust for all other
sampling rates. This is not surprising once we recall that our intuition for us-
ing brightness extrema as an iso-normal feature was that foreshortening makes
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scene points ’light up’ or ’go dark’. If the path of our light source is smooth,
then the foreshortening term, ~n.~s(t), is low frequency and, therefore, many sam-
ples are not required to capture its effect in the appearance profile. To calculate
the exact minimum sampling frequency, the path of the light source as well as
the scene geometry are needed, both of which are unknown to our algorithm.
Since the foreshortening component has low frequency, we suggest collecting
data using a video camera with frame rate above 30 fps. In practice, we have
seen that this is sufficient to enable proper sampling of the profiles.

2. Number of Extrema: We have shown empirical evidence linking shared
extrema in profiles and surface normal. This raises the question as to what
would be the minimum number of extrema needed to properly cluster a scene,
and the related number of frames required in the input video. This is diffi-
cult to calculate because the number of extrema needed depends both on the
geometry of the scene and its material properties. For example, in the first six
rows of Figure 2.38, planes consisting of very dissimilar materials are placed
at different orientations. Cross-clustering between the two planes becomes less
likely if the materials are different and larger angles between the planes allow
easier disambiguation. In contrast, in the last four rows of Figure 2.38, more
extrema are needed since the materials are identical. These conflicting factors
of material and geometry properties make it difficult to say exactly how many
extrema will be needed, especially since both these factors are unknown to our
algorithm. Although we do not address this issue here, we propose a heuristic
that takes advantage of the fact that the user can interactively create profiles by
controlling the light source trajectory. Consider a situation where the user is
aware of the approximate range of normals in the scene. The light source could
be moved in a way that crosses directly over these surface normals (such that
foreshortening is maximum) at different times, creating extrema that are picked
up by the clustering algorithm. In a similar way, waving the light source over
the normal of a region with difficult material properties could result in needing
fewer frames to create iso-normal clusters.

3. Orthographic Projection: Another assumption that we have not relaxed
is that of orthographic projection. If the scene has significant depth, then this
is violated and therefore surfaces that have the same local normal, but are at
great distances from each other, may cluster separately. However, in a manner
similar to the case of cast shadows, the solution is to overcluster the scene. The
important point to note here is that each of the separate clusters created are still
iso-normally consistent.

59



Chapter 3

Occlusions: Dual Views from
Masked Illumination
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Of all the light rays emitted, scattered or reflected by a scene, only the light-
field measured by a camera can be directly accessed. In addition, when a pro-
grammable source, such as a projector, illuminates the scene, the incident light-
field can also be known and controlled. In this chapter, we introduce a third
set of computable rays: the occluded rays of a non-programmable light source.
This ’shadow-field’ is captured by using an opaque mask to block rays from
the light source. Therefore, our representation is purely geometric and not pho-
tometric, since incident light rays are detected by not measuring them. Ray
reciprocity allows us to describe these rays as if they were viewed by a virtual
camera, which we term a shadow camera. If the light-source is static while
the occluded moves, then the shadow camera captures the ray geometry of the
light-source. We will first demonstrate how this allows us to render new views
of the scene, using Helmholtz reciprocity. In following sections, we will show
applications of shadow cameras to remove unknown refractive and reflective
distortions and for rendering real world illumination onto synthetic scenes.

3.1 Shadow Cameras

Although specific instances of shadow cameras have been used for scene recon-
struction (as in [3]), we develop a view synthesis framework for image-based
rendering. Historically, view synthesis involves either camera motion or mul-
tiple cameras, while scene relighting requires illumination control (as in a light
stage [103]). Dual methods, in contrast, exploit Helmholtz reciprocity and treat
light sources as cameras and vice-versa. Shadow cameras utilize reciprocity to
allow flexible control of camera pixels, rearranging them in geometries deter-
mined by the relative source-mask motion. In this sense, we extend the dual
photography technique ([94]) beyond programmable light sources.

The recovered light ray geometry depends on the mask shape, the light
source type and the relative motion between the two. The shadow camera is lo-
cated at either the mask or the source, depending on which is stationary. In this
paper, we focus on the use of linear masks (approximated in practice by thin,
rigid wires). Two such masks, perpendicular to each other and moving with
uniform motion, produce two distinct intensity minima at each scene point.
The times at which these minima occur represent the horizontal and vertical
image coordinates of a shadow camera centered at the source.

If a distant light source is used, the shadow camera is orthographic in nature
and if a near light source is used the shadow camera is perspective. Multiple
pairs of such perpendicular masks allow the creation of a virtual shadow cam-
era array. Varying the mask speed/angle controls the shadow camera’s intrinsic
parameters (skew and scaling). Depending on the type of viewing camera, it
becomes possible to switch between orthographic and perspective views.

We can also create shadow cameras with multiple viewpoints. Traditional
cross-slit cameras are created by imaging through two perpendicular thin slits
separated by some distance. Similarly, a cross-slit shadow camera is created
when the motion paths of the two linear masks do not intersect and are sepa-
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rated. When compared to mosaicing cross-slits from many perspective views
(as in [123]), our technique requires only a single reciprocal pair.

Traditional push-broom cameras are created by imaging through a translat-
ing slit. Similarly, we concatenate scene points shadowed by a single, translat-
ing linear mask to create a ’shadow-pushbroom’ camera. Finally, we consider
the case of a camera viewing an object reflected through an unknown mirror
surface. If the scene is illuminated by a point source, the computed dual view
removes any distortions in the non-single viewpoint catadioptric image.

The shadow-camera technique is simple, easy to implement and requires
only a background calibration plane to estimate the relative source-mask mo-
tion. It is widely applicable since reliable shadow detection is possible for
scenes with complex BRDFs. In addition, it is not necessary to store the com-
plete video and instead, we can efficiently detect the moving shadow edge us-
ing only a window of a few frames. Finally, the shadow camera resolution
depends on the edge detector quality and not on the shadow width.

3.1.1 Dual Views from General Light-sources

Let a scene be illuminated by a source located at L = (Lx, Ly, Lz), and imaged
by a pin-hole camera C moving along on a plane Π1 whose location is given
by (u, v) (Figure 3.1(I)). The moving camera samples the 4D light field at rays
specified by their points of intersection, (u, v, s, t), on Π1 and a parallel plane
Π2. To render any new scene view we select light rays that describe the virtual
camera’s caustic, which is a curve in space that all the light rays must be tangent
to ([98],[49],[28]).

For the virtual pin-hole camera C
′ in the figure, the caustic degenerates to a

point in space (the camera center) which lies on a third plane Π3 parallel to Π1,
at position (u

′
, v

′
). The key advantage of traditional camera-centric IBR is that

a desired caustic can be created without knowing scene shape. The trade-off is
that the entire light field has to be captured, requiring many images. This can
be reduced by making scene BRDF assumptions ([96]) or by doing more work
to find correspondences across fewer samples by statistical modeling ([122]).

Dual photography solves these issues by replacing the source at (Lx, Ly, Lz)
with a camera and placing a projector at the desired virtual camera location
(u

′
, v

′
), as shown in Figure 3.1(II). If the camera image is given by I(x, y) and

a virtual image at the projector is denoted by I
′
(x

′
, y

′
), then Helmholtz reci-

procity relates these as I
′
(x

′
, y

′
) = I(x, y) where (x, y) ↔ (x

′
, y

′
) are correspond-

ing projector-camera pixels. Surface normals, required in Helmholtz stereopsis,
are not computed since the expression for pixel irradiance I(x, y) contains both
illumination and viewing foreshortening (see Appendix at [94]).

Dual photography’s limitation is that, for a given projector position, it recov-
ers a single perspective view of the scene. To create virtual views for other cam-
era caustics, we have to imitate the traditional IBR setup in Figure 3.1(I), with
a translating projector instead of a moving camera, capturing the virtual image
at each projector location. Instead, we wish to more fully and efficiently exploit
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Figure 3.1: Dual views for non-programmable illumination: Traditional
image-based rendering techniques (IBR) seek to capture the entire light field
so that any desired virtual view can be rendered, as in (I). Dual photography
(II) reduces the number of images required by placing a projector at the desired
viewing location. However, for a single projector position, dual photography
is restricted to a perspective view. Our method (III) recovers the dual view by
using an illumination mask. Depending on the relative source-mask motion we
create shadow cameras that are non-perspective and multi-viewpoint in nature.

Helmholtz reciprocity by creating dual views directly for non-perspective, non-
programmable light-sources. The major challenge is finding correspondences
between the real view and the dual view without the control a projector affords.

Ray Correspondence through Shadows

Consider now a non-programmable point light source placed at (u
′
, v

′
), as in

Figure 3.1(III). We move an opaque mask in front of the light source, creating a
shadow that falls on the scene. A scene point P , located in the camera image I at
pixel (x, y), displays a minima in its measured intensity at time t if it is occluded
by the mask. Let RP be the set of all time instances when such intensity minima
occur at P . If, for every pair of scene points P and Q, RP ∩ RQ = ∅, then RP

uniquely identifies a ray from the light source to P . Therefore each incident
light ray at the scene is assigned a unique ID that corresponds to the locations
in time when it was occluded.
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If we know the caustic of the illuminant (defined similarly to a camera caus-
tic) then we can map the identifier RP to a pixel on the virtual image I

′ , RP →
(x

′
, y

′
). The intensity at this virtual pixel is found by exploiting Helmholtz reci-

procity such that I
′
(x

′
, y

′
) = I(x, y) for the correspondence (x, y) ↔ (x

′
, y

′
)

between real camera pixels and the virtual camera pixels, exactly as in dual
photography.

Finding the mapping RP can be done in two ways. The first is to design
the mask motion such that the minima location gives the virtual image pixel
directly. Since the pixel location has two degrees of freedom, we need at least
two minima locations in time to do this. In Figure 3.2(I) we show a ray diagram
of the shadow cast by a linear mask translating in front of a static point light
source. Since the shadow hull of a line mask is a plane, the locations in time of
two intersecting perpendicular plane shadow hulls specifies the horizontal and
vertical coordinates of a virtual image pixel.

The second method to find RP generalizes beyond linear masks but requires
a simple calibration step. The experiment must be repeated twice, first with the
actual scene and the second time with a plane placed at the location where we
wish the virtual image plane to be. If the plane is visible to the camera and the
motion of the mask is identical in each experiment, then we can map each scene
point to a coordinate on calibration plane.

The minima detection is independent of both BRDF variation and intensity-
fall off and allows cast/attached shadow disambiguation. The virtual camera
resolution depends on the shadow edge detector and not the shadow width and
is theoretically only limited by the camera resolution. Our method also handles
multiple sources since these would create many intensity minima scene points,
each of which gives a different view point. Similarly, we can detect an ‘minima
interval’ for area sources corresponding to a continuous set of viewpoints.

