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Abstract

In this paper, we present a unified framework for reduced space Imgdend rendering of dynamic and non-
homogenous participating media, like snow, smoke, dust and fog. Vhieldee is to represent the 3D spatial
variation of the density, velocity and intensity fields of the media using the aaatgtic basis. In many situa-
tions, natural effects such as mist, outdoor smoke and dust are snowtifr¢quency) phenomena, and can be
compactly represented by a small number of coefficients of a Leg@atiynomial basis. We derive analytic ex-
pressions for the derivative and integral operators in the Legendrdicigeft space, as well as the triple product
integrals of Legendre polynomials. These mathematical results allow a$v®Isoth the Navier-Stokes equations
for fluid flow and light transport equations for single scattering efficiently enrdduced Legendre space. Since
our technique does not depend on volume grid resolution, we can acbéenputational speedups as compared
to spatial domain methods while having low memory and pre-computatiaireegents as compared to data-
driven approaches. Also, analytic definition of derivatives and integualators in the Legendre domain avoids
the approximation errors inherent in spatial domain finite difference nu=th@/e demonstrate many interesting
visual effects resulting from particles immersed in fluids as well as volunseigittering in non-homogenous and
dynamic participating media, such as fog and mist.

Categories and Subject Descript@egcording to ACM CCS) 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction and Related Work ing serious demands on memory and compromising speed.
L . . Treuille et al TMPS03 develop an approach for key-framing
Sfr:?t?iltpaaevr;gen:aeglaeSc#%?sﬁilsen;f(e)létes’ Ssrlj)g\r'] g%%ti‘argfé ?Qgrg;o(gf fluid flows that alleviate the discretization errors. How-

i range . " L Cever, their approach becomes computationally prohibitive for
terized by their density, velocity and intensity fields that vary, ,.oq o4 sizes. More recently, an interesting data-driven ap-
across bo_t_h space and time. Accurate mod_e_llng of densmjasroach has been taken to simulate the velocity fields using
and velocities as well as rendering of intensities of these m a reduced dimensional PCA basiELPO§|. This approach

ici'sa 'igg'cﬂ;gr a;h'ﬁ\ég‘t?oﬁzoltiﬁgeﬂfqrgs'r}gomr%ufﬁtre%;iméachieves considerable speed-ups and produces impressive re-
: , mary applic . 9 a - _sults, but at the cost of high memory requirements and lengthy
changes in lighting, view-point and the medium properties

S o R h X . re-computation. Furthermore, as the authors mention, it is
fo;stici: ?gapl)ll_ltci;gqt;ons, itis imperative to achieve these V'suaﬂnclear whether the approach generalizes to new fluid flows

that are not represented in the pre-computation.

The first step in realizing this goal of visual realism re- The second step towards the goal of creating the desired
quires modeling the time-varying density and velocity fieldsvisual effects is rendering of participating media, which re-
of participating media. The Navier-Stokes equations for inquires modeling the intensity fields resulting from volumet-
compressible fluid flow@M9Q] provide a differential model ric scattering. Using the computed density field, the corre-
for simulating the density and velocity fields. Explicit analytic sponding intensity field of the participating medium is then
solutions to Navier-Stokes equations are hard to obtain aneéndered by solving the light transport equatid®h6q.
hence, a number of works that employ numerical finite dif-Analogous to fluid modeling, many works that numerically
ference methods (FDM) have been propodemi96, FM97,  solve the light transport equation based on FDMs have been
Sta99 Sta01FF01, FSJO01NFJ02 SRF03. Although simple  proposedKH84, Max94, Jen01PM93 EP9Q Sak9QLBC94,
to implement, such schemes require high spatial resolutioRT87]. As such, many of the issues related to numerical er-
to minimize the finite differencing numerical errors, plac-rors must be addressed here as well. While these methods
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Clear Weather 7 7 7 Snow andMist