Shadow Camera Resolution

In Figure 3.3 we show a mask moving from at speed u units per second. The
camera exposure time is t, and the mask moves a distance of x = ut. Since we
only detect the shadow edge, S determines the scene points shadowed during
a single second on a plane at depth D from the camera. Let D be the greatest
depth that exists in the scene. Without losing generality can assume the camera
image plane is parallel to the plane at D. This can be relaxed by adding a skew
term to the following equations. Using similar triangles, we can relate distance
the shadow cross on the scene as:

S =
Dx

h
(3.1)

This is projected onto the camera image plane (of focal length f ):

S =
f D x

h (D − f)
(3.2)
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Figure 3.2: Virtual perspective view using linear masks: In (I) we show a ray
diagram for a perspective shadow camera. Using linear masks we obtain the
input images, (III), which create a dual view in (IV). Note the foreshortening ef-
fects of looking down at the object (shortened legs, extended scales), that spec-
ularity locations do not change and that shadows in (II) are occluded in (IV).
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Figure 3.3: Effective resolution of the dual view: The resolution of the ren-
dered image from the light-source point-of-view depends on the speed of the
mask and the greatest depth in the scene. In this case we assume the camera
image plane is parallel to a plane passing through the scene point at depth D,
but this can be relaxed with an extra camera skew term.

If the width of a pixel (on the image plane) is given by W and replacing x
by the mask speed and camera frame rate:

r =
W h (D − f)

f D u t
(3.3)

where r is the effective change in resolution in each dimension from the
primal view to the dual view. Therefore if r = 0.5 the dual view is 1

4
the res-

olution of the primal view. Note that r is inversely proportional to the speed
of the mask (faster masks mean lower resolution) and directly proportional to
the camera frame-rate (faster frame rate cameras mean higher resolution). Of
course, the detectable resolution of the shadow camera is bound by the actual
resolution of the real camera.

3.1.2 Perspective Shadow Cameras

Our experiments were performed using a 12 bit Canon XL2 video camera run-
ning at 30fps. We selected a 1mm diameter piano wire for the mask, held by a
Manfrotto tripod that allows controlled height adjustment and our scenes were
illuminated by a Lamina ceramics DK4 LED. We placed a plane behind the
scene, to estimate the shadow locations and uniformly interpolated these to get
proper sampling for the virtual image.

In Figure 3.2 (I) we show a ray diagram for a perspective shadow camera.
I(a) and I(b) show two translating linear masks occluding P at times i and j
respectively. The intersection of the shadows associated with the two masks is
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Figure 3.4: Virtual camera array from multiple linear masks: In (I) we show
a grid mask with six intersections. We collect data using the horizontal and
vertical masks separately, as shown in (II). We then place light sources at the six
intersections of the mask, capturing six images. We swap these images using
Helmholtz reciprocity and the minima locations of the mask shadows. The
result is a virtual camera array, and in (III) and (IV) we show the two rows of
the array. Note the images are stereo rectified both horizontal and vertically.

a virtual ray, shown at I(c). This shadow ray passes through the light source,
and is associated with a pixel (i,j) in a virtual image at I(d). More formally,
let the light-source location be denoted by S and the moving vertical mask by
V (t) and the moving horizontal mask by H(t). At some time t we can construct
either horizontal or vertical shadow planes Πv(t) = S∪V (t) or Πh(t) = S∪H(t).
The virtual ray denoted in the figure is R(i, j) = Πv(i) ∩ Πh(j). This ray passes
through the light source since ∀t, Πv(t) ∩ Πh(t) = S ∩ (V (t) ∪ H(t)). Therefore
any point P shadowed by Πv(i) and Πh(j) lies on a ray R(i, j) through the light-
source center. The uniqueness of this mapping follows from the fact that we
obtained it through shadowing - if there is another point Q on R(i, j) then it
either occludes P or is occluded by P and we cannot detect shadows on it (or
image it). Therefore, a one-to-one mapping between scene points and a location
S denotes a shadow perspective camera.

In Figure 3.2 (II) we show a non-convex plastic object. Using moving and
opaque linear masks we obtain the input images, shown at (III). In Figure 3.2
(IV) we show a dual view for a non-convex plastic toy obtained using a set
of two linear masks. Note the viewing foreshortening effects since the light
source is higher than the camera position, such as shortening of the legs and
the extension of the scales. In addition, the shadows of the dinosaur’s tail are
occluded in the dual image and vice-versa.

Multiple shadow cameras are possible by moving the source and perform-
ing experiments at the new light locations. We also demonstrate a different
setup, where the mask is static and the light source moves. For example, in
Figure 3.4 (I) we show a set of horizontal and vertical linear masks that are il-
luminated by a light source moving in a line. The shadows of the mask can be
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Figure 3.5: Wide mask or area source enables multiple views: In (I) we com-
pare a wide mask with the regular mask we use. The shadow produces has
significant area, as shown in (II). Each time instance when a scene point is shad-
owed gives rise to a virtual shadow plane, and selecting these for the horizontal
and vertical shadows gives multiple views. In (III) we show three such views
that demonstrate horizontal disparity. In (IV) we show an area source and the
blurry shadow created by it (V). Similar to the wide mask case, we can create
multiple views, shown in (VI).

seen in Figure 3.4 (II) and horizontal and vertical experiments are performed
separately to enable easy minima detection. By recording the times at which
the horizontal and vertical masks occlude every scene point, we can recover
virtual shadow cameras at the intersection of the horizontal and vertical masks.

Extra steps are required when moving the source instead of the mask. Since
the scene intensities vary, shadow detection becomes harder. We also need ad-
ditional images taken with the light source placed at each of the mask’s grid
intersections. However, the advantage is that a single experiment produces
multiple viewpoints: more precisely, if n is the number of masks, we obtain an
n2 virtual array of shadow cameras. Six such images are shown in Figure 3.4
(III) and (IV), each of which are rectified horizontally and vertically since the
wires in the mask array are perpendicular to each other.

Instead of moving the source, multiple shadow cameras are also possible by
exploiting the ray geometry of wide shadows and area light sources. In the top
row of Figure 3.5 we show two planes at different depths illuminated by a thick
mask. By selecting different shifts of location in time for the detected minima
in each plane, we can create a parallax effect and the dual images (shown in
Figure 3.5 (III)). A similar set of images can be created by using the shadow of
an area light source, shown in the second row of the figure. Again, different
shifts in time for the detected minima provide new views of the scene.
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Figure 3.6: Validating the dual view by perspective to orthographic conver-
sion: In (I) we show how the dual view due to a distant light source is ortho-
graphic. In (II) we show the perspective view of a plastic shark illuminated by a
distant light source. Note the perspective effects since the shark’s snout is close
to the camera. In (III) we show the dual orthographic view. This compares rea-
sonably with (IV) where we co-located the light source and the camera using
a half-mirror (note the lack of shadows). The co-location does not move the
light-source, explaining the difference in specularities between (III) and (IV).
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Figure 3.7: Orthographic to perspective conversion: In left column we show
the original images viewed by an orthographic camera. In the right column, the
dual views have foreshortening effects associated with perspective cameras.

3.1.3 Multi-view and Non-perspective Shadow Cameras

An indication of the potential of shadow cameras is that even for the limited
case of linear masks and point light source discussed in this paper, we demon-
strate many multi-view and non-perspective cameras. Figure 3.6 (I) shows that
a ray diagram describing orthographic virtual view can be obtained from a per-
spective viewing camera by using a distant light source. In Figure 3.6 (II) we
show a real view of plastic toy shark under distant (orthographic) illumination.
Note the specularities on the shark and the shadows are correctly demonstrated
in the dual view in Figure 3.6 (III). To validate the correctness of this view, we
co-located the light-source and a camera using a half-mirror. Note the image in
Figure 3.6 (IV) has no shadows. The shape of the shark is qualitatively similar
in Figure 3.6 (III) and (IV). However, the appearance of the object is different
since co-location is not the same as switching the source and camera positions.
Despite this, the comparison demonstrates the correctness of the dual view.

Shadow cameras also allow us to demonstrate the opposite effect by switch-
ing from an orthographic view of the scene to a perspective views as shown in
Figures 3.7. The perspective distortions are clear in the dual views, such as the
change in angles of colored squares away from 90 degrees and the foreshorten-
ing when looking down at the octopus. The other aspect of the switch is that
the illumination also changes: for example, in the dual view of the toy octopus
the shadows are smaller, due to the orthographic source.

A multi-perspective cross-slit image of the scene can be created if the two
linear masks do not intersect at a point, and are instead shifted by some amount,
as in Figure 3.8 (II). Mathematically, this is identical to having an image plane
intersected by rays passing through two slits if the light source is moved be-
tween experiments. More formally (using the notation introduced previously),
let the two light-source locations be denoted by L1 and L2 and the moving ver-
tical mask by V (t) and the moving horizontal mask by H(t). At some time t
we can construct either horizontal or vertical shadow planes Πv(t) = L1 ∪ V (t)
or Πh(t) = L2 ∪ H(t). Each of these is a fan of vertical and horizontal planes
through L1 and L2 respectively. The intersection of a fan of planes is a line,
and since L1 and L2 lie on the intersection of the two fans, the fan lines f1 and
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f2 pass through L1 and L2. The virtual ray denoted in the figure is R(i, j) =
Πv(i) ∩ Πh(j). Since the fan lines are contained in each plane, R(i, j) passes
through f1 and f2, which is the definition of a cross slit camera. In Figure 3.8
(III) we show such dual cross slit view: note that the octopus head appears
’unwrapped’ while the colored squares are curved.

We also introduce a new shadow camera view inspired by the real pushb-
room camera, which is usually created by imaging a translating slit. In our case
we take the scene points corresponding to the shadow of a single translating
linear mask and concatenate them together, as illustrated in Figure 3.8 (IV). The
image, shown in Figure 3.8 (V), appears to be lit with light sources at both the
camera and the light source positions. Note the double shadows of each of the
tentacles of the octopus. We call this camera the ’shadow pushbroom’ camera.
In Figure 3.9 we show the shadow from a real-world light-fixture. Since the
light is a tubular source, the shadow is also linear. We can obtain new shadow-
pushbroom views of the object as shown in Figure 3.9 (IV).

Since shadow cameras are completely virtual, we can change their intrinsic
parameters such as image skew or scaling. In Figure 3.10 we describe some of
these perspective distortions applied to a scene. In Figure 3.10 (I) we show the
dual view when the linear masks are perpendicular and move with uniform
velocity, showing no distortions. We performed a third shadowing experiment
with a slanted mask, which created virtual images with a non-zero pixel skew
as shown at the left of Figure 3.10 (II). We also repeated the experiment with
a horizontal mask moving slower than the vertical mask, resulting in higher
horizontal sampling and a stretched image at the right of Figure 3.10 (II), which
can be seen in the left dinosaur.