Figure 1: Legendre domain 3D fluid simulation and renderingn this example, we hav@000snow flakes being carried by a wind field
(Legendre domain fluid simulation). We add mist to the scsimgyu.egendre domain rendering for participating mediatibifurther objects
appearing brighter due to the air-light effect, and distanbw-flakes becoming invisible as the mist density is ise@aThe clear weather
Christmas image was downloaded from www.survivinggraay/2005_12_01_archive.html

can produce impressive visual effects, they are too slow foipating media very fast. Depending on the number of coef-
interactive applications. Recent hardware-accelerated tecfeients required, we achieve computational speedups of one
niqgues PYNO2, REK*04, HLO1] can significantly decrease to three orders of magnitude as compared to spatial domain
the running times of numerical simulations, although they argéechniques. At the same time, only a few coefficients must be
specialized to particular phenomena. stored in memory as compared to the full 3D volumes that

In addition, note that the intensity fields depend on the illuMuSt be stored for the data-driven (eg., PCA) approaches.

mination and viewing geometry as well as the scattering prop- The main contribution of this paper is a theoretical one:
erties NGD*06, HEDOY of the participating medium. More- g unified framework for both fluid simulation and rendering
over, the lighting, viewpoint and the densities of the mediumn an analytic reduced space. We believe that this is an im-
may change with time. Thus, the pre-computations require@ortant first step towards bridging the gap between model re-
are too prohibitive for data driven approaches to be applieguction for fluid simulation and pre-computed radiance trans-
to intensity fields. For the special case of homogeneous mger for rendering. In addition, we believe that the mathemat-
dia, many previous analytic approachésak86 SRNNO3 jcal results derived in the paper are general enough to find
JMLHO1, NNO3] may be used to render the effects of scat-yse in many computer graphics applications. We demonstrate
tering in real-time. However, homogeneous media are not theeveral visual effects resulting from volumetric scattering in
focus of our work. time-varying participating media, such as shadowgrams that
The goal of this paper is fast modeling and rendering of dyare cast by the medium on a background, mixing of different
namic and non-homogenous participating media, like smokejaseous media and airlight effects due to depth disparities in
dust and fog. The key idea is to represent the 3D spatial varfhe scene. We also show fluid simulation results illustrating
ation of the density, velocity and intensity fields using theSnow flakes (see Figudy and confetti immersed in turbulent
same analytic basis. Jos StaBt499 used Fourier basis to Wind fields, as well as smoke density fields evolving under the
solve the diffusion and projection steps of the fluid simulationinfluence of user-defined forces.
pipe-line over a domain with periodic boundary conditions. In

this work, we use Legendre Polynomial&tia6Q as our basis 440 and rendering framework, we have made several limit-

functions. In many situations, natural effects such as mist, ouhg assumptions such as smooth (low frequency) phenomena,
door smoke and dust are smooth (low frequency) phenomen 0 objects within the medium, single scattering, orthographic
and can be compactly represented by a small number of co

fici fal d | ial basis. In thi K il iewing and distant lighting. In SectioB, we discuss these
iclents of a Legendre polynomial basis. In this work, we Will ;;iiations in detail, along with future research directions for
focus on optically thin media where single scattering is th

dominant form of light transportgRNNOS NGD*06]. Un- E‘extendlng the technique to more general settings.
der these conditions, the common Legendre polynomial bay  ppysical Models for Participating Media

sis for different fields allows us to analytically solve both the namic and non-homoaenous particioating media can be
Navier-Stokes and light transport equations in the reduceQﬁ/aracterized by densit % velocitp and pinter?sit fields, that
Legendre space. It turns out that this solution requires us {© y % y y :

analyze triple product integrals of Legendre polynomials and2"Y. qcrosfs both space 'Elnd ﬂt”_gef'l WherzaT tl:laV|er-|St_okes
their sparsity GNO7], similar in spirit to the triple product cduations for incompressible fluid flow model the evolution
wavelet integrals for’relighting\{RH04] of the density and velocity fields over time, the intensity fields

are rendered using light transport equations. The time evolu-
Since all the fields are represented using Legendre polytion of the velocity fieldu is given by CM90]:

nomials, their derivatives (and integrals) can be computed

analytically, thereby avoiding the numerical errors resulting — = —(u.0)u— vJ?u+Op+b, st. Du=0, (1)

from spatial finite differences approximation. Additionally, ot

the compactness of the Legendre domain representations where,v is the kinematic viscosityp is the pressure field and

natural effects makes modeling and rendering of such partids denotes the external forces (the notation used in the paper is