3.2 Unwarping Distortions: An Imaging Application

Various types of static optical elements exist whose material properties allow
the bending of light. These include reflective surfaces, such as mirrors, as well
as refractive solids such as glass and clear plastic. There are many situations
where images are taken through these media: for example, catadioptric cam-
eras ([98]) contain designed reflections that increase the camera field-of-view.
However, unintended distortions are also possible due to lens imperfections
and the presence of transparent occluders. Unwarping these effects without
prior knowledge of the geometry of the optical elements is almost impossible.

If the light from the source is not affected by the optical elements that cause
the distortion then shadow cameras can be used to render an warp-free image
of scene. This assumption is broad and is true for both catadioptric cameras and
lens distortions. In Figure 3.11 (II), objects are reflected off a spherical mirror
and the straight lines of the colored squares appear curved. Since the light
source is perspective, these distortions are removed in the dual views in Figure
3.11 (III). In Figure 3.12 we show a planar scene with writing viewed through
thick glass objects. Note the heavy distortion, especially in the glass on the
right. Figure 3.12(II) shows the undistorted view, with readable text.
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Figure 3.8: Non-perspective and multi-view cameras: In (II) we show a cross-
slit view created when the motion vectors of the linear masks do not intersect
and the light source is moved between experiments. We demonstrate the distor-
tion effects in (III). In (IV) we create a pushbroom-like view using the shadow
from a single moving mask. Note the octopus in (V) appears illuminated by
two light sources and each tentacle has two shadows.
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Figure 3.9: Line shadows from an indoor light fixtures: In (I) we show an
image of a ceiling indoor light-fixture. The tubelights in the fixture act as line il-
luminants, producing a line-shadow (as in (II)). We use this to produce shadow
pushbroom views of the scene shown in (IV).

Figure 3.10: Controlling intrinsic parameters of shadow cameras: Since
shadow cameras are virtual, we have control over the locations of the pixels
in space. In (I) we show a dual view created by two linear masks moving with
uniform motion at 90 degrees to each other. Varying the speed of these two
perpendicular masks or adding a third linear mask that is not perpendicular to
either of the first two results in skewed and stretched images as seen in (II).

Figure 3.11: Unwarping catadioptric distortions: In (I) we show how the dual
view from a perspective light source avoids catadioptric distortions. In (III)
we show unwarped results: note the colored squares’ lines are straight. The
non-shadow holes are due to stereo occlusion.
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Figure 3.12: Unwarping refractive distortions: In (I) we show how the dual
view of an object looking through refractive elements can be warp-free. This
occurs when the light-source illuminates the object without being occluded by
the refractive elements. In (II) we show a planar poster through two thick glass
objects. (III) shows the dual view, which has undistorted, readable text.
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3.3 Light-source Light-fields: A Rendering
Application

Unlike cameras, light-source appear in a variety of shapes and sizes, from point
LEDs and lava lamps to car-headlights and water caustics. An important prob-
lem in vision and graphics to capture digital models of these types of illumina-
tion in-situ, for use in illuminating rendered scenes. Previous work had recog-
nized that a single environment map, which assumed distant-lighting, was a
terrible approximation for real-world illumination. [1] created a special go-
niometer, which essentially allowed the capture of environment maps at dif-
ferent locations in the scene. While this could model complex illumination for
rendering, interpolating or extrapolating from the measurements was difficult
since it requires obtaining correspondences across the environment maps. Fur-
thermore, collecting the data requires many samples across the scene.

In contrast to the above effort, [24] modeled illumination as a light-field
through two planes. A basis-filter was raster scanned over the first plane, and
the dot-product of the illumination with the filter was measured by a camera
on the second plane. To model complex illumination, k basis filters are needed,
making the number of scans mnk, where m and n are the dimensions of the
screen. Furthermore, since the images must be normalized the method does not
account for intensity fall-off. We correct both these limitations with a shadow
camera experiment performed on a known scene as in Figure 3.13. We perform
two experiments, each involving two 1D linear scans. Therefore the number of
scans are 2m + 2n << mnk. Furthermore, we do not smooth the illumination
and recover high-frequency information when we render a new screen location
in Figure 3.13 (IV). This is because our ’filter’ is in fact a linear mask which has a
high-spatial frequency itself. Finally, since we obtain correspondence between
the two planes, measured by a camera, we can model the intensity fall-off along
each ray given the distance between the planes. This allows us to extrapolate
the light-field anywhere in the 3D space, and therefore the digital model cap-
tured can be used in any rendered scene.

75



Figure 3.13: Light-field of a light-source: In (I) we show our setup, which con-
sists of a screen back-lit by a light-source of unknown shape. In this case, we
use a torch. Note the complex radial patterns due to the reflective mirrors in
the torch case. We move two linear masks, as shown in (I) horizontally and
vertically, occluding the light-source. This casts a shadow on the screen. The
horizontal and vertical minima locations in time for each pixel are shown as
images in (II). In (III) and (V) we show HDR slices of the image of the torch, for
two separate positions of the screen. Given the shadow correspondences, we
capture the light-field of the light-source, allowing us to render how the torch’s
caustic would look at a virtual screen position between the two real positions.
Note how the high-frequency information in the caustic is faithfully rendered.
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3.4 Chapter Summary and Discussion

In this chapter we demonstrated a reciprocal approach by creating novel views
from the relative motion between non-programmable sources and occluding
masks. These views can be created for scenes with complex reflectance, without
reconstruction and with no assumptions about light-source type.
Technical summary: Our method involves smooth motion between a light-
source and an opaque line mask such as a thin wire. The mask shadow is
easily detected as an intensity minima at each pixel. A minima location, say
at some time instance, defines a shadow hull determined by the mask location
at that time instance. For example, the shadow hull due to a thin wire mask is
a shadow plane through the mask. Multiple minima detected at a scene point
correspond to intersections of these shadow hulls. For example, minima cre-
ated by two, different positions of the line mask define a line at the intersection
of the two shadow planes. If the intersection of shadow hulls is a line (as in this
case), then the line is a light-ray from the source to the scene point. Detecting
two minima at each pixel, uniquely identifies all incident rays and defines the
image coordinates of a virtual, dual scene view.
Input and Output: The input are images of a static scene taken either under
smoothly moving illumination and fixed masks or smoothly moving masks and
fixed illumination. The end result are mask shadows that fall onto the scene and
are detected as intensity minima. The output is a dual view of the scene. The
geometry of this dual view depends on whether the light-source or the mask is
static. If the light-source is static, then this dual view is how the scene appears
from the point-of-view of the light-source.
Applications: Our first application unwarps images that have distortions due
to refraction (such as imaging through thick glass or lens distortions) or due
to reflection (such as catadioptric systems or other camera-mirror setups). This
is done with no knowledge of the shape of the optical elements involved, and
no calibration object in the scene. The second application uses two calibration
planes to capture the light-field of a light-source. This is essentially a method
to capture a digital model of any complex light-source for use in rendering.
Alternative methods: Our approach shares aspects with Dual Photography
([94]) and extends it beyond programmable light-sources (such as projectors)
to all types of illumination. However, we are unable to recover the whole light-
transport matrix and therefore are restricted to obtaining dual views.
Implementation Issues and Discussion: As in the previous chapter, detecting
the minima at pixels does not require storing the whole input data, but, instead,
a sliding window can be used. Shadow detection determines the resolution
and quality of the dual views, and good shadow detection is possible only if
the mask moves slowly relative to the camera frame-rate (see Section 3.1.1). We
now discuss future work in this area:

1. Recovering off-diagonal information in the light-transport matrix: In
[94] patterns sent to a programmable light source are used to obtain the light
transport matrix between a camera and the source. One (time intensive) way to
achieve this is to switch on each pixel of the projector individual and record the
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Figure 3.14: Separating the specular interreflection from the global compo-
nent: By using the method of [65] we can obtain the global illumination from a
scene, as shown in (I). However, looking at secondary minima (that occur when
a scene point is not directly shadowed) as in (II), allows us to separate the spec-
ular interreflection (caustic) from the global component, which in this case is a
one bounce reflection.

Figure 3.15: Relighting cameras: In (I) we show the first and last images of a
camera moving vertically. In (III), using the EPI images of this object, we relight
the image at I(b) with pixels from the image taken at I(a). From Helmholtz
reciprocity, this is equivalent to moving the light source. Note the position of
the specularity in (III) has changed from its original location in (II).

image. When a single pixel of the projector is on, we obtain the direct compo-
nent of the illuminated scene point and its global contribution onto the whole
scene. On the other hand, using a linear mask allow us to recover the diago-
nal values of the light-transport matrix (after separation with the method of [])
as well as the correspondences between pixels in the virtual and real images
(using the shadow camera method) for non-programmable sources. In this sec-
tion, we discuss the possibility of recovering the off-diagonal information light
transport matrix for scenes illuminated by non-programmable sources, just like
[94] recovers it for projectors.

Consider a point mask that is raster scanning the illumination from a non-
programmable source. If we subtract each of these images from an image taken
with no masking, then this is exactly the image created by lighting up each ray
individually. Therefore, we can get the full light-transport matrix from such a
scan. However, performing such a scan is difficult and time consuming. Can
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we instead obtain the same information with linear scans? In Figure 3.14 we
show a simple V-groove scene, with a specular square on one facet. Note that
after applying the method of [65], we can obtain the global and direct compo-
nents. In any profile from the scene, a minima occurs when the mask occludes
the direct illumination. However, there is another minima that may occur when
the shadow occludes points that reflect indirect illumination as shown in Fig-
ure 3.14 (II). We can detect this and remove it, creating an image with just the
specular interreflection. The disadvantage of this is that we have an ambiguity
of where the reflecting scene point lies (along the linear shadow). In addition,
the camera must have high-dynamic range to detect all the secondary minima.

2. Relighting Cameras: The inverse of our technique could relight scenes
with static light sources and moving cameras. For example, a translating cam-
era can generate epipolar plane images ([2]) with dense correspondences. We
can relight any image in the sequence by replacing its pixels with corresponding
pixels from other frames. From Helmholtz reciprocity, such images are identi-
cal to those created by moving the light source. We term this dual method as
relighting cameras and show a planar example in Figure 3.15, where we change
a specularity location with a translating camera. The challenge here will be
finding correspondences for non-linear camera motions.
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Chapter 4

Strobing: Active Vision from Fast
Illumination Dithering
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Dynamic scenes pose challenges to active lighting algorithms. Identifying
the incident ray at each scene point is doubly hard, since now we must track
scene points as they move across the field-of-view. To avoid this problem many
active lighting methods use a programmable source to identify the incident ray
at each scene point by using a spatio-temporal pattern that is varied much faster
than the object moves. This transforms the problem back to the static case,
since the scene is essentially stationary as the light varies. However, most pro-
jectors are limited to a maximum of 60Hz for changing the projected pattern.
Many dynamic scenes move much faster than this, and camera-domain meth-
ods have an advantage since high-speed cameras of a 1000Hz and more and
easily available. In this section, instead of refreshing the programmed pattern
sent to a source, we investigate the temporal fluctuation or strobing of illumina-
tion. For many light-sources, such fluctuation is an inherent characteristic and
usually occurs at a much faster rate than any sort of electronic control over the
source. For example, all fluorescent lights flicker at 120Hz. However, all light-
ing plugged into the electric systems flicker at the same frequency, and this
is not suitable for most active vision applications. Instead, we investigate the
strobing due to the DMD chip present in DLP projectors for active lighting of
dynamic scenes. While the strobing cannot be directly controlled, we can place
multiple unsynchronized sources in the scene, and we demonstrate speed-ups
for popular active vision techniques.