For the purpose of deriving the unified reduced space simu-

(© Association for Computing Machinery, Inc. 2007.
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velocity field - Orthogonality [*; Li(x)Lj (x)dx = &;
¢ —component of velocity field Derivati L/(x) — S oL
density field erivative | L{(X) = YxCikLk(X)
external force field Integral | [Li(x)dx= Y biLk(X)

&»—component of force field
direct transmission intensity figld
scattered intensity field

Figure 4: Properties of Legendre Polynomial€hia6Q.

jon c
MM o-£c

scattering(direct transmission) intensity fielﬁd(x,t), and

(‘; z')?t?nrz;‘gﬁ \élosgf(f)if:liteynt the post-scatteringintensity field ES(x,t). Mathematically,
. . these intensity fields can be written &ha6(Q:
B |scattering coefficient
6 |[scattering angle od0ed = —gr.gd 4
Q(6)|scattering phase function ( ’ ) “)
w? [lighting direction (wS.0)ES = —or-ES+Br-Q(6)-EY (5)
w® |viewing direction

Here,o and 3 are the extinction and scattering coefficients
respectively an@(0) is the phase function. When the camera
- is outside the medium, the acquireDd imageof the medium
Distant Source is simply the boundary of the 3D intensity fidk$(Figure3).

\ \ \ \ 3. Compact Analytic Representation of

Figure 2: Notation used in our papey, stands for either x, y or z.

< N Non-Homogenous Media
=MsgaaPpenaantecaa —P  Orthographic . . . . . .
4 N . "4 Camera The key idea in this paper is to represent the 3D spatial varia-
N U tion of the density, velocity and intensity fields using the same
o B o= — : : ;
\ o Elxgs Py analytic basis. We choose to use Legendre polynomials as ba-
---.‘:.‘.5.--.’;,‘ ...... —_— sis functions. In many situations, natural effects such as mist,
\ N, 4 outdoor smoke and dust are smooth (low frequency) phenom-
TR “"‘i‘ """" —> ena, and can be compactly represented by a small number
A Medium ’

of coefficients. Legendre polynomials are orthogonal, have
. . . ) global support (non-zero over the entire domain), and have
I_:Igure 3. The participating medium is |IIun_1|nated by a distant analytic derivatives and integrals (Figute As a result, they
light source and is viewed by an orthographic camera. Undter t s, \vige application in mathematical physics literature in

single scattering assumption, the intensity field withia thedium . - . . - .
volume can be split into two sets of light rays: the pre-satg (di- conjunction to solving differential equation€tia6g.

rect transmission) intensity field%x,t) and post-scattering intensity A function f(x) can be represented as a linear combina-
field E3(x,t) (shown using red rays). tion of Legendre polynomialky of different ordersf (x) =

Sk FkLk(x), where the Legendre domain coefficieffig can

be computed analyticallylas:

given in Figure2). Following [Sta99CM9(], Equationl can

be written as: R = / f(X) Ly (x)dx. (6)
du 2 -1
Fae £ —(u0ju+ vO7u + b @) In 3D, we represent a fielél(x,y, z) that is smooth in x-,y-
projection \ aqvection diffusion forces and z-directions as:
o _ _ _ f(xy.2) = %ij Li(9Lj (y)Lk(x) - )
Here,P is a linear operator which projects a vector field to i

its divergence free component. Equatiboan be resolved by - For notational ease, Equatidris written asf (x, y, z) < Fik].

splitting the right hand side into four sequential steps: (i) ad-The Legendre representations for the various fields are given
vection, (ii) diffusion, (iii) external forces and (iv) projection jn Figures.

[Sta99. Similarly, the time evolution of the density fieldis
given by: 4. Analytic Operators in Legendre Space
or 2 In this section, we derive the legendre space formulations for
ot _\—(u.D)r,— @,-5 + ;(,X.E + \S‘/ ®) various operators and establish that they are compact, com-
advection dif fusion dissipation source putationally efficient, and completely analytic in nature. For
ease of exposition, we illustrate the concepts withekam-
ples; analysis inR and D follows in an exactly similar man-
ner.

where, K is the diffusion constanty is the dissipation rate
and$ is the source term for density.

Using the density field, we can render the intensity fields o
for any configuration of illumination and viewing geometry. 4.1. Derivative Operator
In this work, we consider optically thin media whesan-  Observe that spatial derivatives appear both in the Navier-
gle scatteringis the dominant form of light transport. Fig- Stokes and the light transport equatioRs3; 4, 5) in the form
ure 3 shows an orthographic camera viewing a participatingf gradient and Laplacian operators. Using the property that
medium that is illuminated by a distant light source. Then, wederivative of a legendre polynomial can be expressed in terms
can split the intensity fields into two components: fire-  of lower order legendre polynomials (Figutg we derive the

(© Association for Computing Machinery, Inc. 2007.
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Field Spatial< Legendre f(x) = Z FiLi(x) g(x) = %GkLk(X) h(x) = Z HiLi(x)
] I

Density Field r< (R
Velocity Field U < [Ug] To compute thé'" basis coefficient for the result, we use or-
Divergence free Velocity Field [T, < [Ug (1)] thogonality of Legendre Polynomials (see Figdje
External Force Field by < [BL(1)] 1 1
Direct Transmission Intensity Figl < [19]
Scattered Intensity Field ES< 19 Hi = / Li ()h(x)dx= / Li(x) F()g(x)dx

“1 “1

Figure 5: Legendre representations of various fields, where

stands for x,y or z. In Figure§ and 6, sub-scripts and arguments 1
have been dropped for brevity. For example, d gddshould be read — / Li (x) Z FiL;(x) GyLk(x) | dx
as dx,y,zt) and [Djjk (t)] respectively. L ] = Z
OperatiofOperanl  Result Complexity = % FiGkT lijk
]
Vati d 2
Derivative g < [G] 369 D? (G} oK) whereT ljjx = f}l Li(X)Lj(x)Lk(x)dx is the Legendre Poly-
Integral |g <« [G]|[gdd < [, - [G]] O(K?) nomial triple product integral, and can be pre-computed apri-
g< (g G 3 ori. As with the derivative and integral case, we can write the
Product | 1) 9-h M= H]| O(K®) above equation in matrix form as follows:
Truncation [G] | [G"]=T-[G] | O(K?) [Hi] = M® [F] = MF % [Gy] (10)
Legendre
: G O(NK
to Spatial ©] g (NK) where, MC(i, j) = kGTlijk and MF(i,k) = 5;FTlij.

; . Given the size of legendre representationKaghe multi-

Figure 6: Legendre Space Operators (tands for x,y or z). N S - 2 .
is the size of the spatial grid. K is the size of legendre aoefft plication rnatnx hasO(K ) entries. For each entrfD(K)
representation. computations are required. Thus, we neé@?3) computa-
tions to build the multiplication matrix an@®(K?) time for

derivative operator in legendre domain, whiclc@npletely the matrix-vector multiplication. Therefore, total time com-

analytic, and hence, devoid of the numerical errors resulting?lexity of legendre space multiplication &(K?). However,
from the Finite Difference approximation: we show that the 3D tensdrl is sparse using thieegendre

, , Polynomials Triple Product Integrals theorem [GNO7].
fO) =3 RLi(X) = /(%)= RLi(x) (8)  Using the theorem, we show that approximatglpf the en-
: : tries of the Tl tensor are exactly zero. We exploit this sparsity
= f/(x) = Z <z = *Cik> Li(X) (Figure 4) to achieve computational speed-ups in the advection and the
T rendering stages. Indeed, the time required to construct the
' ()Ly (x) multiplication matrix can be reduced by a factor of 4 iD 1
% k( and by # = 64 in the D case.

Lower Order Approximation: Note that multiplying two
polynomials of degre& each results in a polynomial of de-
gree X. Therefore, given two functions, each with Legendre
representation of sizK, the Legendre representation of the
product will have size R. For computational savings, it is

, desirable to keep the size of the Legendre representation con-
[F] = Dxx [Fi] ©) stant. To this end, we devise a simple approximation scheme

Derivatives iny andzand the integral operator can be definedusing theChebyshev Polynomialgo truncate a given Legen-
likewise. Figures lists all the legendre space operators that wedre representation fromk2terms toK terms, while keep-
derive, along with the corresponding time complexity. Givening the approximation error low under the, norm [GNO7.