4.1 DLP Projectors

Recently, Digital Light Processing (DLP) technology (http://www.dlp.com) has
enabled mass production of low cost projectors with high quality. The key com-
ponent of a DLP projector is the Digital Micromirror Device (DMD). Each mir-
ror in the DMD is 14 × 14 microns and can switch between two orientations,
+12o and −12o [17]. In one orientation, incident light is reflected by the mirror
toward the outside scene and in the other, light is reflected onto a black surface
within the projector. These mirrors can switch between orientations in a few
microseconds, enabling high precision control of illumination. As a result, the
DMD device has found applications in areas ranging widely from microscopy
to chemistry to holographic displays [17].

4.2 Temporal Dithering of DLP Illumination

In order to project a desired intensity value, the DLP projector emits a series of
light pulses of different time intervals [17]. A sensor aggregates the pulses of
light over the duration of its integration time (say, 1/30s in a video camera) to
capture the final gray-valued brightness. This Pulse-Width modulation (PWM)
by the projector is unique for every input intensity and can be termed as “tem-
poral dithering” of the illumination. As we shall show, this dithering allows us
to encode scene illumination in novel ways to achieve significant speedup in
the performance of virtually any active vision technique.
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Figure 4.1: Reverse engineering a DLP Projector: (a) A DLP projector converts
the input intensity received into a stream of light pulses that is then projected
onto a screen. A high speed camera viewing the screen aggregates the bright-
ness over the duration of its integration time. (b) A calibration image composed
of 5× 5 pixel blocks each with a different intensity from 0 to 255 is input to the
projector. (c) The camera records the projector output at 10 kHz. In (d) we
show gray-valued intensities measured over time by the high speed camera for
4 example intensities input to the projector. Notice the significant variations in
the plots. In (e), the temporal dithering for all 256 projector input intensities is
collated into an image. This temporal dithering is repeatable and can be used
to encode illumination in a novel way, enabling fast active vision.
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But how do we capture this high speed dithering? The exposure time (1/30s)
of a video camera is too long to observe the temporal illumination dithering
clearly. One possibility is to precisely synchronize the camera with a DLP pro-
jector and to expose the camera only for the duration of a single projected light
pulse (a few microseconds). Raskar et al [78] and Cotting et al [10] use this tech-
nique to embed illumination patterns in the scene that cannot be observed with
the naked eye. The focus of these works is on intelligent office applications with
30-60Hz performance requirements.

In contrast, our work focuses on exploiting the temporal dithering for fast
active vision. For this, we use a novel combination of a high speed camera
and an off-the-shelf DLP projector. Figure 4.1 illustrates the dithering of an 8-
bit InFocus IN38 DLP projector as observed by a Photron PCI-1024 high speed
camera. A calibration image composed of 5×5 pixel blocks each with a different
intensity value from 0 to 255 is input to the projector. Each intensity at a pixel C
in this calibration image is projected onto a flat screen using a unique temporal
dithering DC(t), over discrete time frames t. The high speed camera observes
the projected images at 10 kHz. Notice the significant variation in the images
recorded. The plot in Figure 1(d) shows the patterns emitted by the projector for
4 input brightnesses (165, 187, 215, 255), as measured over 100 camera frames.
The temporal ditherings corresponding to all the 256 input intensities in the
calibration image are collated into a photograph for better visualization of this
principle. The temporal dithering is stable and repeatable but varies for each
projector-camera system.

4.2.1 Implications of Temporal Dithering

The high speed illumination modulation of a DLP projector can be exploited
to speed up a series of well-known active vision problems, making them ap-
plicable to dynamic scenes. For each of these problems, we select a simple
existing algorithm to demonstrate our technique, although more sophisticated
algorithms may be used to achieve further speed up:

(a) The unique encoding of intensities allows us to obtain camera-projector
pixel correspondences allowing 3D reconstruction at high speeds.

(b) By multiplexing illumination from three projectors, we compute the sur-
face normals using photometric stereo [34] at high speeds.

(c) We de-multiplex illumination [90] from multiple projectors to capture the
appearances of a dynamic scene from different lighting directions.

(d) We demonstrate the ability to project high frequency complementary
patterns to separate the direct and global components [65] in a dynamic scene.

(e) We discuss motion blurring of an object illuminated by a DLP projector
and captured by a low frame rate camera (30-60 Hz). The temporal dithering
preserves higher frequencies in the motion-blurred image. This is similar to the
work of Raskar et al [77] who demonstrate that fast camera shutter modulation
during image acquisition preserves higher frequencies.

In methods (a)-(d), the projector receives a single image as input via a com-
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puter, whereas the high speed camera acquires a sequence of frames. The ef-
fective speedup achieved depends on the task at hand and the quality of the
result desired given the signal-to-noise ratio in the captured images. In addi-
tion, the intensity variation due to dithering can be observed reliably even with
camera frame rates as low as 300 fps enabling applications with slower perfor-
mance requirements. Unlike previous work, our techniques do not require any
projector-camera synchronization, hardware modification or re-programming
of the DMD device, or the knowledge of proprietary dithering coding schemes.

4.2.2 Reliability of Codes

If we look at any particular pixel over time at a given frame rate, as in Figure
4.2, we can see that it varies periodically. This is the temporal dithering or code
that the projector uses to represent that intensity and is created by the binary
switching of the micromirrors in the DMD chip. Of course, depending on the
camera frame rate, that dithering is integrated to produce a smooth profile that
is not binary. Figure 4.2 also investigates the consistency of the pattern for in-
tensity A at frame rate F. We can see the standard deviation of the repeated
values is low, which means that the temporal dither that we measure is stable.

From Figure 4.1, we can tell that different pixel intensities display different
temporal dithering. Although each pixel has a unique encoding, we will now
show that there are a few clusters of codes that vary similarly. In Figure4.3, we
show confusion matrices for all 256 patterns for three frame rates. We have
picked three metrics, euclidean, dot-product and KL-divergence. Although
most of the energy in the matrices is along the diagonal, there are many off diag-
onal elements, implying that clusters exist in the pattern. For the dot-product
matrices, we have created binary matrices by specifying a cut-off threshold.
These clearly show the different clusters, and we have selected profiles from
each of these clusters to show their similarity.

4.2.3 Designing New Patterns for Fast Active Vision

Consider an active vision system for a dynamic scene, as in Figure 4.5. An
object in the scene moves with speed v and the frame rate of the camera is f .
Usually an algorithm specifies n, the minimum number of images required to
extract some scene property: for example classical photometric stereo requires
three images under different distant lighting. Since we would like the object to
appear to be static, the error e is the distance the object has moved:

e = v.

(
n

f

)
(4.1)

To get effective performance we would ideally like e to be zero or at least
sub-pixel. Loosely, this implies that the illumination vary fast enough that the
object ’appears static’. This is challenging since we cannot control the object
motion v and usually the frame rate f of the camera is fixed. Therefore the only
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Figure 4.2: How reliable is the dithering code?: We performed an experiment
for particular value of the projected intensity (100) and show that the DMD chip
repeats the code over time, as on the left graph. In the center graph we show
10 patterns from the code superimposed. Note that although there is some
variation, the shape of the patterns appears similar. Finally, in the right graph
we show the mean and standard deviation of the intensity at each point in time.
Note that the error is never large enough to ’flip a bit’ or change any extrema
(peak or trough) of the code.

way we can reduce the error is by requiring as few images n as possible in our
active vision algorithm.

However, most active vision algorithms typically require correspondence to
disambiguate what illumination is incident on a scene point. For example, in
the structured light pattern in Figure A, it is important to tell what part of the
object belongs to which light stripe. Since the light stripe modulates over time,
the more frames we have (larger n) the more robust matching we obtain and
therefore there is a tradeoff in choosing n in Equation 4.2.3. Figure 4.4 shows
how the confusion matrices change with different number of frames with the
matrices becoming less diagonal as the number of frames becomes low.

4.3 Applications

In the rest of this chapter, we will present different applications for the tempo-
ral dithering by speeding up popular active vision techniques from vision and
graphics. We choose the number of frames to obtain the fast possible results in
each of these applications.

4.3.1 Structured Light Projection

Structured light-based triangulation has commonly been used for 3D recon-
struction [110]. A known set of spatio-temporally varying intensity patterns is
projected onto a scene and the reflected images are used to find the correspond-
ing pixels between the projector and the camera. The corresponding pixels are
then triangulated spatially (or by temporal analysis [11]) to obtain 3D struc-
ture. It is assumed that the scene motion is negligible while the patterns are
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Figure 4.3: Effect of frame-rate on confusion matrices for temporal dithering
patterns: In this figure we investigate the effect of frame-rate on the temporal
dithering codes, which we plot in the right column for three values. The first
three columns show diagonal matrices between all 255 temporal codes. The
confusion in the matrices reduces as the frame-rate increase. This is expected
since the original binary DMD codes are unique for most of the projected inten-
sities (common codes may exist for some projector manufacturers). We show
three distance metrics, with a thresholded dot-product as the fourth column.

projected. Since projectors have been operated at 30-60Hz, most implementa-
tions achieve slower than real-time performances. Fast illumination dithering
in a DLP projector enables high speed reconstruction.

Our goal is to obtain correspondences between the projector and camera
pixels at high speeds. Consider a high speed camera viewing a dynamic scene
that is illuminated by the DLP projector. A single image composed of a set of
horizontal lines of randomly chosen colors and intensities is input to the pro-
jector via a laptop. Let I(t) be the vector of intensities observed, over a set of
frames, at a scene point P . The normalized correlation between I(t) and tempo-
ral dithering function DC(t) for each C (Section 4.2) is computed to obtain the
projector pixel C corresponding to the image pixel P . But how do we synchro-
nize the frames from the projector and the camera? One approach is to include
a small planar patch in the scene where correspondence between the corners of
the patch can be easily established (say, manually). This correspondence allows
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Figure 4.4: Effect of code length on diagonality of confusion matrices: In this
figure we restrict ourselves to codes obtained at 10000Hz, which is faster than
the speed of the DMD. We look at the confusion matrices by taking different
lengths of the code. We note that only after 50 frames is the diagonality of the
confusion matrix is strong. This implies a limit to the speed of the active vision
results possible with our camera and set-up of around 200Hz. Faster results
can be achieved with multiple unsynchronized projectors, and in this work we
show a photometric stereo result at 300Hz.