K as the size of legendre space representéfigrthe matrix-  We define thelruncation Matrix Operator T in legendre
vector multiplication requiré®(K2) computations. Building SPacé such that
the derivative and integral matrices is a one time operation,

and take€©(K?) time.

whereF’ (k) = 3 F *Cj. We can write this equation in matrix
form, with [F;] and[F] as the coefficient vectors correspond-
ing to the derivative and the original function respectively.
The derivativeoperator (x-direction) in Legendre Domain is
thus given by the matrioy(i, k) = ci:

[F']=T_=[Fl

~~
) ) Kx1 Kx2K k1

4.2. Product Operator in Legendre Domain
The advection term in the Navier-Stokes equatidn3) as  where[F] is the legendre representation of siz€, 2nd[F,"]
well as the single scattering equation for renderihgbf en-  is the corresponding truncated representation of Kizé&s
tail multiplication of two fields to compute a third one. This with derivatives and integrals, truncation requires a matrix
motivates_ investigating the general problem of multiplyingmultiplication with a time complexity 0©(K?). Building the
two functionsh(x) = f(x).g(x), where both the functions and  truncation matrixT is a one time operation requirir@(K?)
the result are represented in the Legendre Basis: operations.

(© Association for Computing Machinery, Inc. 2007.
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5. Modeling in Legendre Domain 5.2. Diffusion

Using the Legendre representations for fields and the ogor the diffusion step, we solve the implicit form of diffusion
erators (derivative, multiplication, truncation), we solve theequation:

Navier-Stokes equationg,(3) in the Legendre domain. For 5

velocity simulation, we decompose Equat®imto the 4 se- ('NxN —vAtl > Uy (X, tHAD =us (1) (15)
quential steps of advection, diffusion, external forces and pro- ) . . .

jection [Sta99. Now we show how each of these steps can bewhereN is the total number of simulation grid voxels. The

simulated in the Legendre domain: implicit form of diffusion equation is more stable than the
explicit form. However, one drawback of the implicit form
5.1. Advection is that it requires solving a large system of linear equations.
In the spatial domain, the conservation form of the advectiofrortunately, in our case, this issue is addressed by solving the
equation is given by: diffusion equation in the reduced legendre space. Once again,
d we use the legendre representation of the fields and the opera-
i —0-(uug) (11)  tors (Figures and 6) to obtain theegendre space diffusion
equation:
= — (iuxu +iu u +£uzu ) (12)
ax T oy T oz 0 (Ikuk — VALD?) [Uy (t+ A1) = [Us (0] ] (16)

Subscript,, denotes eithex,y or z direction. This form im- ) 5 ).

plicitly assumes a divergence free velocity field, Deu =0. ~ where,D? = (Dy)* + (Dy)“ + (D,)* is the legendre space
Laplacian operator. Since we solvekax K linear system, the
time complexity of legendre space diffusion@K>). This is

a considerable speed-up over solving {hex N) system in
"patial domain.

Legendre space advection equatiois then derived by sub-
stituting the legendre representations of the fields (Figlure
along with the legendre space derivative and multiplicatio
operators (Figuré) in Equation12:

d _
stlUo (O] = —A-[Ug (1)) (13) 5.3, External Forces
External forces are handled by adding their legendre repre-
whereA— T . D. . MYsS sentation (Figur®) to that of the velocity field:
truncation derivative Multiplication | [Ug (t+At)] = Uy ()] + [Bey ] - At | a7

5.4. Projection

MY is expanded aBX-MUx+Dy-MUV+DZ~MUZ. We update This step ensures that the velocity field is divergence free,
the legendre representations of the velocity field by computwhich is required to satisfy mass-conservation. For the pro-

ing the eigen decomposition &f = Ag - A - AEl [TLPOg:  Jection step, we use the implicit definition of the projection
operatorP:

Uolt+20] = (A-eN-AZ) - U] (24) Pq = O-u G—Pu—u_Oq  (18)

A similar approach can be used to update the density field as, . . . . .
well. Since it uses the multiplication operator, the time COmf'ij]hsatsitt;pf(;??huérgials:rl\f/ilcre]g télze fo_llo&/v Iﬂgﬁpg:ZS(;JiCefy:;ecn; of
plexity of Legendre advection i©(K3) (Section4), where q gt O%q = D-u. 4, 9

K is the number of coefficients. In addition to the computa-T€€ component ofi (LU = 0), is then computed by sub-
tracting the gradient ol from u. The Poisson equation can

tional speed-up, using the completely analytic Legendre d e formulated as a linear system of equations by discretizin
main derivative operator reduces the numerical dissipation i?{2 2 X Y &q y 9
he [0< operator in the spatial domain. Analogously, we can

herent in the FDM based approximations of the derivative op-, . L X .
erator (Figure?). defineR_, the projection operator in the legendre space im-

plicitly as follows:

> (-)¢ is short-hand fof-)x + (-)y + (-)z. For exampley D, -
¢ ¢

D%.[Q = 3Do- [Uo (1)] (19)
[Ug ()] = RL- [Ug ()] = [Ug (t)] = Doy - [Q] (20)
(a) Original Field (b) Legendre Advection (c) Spatial Adtien Hence, in legendre space projection step, we need to solve the

Figure 7: Comparison between Legendre and Spatial domain adlinear system of equations in the unknown ved@r (Equa-
vection (high intensities signify higher values of the figibtice, that ~ tion 19), requiring O(K3) time. As with diffusion, this is a
the field after advection in the spatial domain (c) has loweergy ~ considerable speed-up over solving {hex N) linear system
than the field resulting from analytic legendre domain adieec(b). in spatial domainAs an additional advantage using the an-
Spatial advection results in dissipation of energy due sciditization alytic definitions of the derivative operators in all the simula-

of the gradient operators. The grid size used for spatiaatfon was  joy steps alleviates the numerical errors resulting from spatial
5002, while 144 coefficients were used for legendre advection. finite difference approximations

(© Association for Computing Machinery, Inc. 2007.
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Initial Density Field Initial Velocity Field

([ —

5.5. Density Dissipation

For density simulation, EquatioBis solved in the legendre
space. The advection, diffusion and source terms are handled
in a way similar to velocity simulation. The dissipation term

is then solved in the legendre space as follows:

| (1+Ata) - [Rit+ A1) = [R)] | (21)

Evolved Density Fields
Size of the Legendre representationFigure8 illustrates the g
time-evolution of 2D density and velocity fields for differ- @
ent sizes of Legendre representations. We start with the sameé
low frequency density and velocity fields and apply the same
forces throughout the 3 different Legendre domain simula-
tions. We can observe that more coefficients allow for higher
frequencies and vorticities as the density and velocity fields
evolve. In Figure®, 10and 11, we also provide theoretical
and empirical computational complexity of our framework as :
a function of the size of the Legendre representation (K). A
user can use these as a guide for choosing the Legendre rep:
resentation size that best addresses the demands (speed/ higﬁ
frequency detail) of a particular application.

)
o
o
—
]
L
c
@
Q
=
©
o
o

6. Rendering in Legendre Space

Rendering requires solving the light transport equatidr) (

in the Legendre domain using techniques similar to those used

for the Navier-Stokes equations. Evolved Velocity Fields
[ s < 2% \

™
Bl
aANE

]
2
c
o
2
=
©
o
(&S]
<
©

icients

6.1. Direct Transmission intensity field

As earlier, substituting Legendre representations of various
fields and Legendre operators (Figugeand 6) into Equa-
tion 4, we get:

<§wgD<>> 19 = —oT-MR.[19]

| = Lo 190 =0| (22)

whereL 1 = (Z wiDy+0T- MR) :
¢

6.2. Scattered intensity field
Similarly, we can project Equatio into the Legendre do-
main:

64 coefficients 36 coefficients 16 coeffi

~ 8hsecond 18 second 394 second
WD NS =—ogT-MR.[IS Q(0)-T-MR.d Figure 8: 2D Legendre domain Simulation results€Evolution of
(% < 0) ) "] + BQ(®) 1) density and velocity for different number of Legendre cgeffis.
More coefficients allow higher frequencies aratticitiesin the den-
sity and velocity fields.