Figure 4.5: Illumination and acquisition setup for structured light based 3D
reconstruction: The Photron high speed camera is placed vertically above the
Infocus DLP projector. A vertical plane is placed behind the scene (statue) for
calibration.
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Figure 4.6: Results of 3D reconstruction using the DLP projector for a static
bust: (a) Three frames captured by the high speed camera illustrate the fast
modulation of illumination incident on the scene. 20 continuous frames are
used to match the intensity variation observed on the scene point against the
normalized intensity variation observed on the vertical plane behind the object.
(b) The best match finds correspondences between projector and camera pixels.
The error map is shown in (c). The (d) disparity and (e) recovered shape of the
object is shown from different viewpoints.
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Figure 4.7: Results of 3D reconstruction using the DLP projector for dynamic
objects: a waving cloth, a grasping hand, a face, and a hand spinning a pen.
Each depth map is reconstructed using successive 25 frames in the high-speed
images captured at 3000Hz.

us to synchronize the measured intensity vector with the temporal dithering.
We performed several experiments with both static and dynamic objects:

a static statue, a waving cloth, a grasping hand, a face, and a hand spinning
a pen. For convenience, the camera and the projector are placed in a fronto-
parallel configuration with a vertical baseline (see Figure 4.5). The high speed
camera is operated at 3kHz and the projector is reverse engineered at this speed
as described in Section 4.2. A homogeneous vertical plane is used as the back-
ground behind the scene. The dithering DC(t) can be captured from the pixels
on this plane and simultaneously with the object. Hence, in this setting, we
simply correlate the normalized brightness vector I(t) of a point on the object
with the dithering vector DC(t) at every pixel C on the background plane and
no additional synchronization is needed.

Here, twenty frames were used to obtain correspondences, taking 20/3000 =
1/150s . In general, the number of frames necessary depends on the desired
matching accuracy and the SNR of the acquired images. By sliding the 20 frame
window across the full image sequence, 3D reconstruction can be obtained at
rates as high as 3 kHz (speed of camera). However, in practice, the rate of
reconstruction is lower considering the speed of the object’s motion. Figure 4.5
shows the correspondences, the disparity and the reconstructions obtained for
a classical bust. Figure 4.7 shows the reconstructions of other dynamic objects.
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4.3.2 Illumination De-multiplexing for Appearance Capture

Acquiring scene appearance from multiple lighting directions is necessary for
image-based relighting and photometric recovery of scene properties (BRDF
and 3D structure). In most works, the scene is assumed to be static and the
acquisition can take any where from a few seconds to several minutes. Us-
ing DLP illumination, we capture the appearances of a dynamic scene from
multiple lighting directions. For this, we draw upon the idea of illumination
de-multiplexing [90], where the images of the scene are simultaneously cap-
tured from multiple source directions and de-multiplexed in software to obtain
the desired images under each lighting direction. This technique increases the
signal-to-noise of the captured images while keeping their number unchanged.

The difference between Schechner et al. [90] and our technique is in the cod-
ing: they use binary Hadamard codes, whereas we rely on the temporal dither-
ing of DLP illumination. The acquisition setup consists of three DLP projectors
(Infocus IN38 and LP120, and Sony XGA DataProjector) that simultaneously
illuminate the scene from different directions. Since we wish to illuminate the
scene uniformly, a single constant brightness image is input to each of the pro-
jectors.

The three projectors differ in their brightness and contrast ratings and dither-
ing behaviors. The captured intensity at time instant t is written as a sum of
irradiances due to the illuminations from all projectors (k = 1 . . . 3):

I(t) =
3∑

k=1

Dk(t)Ek(t) (4.2)

where, Dk(t) is the dithering intensity of the projector k at time t and Ek(t) is
the irradiance due to the scene as if illuminated only from projector k but with
unit intensity. The intensities Dk(t) can be obtained by observing a stationary
mirror sphere placed in the scene. The observed irradiances I(t) over time form
a linear system which is solved to obtain the appearances Ek(t) of the scene
from each individual lighting direction. In practice, since the projectors are not
synchronized when they illuminate the scene, the dithering intensities Dk vary
significantly over time, and hence the linear system is well-conditioned.

Figure 4.8 shows the results of applying the above approach to a scene with
a falling wiry ball. Notice the 3 shadows of the ball and the mirror sphere that
appear mixed in the multiplexed image I(t). For robustness, we use 10 frames
to solve the above linear system. Notice separation of the shadows in the de-
multiplexed images. As before, the effective rate of demultiplexing depends on
the SNR in the high speed camera. We have thus far ignored color information,
however, when the three DLP projectors emit intensities in different spectral
bands, the de-multiplexing algorithm can be used to colorize the acquired high
speed gray-scale video.
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4.3.3 Colorizing High-speed Video by Demultiplexing

In the previous section we showed how choosing the right projector intensities
can enable fast illumination demultiplexing for dynamic scenes. In this section,
we show one application of demultiplexing to colorize a high speed video. In
Figure 4.9 we show our setup in (a), where three DLP projectors are used to illu-
minate a scene and their centers of projection are kept close to minimize scene
shadows. Each projector is fitted with a color filter, and the demultiplexed im-
ages obtained are the response of the scene to red, green and blue illumination.
We can, therefore, create a color image of the scene as shown in the figure. Since
we require 30 images for the demultiplexing, and the frame rate of the camera
was 3000hz, the effective frame rate of the color video is 100hz.

Our Photron PCI-1024 camera produces black and white images, while a
similar color high speed would cost almost double this. Therefore we believe
our method is extremely practical and useful. One issue of our approach is that
commercial DLP cameras have a color wheel inside them, that have red, green,
blue and white filters turning at about 120hz. This violates our assumption
that each projector corresponds to only one component of the spectrum. For
example, for a projector with a external green filter, the response of the scene is
different when the color wheel is at white, and when turns to red. Therefore,
we removed the color wheel from the projector for these experiments.

4.3.4 Illumination Multiplexing for Photometric Stereo

Photometric stereo is a widely used method to recover the surface normals and
albedos of objects that are photographed under different lighting directions.
There are many variants of this approach and we chose the classical one [112]
for its simplicity. In this work, three images of a scene are used to obtain sur-
face normals by assuming the lambertian reflectance model. We will extend
this approach for fast moving scenes that are simultaneously illuminated from
different directions.

The scene in our experiments consists of a steel sphere and a waving cloth
(Figure 4.10) and illuminated by three DLP projectors simultaneously from dif-
ferent directions. The projectors and camera are far enough away from the
scene to assume orthographic viewing and distant lighting. Since each projector
must uniformly illuminate the scene, we provide a single constant brightness
image as input to each projector (with different brightness values). The high
speed camera records images at 3 kHz. The projectors are de-synchronized and
hence, the “multiplexed illumination” results in significant variation in the ob-
served intensities. The normalized intensities at a scene point are compared to
those observed on the sphere. A matching length of 10 frames achieved robust
results. A sliding window of 10 frames can be used to generate the normals up
to a rate of 3 kHz. As before, the speed of the object determines the effective
performance rate.
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Figure 4.8: Demultiplexing illumination from three projectors: Notice the mix-
ing of the shadows in the multiplexed images of a falling wiry ball in (a). A mir-
ror sphere is placed in the scene to measure the dithering intensities Dk from
the three projectors. (b) The results of demultiplexing for two frames in the
video sequence. A total of 10 frames are used to demultiplex. Some ghosting
artifacts are due to the noisy estimation of source intensities Dk. The variation
in the contrast of the three demultiplexed images are due to the quality of the
three projectors. Projector 2 (InFocus IN38) has the highest quality.

4.3.5 Complementary Patterns for Direct-Global Separation

The radiance of a scene point can be divided into two components - (a) the di-
rect component Ld, due to the direct illumination from the light source and (b)
the global component Lg due to the illumination indirectly reaching the scene
point from other locations in the scene [65]. The global component Lg includes
effects like interreflections, subsurface and volumetric scattering and translu-
cency. Nayar et al [65] demonstrated that using high frequency illumination, it
is possible to separate the two components and obtain novel visualizations of
the components for the first time. A particular choice for high frequency illu-
mination is a checker board pattern and its complement (with alternate bright
and dark squares), both of which are projected sequentially for separation.

We exploit illumination dithering to obtain separation at video rates. How-
ever, in our setup, it is possible to input only one image to the DLP projec-
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Figure 4.9: Colorizing a high-speed video: In (a) we show three projectors
placed with their centers close to each other with red, green and blue filters.
(b) shows a dynamic scene and in (c) we demultiplex the red, green and blue
incident light. Note the calibration plane in (d) has a white strip where all the
three colors overlap.

Figure 4.10: Photometric stereo by example: The scene in (I) consists of a wav-
ing cloth and a steel sphere showing the specularities from three DLP projec-
tors. These simultaneously illuminate the scene and the camera operates at
3000Hz. The projectors and camera are far enough away from the scene to as-
sume orthographic viewing and distant lighting. The surface normal at a point
on the cloth is computed by photometric stereo with the light-source directions
on the sphere. Since the projectors are not synchronized, the variation in mul-
tiplexed illumination from the 3 projectors is significant enough to obtain good
estimation for surface normals. A matching length of 10 frames achieved robust
results, which we demonstrate by integrating the normals to give depth in (II).
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Figure 4.11: Direct-Global Separation using DLP Dithering: (a) The DLP pro-
jector and the camera are co-located using a beam splitter. A single checker
pattern with two intensities 113 and 116 are input to the projector. The plot
shows how the input intensities are dithered by the projector over time. Notice
that at certain time instants, the patterns flip between bright and dark. Thus,
the projector emits complementary checker patterns as in (b) that are used to
separate the direct and global components (c). The flip occurs once in 1/100s.

tor in 1/60s and we have no control over the temporal dithering. So, how
do we project complementary patterns much faster than 1/60s? We selected
two specific input brightnesses 113 and 116 whose dithered patterns are shown
in the plot of Figure 4.11. Notice how the two patterns “flip” from bright
to dark and vice versa over time. Hence, a checker pattern with these two
brightnesses are input to the projector. The dithering ensures that the two
complementary patterns occur at high speeds. Let the observed temporally
dithered values for input values 113 and 116 be a and b, respectively, and the
fraction of pixels that correspond to the value a be α (0.5 in our experiments).
The two captured images are [65]:

L+(x, y) = aLd + [(1− α)b + αa]Lg

L−(x, y) = bLd + [(1− α)a + αb]Lg . (4.3)

To solve the above equations, we need to know a and b in every frame. For
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this, we place a white planar diffuse surface behind the scene of interest. For
points on this plane, Lg = 0 and Ld is a constant. This allows us to estimate a
and b up to a single scale factor. Then, the above linear system can be solved
at every pixel to obtain the separation. There is one additional complication
in our setup beyond the method in [65]: it is hard to find out whether a scene
point receives intensity a or intensity b from just the observed appearance of
the scene. To address this problem, we co-locate the projector and the camera
using a beam-splitter as shown in Figure 4.11. The pixels of the projector are
automatically corresponded with those of the camera.

The scene in our experiment consists of a set of white ping-pong balls dropped
from a hand. The ping-pong balls are mostly diffuse. Notice that the direct com-
ponent for each ball looks like the shading on a sphere (with dark edges) and
the indirect component includes the interreflections between the balls (notice
the bright edges). For the hand, the direct component is only due to reflection
by the oils near the skin surface and is dark. The indirect component includes
the effect of subsurface scattering and dominates the intensity. The checker pat-
tern “flips” once in approximately 1/100s and hence we achieve separation at
100Hz. Due to finite resolution of the camera and the narrow depth of field of
the projector grid artifacts are seen in the results.
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4.4 The DMD-Colorwheel Effect

Historically, imaging dynamic scenes proved to be challenging. Motion blur
removes interesting detail, resulting in smeared images. Objects move in and
out of focus while exhibiting appearance changes. Keeping the scene framed
correctly on the object requires accurate control of the camera pose. In addition,
image quality and object speed trade-off against one another. Today’s high-
speed cameras, although relatively expensive, have the frame rate and pixel
resolution to address these issues for most applications.

However, there are still reasons to capture a single image of a fast moving
scene. Summarizing a dynamic event is one application: for example, photog-
raphers may capture the aggressive posturing of two competitors in a sport.
Another use is for experiments that do not justify the expense of a high speed
camera, such as ballistics for a bullet passing through some material. Finally,
high-speed photographs have aesthetic value and are used by artists to cap-
ture dynamic and complex scenes such as moving liquids and breaking glass
([60],[107]). In Figure 4.12 we show one of many photographs taken by Harold
Edgerton ([44]) who used a high-speed strobe light to obtain many copies of
moving objects. Figure 4.12(a) explains that the fast flickering of the strobe light
creates multiple copies of the moving object. A similar effect is possible using
the illumination of DLP (Digital Light Processing) projectors.

Every single-chip DLP projector contains two important components: a DMD
(Digital Micromirror Device) device and a color wheel. The DMD chip modu-
lates the projected light after it is reflected off an array of 10 x 10 micron mirrors
([17]). Any displayed intensity is made up of pulses of light created by these
mirrors switching on and off. The MEMS mirrors can change their binary state
within 10−6 of a second, resulting in crisp images with sharp contrast. Since a
DMD device modulates light, it can only create binary images. In comparison,
even the fastest LED strobes have a ramp-up time, creating grayscale values.

Projecting color images involves synchronized control between the DMD
chip and the color wheel, which rotates at 120Hz and is divided into red, green
and blue filters. The ’rainbow effect’ of the color wheel is well-known to display
researchers who wish to remove or reduce it ([71],[45],[74],[102], [38], [68], [59]).
Many researchers even remove the color wheel to increase the projector contrast
in their experiments ([52], [5]). Instead of treating this effect as a problem that
must be compensated for, our work demonstrates that DLP illumination can be
exploited to photograph dynamic scenes.

In Figure 4.12 we illustrate how both these components create strobing ef-
fects for different classes of moving scenes. We term this the DMD-Colorwheel
effect. For example, commercial cameras (which operate around 60Hz) cannot
detect the high frequency dithering of the DMD chip and, instead, the color-
wheel effect will dominate for most dynamic scenes, as shown in Figure 4.12(b).
Note that the region of zero intensity in between the color pulses are due to the
mirrors on the DMD devices turned off.

For higher frame rate cameras, we can detect the dithered illumination within
each color pulse, as in Figure 4.12(c). Therefore DLP illumination can produce
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Figure 4.12: Photographing fast moving scenes with varying illumination:
In (a) we show Edgerton’s setup, which photographed moving scenes with-
out motion blur using a strobe light. Strobe-light photography produces high-
frequency object ’copies’. In (b) we show our setup with an unsynchronized
DLP projector illuminating the scene. Both the projector’s DMD and it’s color
wheel produce a similar strobe-like effect which we term the DMD-colorwheel
effect, as shown in (d).
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strobing effects for both real-time and high-speed scenes. This is illustrated in
4.12(d), where we image a tennis racket being swung. With a regular camera,
the number of copies is large, and they are captured under different illumina-
tion (red, green and blue). In contrast, the copies in the photograph taken with
a high-speed camera are fewer and grayscale.

DLP photographs offer two alternatives to the problem of deblurring im-
ages with deformable and articulated objects. First, a dynamic scene can be
summarized by combining many DLP photographs. Second, videos can be cre-
ated from DLP photographs that, although not deblurred, still give the percep-
tion of motion. For example, in some cases, the RGB channels in a DLP image
can illustrate movement. We also discuss the frequencies present in DLP pho-
tographs, comparing them to images taken under both skylight and fluorescent
illumination. Finally, we demonstrate that DLP illumination is programmable
at each pixel. This is an advantage over similar camera aperture methods that
can only control the shutter speed globally.

Talbot ([100]) created the first flash photography of dynamic scenes in 1851
using an electric spark. This technique was further improved on by Worthing-
ton ([113]), but was limited to scenes that did not cause much motion blur. In
1930 Edgerton ([18]) invented the first xenon flash tube and started creating
truly high-speed strobe images as in Figure 4.12(a). Current LED strobe-lights
have replaced the original xenon tube and can be computer controlled. As far
as the authors are aware, DLP projectors have not been used widely for creating
strobe-light photography.

4.5 DLP Photography

Consider a scene, as in Figure 4.13, consisting of a moving opaque object O il-
luminated by a strobing distant light source S(t) of frequency 1

f
. For the sake of

simplicity, let us assume the object moves with uniform velocity in a plane with
constant depth, and the optical flow of the projection of O on the image, Oproj is
~V = (u, v). The longest dimension of the object’s image along ~V is D. The scene
is imaged by a pin-hole camera C whose exposure time is T . If E(x, y, t) is the
scene radiance incident at pixel (x, y) at time t. then the measured image is:

I(x, y) =

∫ T

t=0

E(x, y, t)S(t)dt (4.4)

Since S(t) is the Dirac comb of frequency 1
f

, we can simplify the above in-
tegration into a summation. We further separate E(x, y, t) into a sum of the
background radiance and the object radiance:

I(x, y) = Σω
o=0O(x, y, to) + Σβ

b=0B(x, y, tb) (4.5)

Here to and tb are time indices for when the radiance is due to object and
background respectively. Since we are interested in scenes containing fast mov-
ing objects, ω � β. To prevent the background from dominating the mea-
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Figure 4.13: Image formation model: Consider a scene illuminated with a
strobing light source, as in (a). Let an object move in a plane parallel to the
image plane and at constant velocity, as in (b). Since the illumination is a dirac
comb, the photograph can be modeled as a dot-product between a video of a
moving object with the illumination, as in (c). The number of photographs is
determined by the camera exposure, producing an image, (d).

sured intensity, our experiments are conducted in a dark room and therefore
B(x, y, t) = 0. This is not a strict constraint and we note that with a camera
of sufficiently high dynamic range, this would not be necessary. The image
formation equation now becomes:

I(x, y) = Σω
o=0O(x, y, to) (4.6)

To get an image containing many copies of the object, we would like to elim-
inate motion blur. Let the edge of the object be imaged at pixel (x, y) as in Figure
4.13. To prevent motion blur, the optical flow of Oproj must cover a distance D in
time 1

f
. Therefore the speed of the flow must be Df and ‖~V ‖ =

√
u2 + v2 = Df .

If the pin-hole camera has focal length F and if the object moves in a plane at
depth Z then the actual speed of the object is DZf

F
.

The DMD chip has a frequency of a 106Hz, but the dithering in a commercial
projector occurs at around f = 10000 Hz ([61]). If the ratio Z

F
= 100, the longest

dimension D is 0.0001 inch, then the actual speed of the object is 100 feet per
second. This is approximately the case for an air balloon bursting as showing
in Figure 4.14. Under fluorescent lighting, viewed at 1000fps, the balloon is
smeared in a single frame, and this high-speed event is lost. However, when
viewed under DLP illumination, the images at 1000fps show copies of the edge
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Figure 4.14: DLP photographs of a bursting balloon: An air balloon bursting
can be captured fully using a 10000hz camera. In (a) we show what happens
when the event is captured under fluorescent illumination, with a lesser rate of
3000hz. In one frame the event is lost in motion blur. In (b) we show images
taken under 3000hz, but this time with DLP illumination. Notice the multiple
copies of edge of balloon as it moves. We are able to capture images of this high-
speed event, due to the temporal dithering of the DMD device in the projector.
Similarly in (c) we use three DLP projectors, which are not synchronized. We
are able to capture the balloon bursting at 500hz.

of the balloon. We used an Infocus In38 projector projecting a plain gray im-
age of intensity 192 of 3000 lumens, viewed by a Photron PCI-1024 high-speed
camera. Our setup enables photography of an event occurring at 10 times the
frame rate of the viewing camera. Next, we use three projectors that are un-
synchronized creating a higher strobing frequency and therefore obtaining a
similar photograph at a lower frame rate of 500Hz.

The color wheel has a frequency of around 120Hz, and if we image a scene
whose longest dimension D is 0.001 inch then the object speed must be at least
12 feet per second. This is approximately the case for fast human movements.
In Figure 4.15 we show pictures of a tabla (hand drum) being played, as well as
a ballet dancer performing. Some of the copies appear at different colors, since
they are illuminated when the color wheel turns the red, green or blue filters.

4.5.1 Separation of the Strobed Image Component

DLP photographs consists of two components. The first is due to the strobe
effect of the light source and is created by the objects that move at a speed
greater than or equal to DZf

F
. We call this component the strobed component

since it contains multiple object copies. The other parts of the image consist of
pixels that have motion blur, which we call the non-strobed component. We
wish to segment out the interesting high-frequency strobed component of the
DLP photograph since these describe the motion.

To achieve this separation we make certain assumptions which may seem
restrictive, but in practice, we obtain good results. First, we assume that the
albedo of the object is constant and variation due to shading is negligible. This

100



Figure 4.15: Selected DLP photographs: We photographed two artists, a ballet
dancer and a tabla (hand drum) player, under DLP illumination. Both activities
are ’real time’ and the color wheel effect dominates the images. The camera
exposure was 1 second.

is the same premise made in structured light, where scene points on the light
stripe show an intensity maxima despite their different surface normals and
BRDF. Second, we assume that every pixel is either strobed or non-strobed, and
we wish to find the mask α(x, y) ∈ {0, 1} such that:

I(x, y) = α(x, y) Ib(x, y) + (1− α(x, y)) Inb(x, y) (4.7)

where Ib and Inb are the blurred and non-blurred images respectively.
Separation for DMD strobing: A well-known method of blur identifica-

tion ([80],[115],[81]) is to threshold the measured intensities. From Equation 4.6
we note that the strobed component would consist of a single scene radiance,
whereas a non-strobed component would contain more. We use the mean of
the measured intensities as a threshold. In Figure 4.16 we do this for a photo-
graph of a tennis racket taken at 125Hz. Note that errors only happen when
specularities occur since this violates our assumption of constant BRDF.

Separation for color wheel strobing: In this case, the regions of the image
that are strobed have a dominant color (R, G or B). In contrast, the slower mov-
ing parts of the image have the normal distribution of RGB Therefore the color
channel mean is less for strobed regions than non-strobed regions. We use this
mean as a threshold to create a mask for separation, as seen in Figure 4.16.
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Figure 4.16: Separating strobed and non-strobed components: We use a sim-
ple appearance model to separate the strobed component of a scene: since the
faster parts of the scene are imaged for a shorter time, their intensity is lower
than other parts of the scene. This works especially well for the color wheel
examples shown in the last two rows, where each strobed component is illu-
minated by either R, G or B light and has approximately a third of its original
intensity.

4.5.2 Summarizing Fast Events

An image summarizing a video sequence can be created by stitching important
frames together, as in shape-time photography ([22]). However, the object must
move slowly since otherwise motion blur will render the final result difficult
to interpret. DLP photographs summarize a short burst of action, since they
contain multiple copies of moving objects. Applying a similar method as shape-
time photography to a collection of DLP photographs creates a summary image
for fast motion.

In Figure 4.17(a) we show images created by processing a volume of DLP
photographs of a tabla player. We first separate the images into the strobed and
non-strobed part. Except for the first image, the rest of the images are strobed.
The top image is created by taking the intensity maxima of each pixel over all
the photographs, which produces the effect of combining the different copies
and gives a summary of the motions that occurred. In contrast, the bottom of
Figure 4.17(a) is creating by masking the high intensity portions of each image
and pasting them on top of each other. Instead of blending the outputs, these
summaries enforce an order into the images.
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Figure 4.17: Colorwheel motion summaries: By combining DLP photographs
in different ways we can summarize events. For both the tabla player, (a), and
the ballet dancer, (b), we show summaries created by taking pixel maxima as
well as by masking and superimposing the images. In the maxima case, no
image ordering exists and all edges are blended. In the masking case, image
order matters and edges exist between different stages of the action.

We can also create an impression of the scene’s motion by blending the in-
tensities of the different DLP photographs as in the top of Figure 4.15. Since
each DLP photograph is already a summary of some part of the scene motion,
we are able to compress a long and fast dynamic motion into a simple, pleasing
summary. We show the mask-blending results for the ballet dancer in Figure
4.17(b). Since the scale of the scene is larger, the DLP effect is only observed in a
frustum of illumination, which could be corrected by placing additional projec-
tors (these may be too bright for the dancer, but may be fine for other objects).
In this case, the order and number of the scene matters, since there is a lot of
overlap in the original images, and these were chosen by the user.

While the previous examples showed images taken at ’real-time’ rates (such
as a human dancing or moving) with the colorwheel effect, now we look at
strobing created by fast moving scenes with the DMD chip. In Figure 4.18 we
show image summaries of a slingshot shooting a rock at high speeds. This sum-
maries were created by applying the method of [22] to high-speed frames. The
first result taken under fluorescent illumination with a 1000Hz camera, clearly
shows high-frequency information. The same experiment taken with a 250Hz
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Figure 4.18: DMD motion summaries: Here we show experiments with a sling-
shot, which moves fast enough that the strobing effects are due to the DMD
dithering and not the colorwheel. In the top row we demonstrate how DLP
illumination allows the image capture of dynamic scenes with a low frame rate
camera. In the bottom row we show how applying the method of [22], allows
the summary of different aspects of a fast moving event, again with a low-frame
rate camera.

camera shows motion blur. However, replacing the fluorescent light with a
DLP projector, creates an image on the right with the same high-frequency in-
formation obtained by a 1000Hz, but done with a 250Hz camera. Therefore, fast
strobing of a DLP projector can enhance the effective frame rate of a camera by
allowing to capture scenes moving faster than its frame rate. In the second row,
we show a more interesting scene involving a collision of a slingshot rock and
a stationary plastic pear. By applying [22]’s method to different subsets of the
video, we can summarize different aspects of the event.

4.5.3 Creating the Illusion of Motion

Here we present three ways of processing a set of DLP photographs to pro-
duce a video that illustrates a scene’s motion. We do not claim to deblur the
scene or recover the motion in a quantifiable fashion. Instead, we believe these
motion illustrations contain more information than the set of photographs by
themselves and provide an easy way to visualize the event that occurred. The
trade-off is that each of these techniques produces good results in certain broad
classes of scenes, and may fail for others.

Blending: In Figure 4.19 (a) we show the first three frames of a motion il-
lustration video for the ballet dancer. The frames in this video were created by
differentially alpha blending the strobed and non-strobed components of DLP
photographs taken at 1s exposure. The non-strobed component were blended
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Figure 4.19: Different types of motion illustrations: We present three types
of motion illustrations for DLP photographs. In (a), we differentially blend
the strobed and non-strobed components. In (b) we triple the effective frame-
rate by separating the RGB image components, exploiting the effect of the color
wheel. Finally in (c), we apply intensity segmentation to convex objects (such
as a balloon) to reconstruct the fast event.

slowly, at 10% per frame. In contrast, the strobed component was blended
quickly, at 50% per frame. Since the strobed component naturally contains the
fast moving parts of the scene, this gives the impression of motion.

Color demultiplexing: In Figure 4.19 (b) we show pictures of a tabla (hand
drum) musician playing under DLP illumination. Due to the color-wheel ef-
fect, the different object copies are colored in a repeated series of red, green and
blue. Each image can be demultiplexed into three grayscale images, tripling the
frame-rate. Cycling the RGB copies gives the impression of motion only when
the speed of the object is close to the frequency of the colorwheel (120Hz), re-
sulting in fewer object copies and unlike the ballet photographs. This method
works best when the objects in the scene are themselves close to grayscale: ob-
jects with significant red, green or blue components will imaged darkly or not
at all in the complement illumination.

Segmentation: In Figure 4.19 (c) we create a video from an image from Fig-
ure 4.14 by thresholding the image intensities. Since the balloon parts that move
first are replaced by the black background, these are least bright. Therefore the
balloon shrinks from the outer edge inwards. This segmentation approach pro-
duces a believable result for a convex object, such as a balloon, since the image
center is brighter than the outer edge.
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Figure 4.20: DLP photographs contain higher frequencies compared to other
types of illumination: In (a) and (b) we show deconvolution results with sky-
light and fluorescent illumination. The blind deconvolution algorithm was
given the intensity profile of a white dot as a starting point. The result for de-
blurring the same motion under DLP illumination (c) can be read easily. Analy-
sis of frequencies in the recovered PSF shows DLP illumination preserves high
frequency information.

4.5.4 Discussion: Towards Deblurring Photographs of Dynamic
Scenes

In this section we conclude by analyzing the frequency space of images taken
under DLP illumination, demonstrating the potential for deblurring scenes con-
taining complex motion such as articulated and deformable objects. In Figure
4.20(a)-(c), we show images taken under DLP, skylight and fluorescent illumi-
nation. The object is a cardboard sheet translating from left to right with the PSF
approximated by a small white dot placed on the sheet. We use this as a good
starting point for blind deconvolution methods. For skylight and fluorescent
light, we also tried the ’box’ PSF which assumes constant incident illumination
during exposure. Note that the best deconvolution occurs with the DLP pho-
tograph. In Figure 4.20(d) we show the frequencies of the PSFs. Note that the
highest frequencies are due to the DLP illumination. Although previous work
has either used camera apertures to create similar images ([77]) or shown some
deblurring results ([61]), we are the first to analyze and compare the frequencies
of DLP illumination to other types of lighting.
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4.6 Chapter Summary and Discussion

In this chapter we demonstrated that illumination from DLP projectors shows
flickering or dithering due to the effect of the DMD chip. This dithering occurs
even when the projector projects a single slide, and is much faster (around 106

Hz) than the slide refresh rate (around 60Hz). Therefore the dithering can be
exploited to extend active vision techniques to dynamic scenes.
Technical summary: The Digital Micromirror Device (DMD) chip inside DLP
projectors creates a perceived projected intensity through emitting binary pat-
terns or pulses of light. These are integrated by human eye or by a low-frame
rate camera. A higher frame rate camera can detect these pulses as a variation
or flickering of the projected intensity. We have noticed that a frame-rate of at
least 200Hz is required to detect the temporal dithering.
Applications: Most active lighting techniques require the scene to be static
while the illumination varies. Our technique extends all these methods to dy-
namic scenes. We have shown this extension for structured light reconstruc-
tion, photometric stereo, illumination demultiplexing and separation of direct-
indirect components.
Input and Output: The input to all our algorithms are images of a dynamic
scene illuminated by one or more DLP projectors, viewed by a high-speed cam-
era. Each projector projects only a single slide. The pattern projected depends
on the technique: for example structured light techniques require a slide con-
sisting of horizontal lines whose intensities are randomly selected. The photo-
metric stereo techniques require blank slides of constant intensity. The output
depends on the technique, and ranges from reconstructed shape to direct and
global components of the scene.
Alternative methods: Human-computer interaction researchers exploited the
DMD chip ([10]) to create imperceptible structured light for ’office of the future’
settings. However, these algorithms ran at real-time rates. Our focus is on
fast active-vision and we believe our technique is the only one offering as-is
extension of the entire class of active lighting techniques to dynamic scenes.
Implementation Issues and Discussion: The selection of the pattern decides
the frame-rate at which reconstruction can occur. This can easily be done using
the calibration method of Figure 4.1. However, non-DMD factors such as pro-
jector heat, time-cycle, color-wheel start position etc seem to severely effect the
calibration. Therefore, we suggest that the pattern be selected and used dur-
ing or just previous to the experiment. Since we are dealing with active vision
techniques, ambient light may cause issues with low dynamic range cameras.
All our experiments were performed in the dark, but DLP projectors are bright
enough to be detected in a variety of settings, such as underground, underwater
and outdoor scenes at night. The most powerful DLP projectors for cinema can
project over several meters, and therefore our techniques have application for
a variety of long-range tasks. However, for applications requiring even longer
ranges, passive techniques should be used instead.
Camera frame-rates: We note that the dithering can also be observed at lower
frame rates and hence a lower cost camera may be used for slower reconstruc-
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120Hz 500Hz 1000Hz 3000Hz

Figure 4.21: Reconstructions obtained using videos captured at reduced
frame rates. Even at 500Hz, the quality of the reconstruction obtained remains
acceptable indicating that temporal dithering can be exploited at this frame rate.
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Figure 4.22: Blurring when capturing fast moving scenes with a low frame-
rate camera under DLP illumination: Here we demonstrate why the recon-
structions obtained require both a high-speed camera and a DLP projector. A
30Hz camera produces blur for all the scenes in this chapter, including the pen
flip, face movement and hand-motion (reconstructed in Figure 4.7), flag waving
(reconstructed in Figure 4.10) and wiry ball (demultiplexed in Figure 4.8).

Figure 4.23: Bad reconstruction at low frame-rate when applying photomet-
ric stereo to the flag example: In (I) we show images of a cloth flag at 30Hz,
created by integrating frames shown in Figure 4.10. Note the motion blur, es-
pecially at the edges of the cloth. The temporal dithering is almost destroyed
by the low frame rate, and demultiplexing works badly, resulting in incorrect
reconstructions as shown in (II).
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tions. We repeated our experiments for the same scene at four lower frame
rates — 1500Hz, 600Hz, 300Hz and 120Hz. Figure 4.21 shows the reconstruc-
tions obtained. The frame rate of 120Hz is too low to capture the required
intensity variation and hence, the projector-camera pixel correspondences are
unreliable. However, at 300Hz, the reconstruction quality is still acceptable in-
dicating that the temporal dithering can be exploited even at this frame rate.
This is extremely clear when we image the reconstructed scenes using a reg-
ular, 30Hz camera as in Figure 4.22. Note the blurring in the images makes
impossible the application of methods that require triangulation, such as struc-
tured light based reconstruction. For pixel-based methods such as photometric
stereo, the low frame-rate makes demultiplexing ill-conditioned and causes bad
reconstruction, as demonstrated in Figure 4.23.
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Chapter 5

Conclusions: Illuminating the
Future
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We began this thesis by discussing how recent advances in digital illumina-
tion have made active lighting techniques popular. Since these rely on finding
incident light ray correspondences at scene points, they differ from traditional
illumination-based approaches that model photometry. The problem of find-
ing incident ray correspondence is analogous to discovering scene point cor-
respondences in camera-based approaches, and is solved by projecting special
patterns onto the scene. The key idea here is that spatio-temporal control can
dominate photometry and allow easy detection of the incident rays.

We extend these ideas further to new situations. Rather than requiring pro-
grammable light-sources we instead exploited the motion, occlusion and strob-
ing to obtain incident rays at a scene point. We demonstrated a variety of appli-
cations, from obtaining surface normal clusters and creating dual scene views
to fast reconstruction of faces and summarizing dynamic events. In this chapter,
we first discuss the continued influence that digital and configurable illumina-
tion will have on computational fields, especially computer vision. We then
make predictions concerning the impact of the methods demonstrated in this
thesis, with a focus on practical applications. Finally, we expand our ideas be-
yond modeling illumination by introducing the idea of ray geometry analogies.

5.1 The Confluence of Illumination and Computing

The impact of solid-state and MEMS technologies on the lighting industry has
been tremendous. From being utilized in only a specialized set of applications,
LEDs, LCDs and DMD are now widely used. The digital nature of these sources
has made them easier to control by computer. Currently, computer vision algo-
rithms have used these light-sources to program the direction, intensity and
wavelength of emitted rays. However, in the future, all properties of light will
be digitally manipulable by computer algorithms. Flexible materials may en-
able changing the light-source shape while mobile devices may allow control-
ling the light-source location. In addition, illuminating devices may connect to
the local network and computers will communicate with them directly.

The implications for computer vision are even clearer when we compare
the sheer number of light-sources versus cameras. Two factors ensure that
there will always be more light-sources than cameras. Firstly, most cameras
carry their own illumination (usually in the form of a flash) and the engines
of growth in camera manufacture (such as cellphones and optical mice) con-
tain either LCDs or LEDs. Secondly, humans require artificial illumination in
all environments and, while a single camera can ’cover’ a large area, intensity
fall-off dictates that many light-sources be required to illuminate an identical
space. Models of light-sources, therefore, should accompany any algorithm
that wishes to interact with the real world.
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5.2 New Directions for Active Lighting Applications

Here we discuss possible applications for the algorithms discussed in the the-
sis. Some of these are straightforward extensions or implementations of our
methods while others may require further research:

Hand-held Active Vision: The methods in Chapter 2 suggest an interac-
tive framework where humans wave a light-source in front of a scene to ex-
tract information. With the advent of hand-held devices, most of which have
a light-source, great potential exists for algorithms that recover digital models
of everyday objects. These would be shared by users across social networks.
The challenges here involve a totally uncalibrated scenario, with low-intensity
sources and low-quality cameras. In addition, the approaches in Chapter 4 re-
lied on DLP projectors, and portable versions of these are already available. Ex-
tensions of our temporal dithering approach to a situation where the camera,
scene and light-source are all moving should be simple. The goal here would
be to enable fast and accurate optical flow using light-source strobing.

Outdoor Scenes at Night: Street lights and car headlamps are the dominant
forms of illumination in the outdoors at night. Modeling these has implica-
tion for intelligent navigation and outdoor surveillance applications. The algo-
rithms proposed in Chapter 3 suggest a one-time scan of static light-sources to
recover their geometry. The fall-off along each ray could localize the observed
pixels, especially when the illumination is changing over time and the scene
has simple geometry (such as the flat surface of roads). Since street lights are
mostly copies, this could done for one instance of the fixture.

Tracking with Light Fixtures: Most tracking algorithms in vision utilize
illumination invariants. These tend to separate lighting information from im-
ages, and complement our techniques for modeling light-sources. We would
analyze image data corresponding to illumination invariants (usually discarded
by tracking algorithms) and extract information from it that could help the
tracking problem further. For example, if a tracking algorithm is invariant to
intensity fall-off, then the extent of fall-off over time could localize the object
with respect to the light-source. This extra information can remove ambiguity
due to occlusions or shadows where the object reemergence can be predicted.

Relighting Indoor Scenes: Images taken with indoor light-fixtures are in-
teresting both due to the wide variety in illumination shape and the presence of
complex near-field effects. A difficult problem is relighting such images, espe-
cially if they are obtained without calibration, such as from an internet collec-
tion. We believe that utilizing both a database of light-fixture geometries and by
exploiting simple geometries in indoor scenes (such as walls) we can relight in-
door scenes under arbitrary illumination. This has applications for visualizing
architectural and indoor lighting designs.
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Deblurring Complex Motion: The flutter-flash method explained in Chap-
ter 4 suggests that fast encoding of illumination can be used for deblurring. The
advantage of DLP dithering is that we can program the dithering individually
for each pixel. This is important, since for articulated, deformable objects, the
motion blur kernel is different at different pixels. We envision a system where
multiple DLP projectors projecting random patterns illuminate a field-of-view.
In the exposure time of the camera, at each pixel, many flutter-flashes will occur
in different directions. Therefore, for every scene point, at least one direction
has been ’tracked’, preserving the high-frequency information.

DLP Strobe Displays: The interaction of DLP illumination with various
objects that exhibit refraction and reflection allows an opportunity build novel
displays. We can describe a family of DLP displays by varying one or more
of the following factors: (1) Refractive element(s) (2) Location, color and re-
flectance of the projection screen (3) Output pattern. Using these displays, we
expect to create new visual effects that blend colors and caustics, such as a DLP
rainbow created by illuminating a prism. In addition, displays can be created
when DLP illuminations interacts with objects showing periodic motion (such
as a fan). These move fast enough to mix the colors from the color-wheel. For
example, different speeds of the fan blend the primary colors from the DLP
illumination to produce new colors.

DLP Painting: If the light from a projector is focused onto a white screen
using a lens (or any refractive material) it produces caustics whose motion is
controlled by the refractive element. Photographs of the screen correspond to
the intersection of a 2D surface with the objects 5D caustic (space and incident
angles). If this caustic is sufficiently complex, the image can be intricate and
can have artistic value.

DLP Videography: The illumination sent out by a DLP projector is modu-
lated temporally and spectrally. We can write the formation of the image I(x, y)
in this case as:

I(x, y) =
T∑

t=0

λ(x, y, t)D(x, y, t) (5.1)

where D encapsulates the temporally dithered scene radiance, λ is a wave-
length modulation term that represents the color wheel and T is the exposure
time. The captured image depends on the properties of the sensor or camera
viewing the projected pattern. DLP videography is the multiplexing of con-
tent across wavelength or frame rate. A single slide from a DLP projector looks
multicolored and static when viewed at 60Hz with the naked eye. However,
if viewed at higher frames rates (with a high-speed camera or shutter glasses)
or through color filters, different pairs of (T, D) or (T, λ) can convey distinct
content. While in Section 4.3.5 we showed an application of such a DLP video
for separating direct and global components, the pattern was found manually.
Here, the goal is to design the pattern given a task, automatically.

114



5.3 Beyond Illumination:
Modeling Biological Sensors

In this thesis, we have discussed the similarity of light-sources and cameras
from a ray geometric perspective and demonstrated the opportunity for novel
results. Now, let us consider the differences between light-sources and cameras.
In particular, unlike cameras, many types of illumination exist: light-sources are
manufactured in different shapes and sizes, and advances in materials have en-
abled flexible, manipulable sources. Despite the ray geometric duality between
light-sources and cameras, building a physical, analogous camera to an exotic
light-source is difficult. For example, a neon sign has 3D curves of light, and
building a dual camera with CCDs in a similar complex arrangement would
require special electronics which may simply not exist.

In fact, building any type of complex camera is hard, including those that
imitate biological sensors. For example, considerable effort has been required
to build a single insect-like compound eye ([41]). However, such attempts have
many disadvantages, such as high cost and reduced resolution, and most of
these efforts are still in a very nascent stage of development. In contrast, the
vast variety of illumination is ubiquitous and cheap, allowing even very com-
plex light-source shapes to be easily available. By exploiting ray geometry, we
can design light-sources that are duals of complex cameras, such as biologi-
cal sensors. It then becomes possible to propose dual algorithms for complex
cameras and sensors, even though building these devices is currently impossible.

We believe that finding ways to apply computer vision and graphics algo-
rithms onto these camera analogies is a worthwhile endeavor. The vast variety
in illumination shape, as well as in the types of biological sensors, give a sense
of the power contained in exploiting the duality of light-sources and camera.
From this large set we have, in this thesis, contributed to understanding a light-
source’s motion, geometry and strobing. We believe this is a significant step to-
wards applying ray geometry to a wider range of sources and that it will have
significant impact on computer vision, computer graphics and related fields.
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