=L 19=p00) T-MR[9|  (23)

(Figure 3). Then, theimage recorded is given by the scat-
tering intensity fielcEs at the domain boundary:

ES(Xv Y, th) = ijzk Iisjk Li (X)LJ (y)l-k(z) (24)

whereL s = (Z WDy +0T- MR> :
¢

In the legendre space, both the light scattering equations are
thus formulated as linear systems of equations in the unl-

KNOWNS [Id] (22) and [I9 (23). Along with the boundary f the image resolution i§, then time-complexity of image

conditions, which can be formulated as additional linear con-Computation iD(SK). Note that the image computation step
straints, these systems can be solve@(K3) time. is output-sensitive, and can easily be parallelized. Our Legen-

dre domain modeling and rendering framework is summa-
Imagine a camera observing the medium from the outsidazed in Figureo.

(© Association for Computing Machinery, Inc. 2007.
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For every time step: o Number of Legendre Coefficients
e Update Velocity and Density Fields & 64 125 216
Advection (13) and Diffusion (16) O(K?3) T [20° [100X 25X 8X
Forces/Source17) O(K?) ‘_(‘DS 30° [1300X | 325X 105X
Projection(19, 20) O(K3) g 40°  |7500X [1875X  [600X
e Update Intensity Fields ) 2
Direct Transmission®2), Scattered 23) O(K3) Figure 11: Typical computational speed-ups for 3D simulation and
' rendering in Legendre domain as compared to the spatial doma
e Compute Image 24) O(SK) o oo .
homogenous media, is critical for achieving photo-realism
Figure 9: Legendre domain Rendering algorithn¥ is the size of ~ While rendering 3D scenes. Finally, in Figur, we add non-
Legendre space representations and S is the image resmlutio homogenous and dynamic fog to a clear day fly-through of
Swiss Alps.

N f L ffici .
umber of Legendre Coefficients Computational Speed-ups:Due to the compact representa-

© 16 36 64 144 tions of fields in the Legendre domain, we can achieve com-
& [200°  [500X  |250X  [75X 10X putational speed-ups of one to three orders of magnitude, de-
= (3007 1250X 625X 187X 25X pending on the number of Legendre coefficients (Figd@s

(96 2007 2500X  |1250X 375X 50X afndh 11). Tbi|1e clor_r;parison isI mz_i(:]e V\_/ithhour impl(leijnentqtion
< [5007  [5000X [2500X 750X 100X of the Stable Flui s_S’etaQQagorlt m in the spatial domain.

& However, our technique places a restriction on the size of the

. . ) . i simulation time-step; adding higher frequencies will require

ggé‘gﬁntoih{yepé‘éi' d‘igrggﬁ:f;g';‘ﬁ;g;ggij%gzpsé:?gflgg?n”aa”da progressively smaller time-step owing to stability consid-
erations given by the CFL conditiorrM97]. On the other

7. Results hand, the Stable Fluids technique can support arbitrarily large

Our results show that Legendre polynomials can express a viiTe-Steps. All our implementation was done in MATLAB on
riety of interesting density and force distributions compactly2 326H2P-4 PC with 2 GB of RAM.

thereby letting the user manipulate the densities, velocities
and forces globally to produce the desired effects.

Particles immersed in dynamic fluid media:Figure12 and
Figurel show simulations of 500 pieces of confetti and 3000
snow-flakes respectively being carried by a wind field sim-
ulated using 216 Legendre coefficients each. We can notice
vorticities being created in the confetti example due to the
turbulent behavior of the wind field. On the other hand, the
snow flakes are carried by a more genbegeze-likewind.

We encourage the reader to view the animation results in the
supplementary video.

Simulation of smoke and advection of scattering albedos:
Figure 14 shows a vertically upwards axial impulse applied
to avase shapedmoke density field. Since the impulse is
applied for a short duration, the density field dissolves to-
wards the end of the simulation. For the first time, we alsd-igure 12: Legendre domain Simulation resul500pieces of con-
show advection of the optical properties of the medium (scattetti being carried by a turbulent wind field simulated usiag6
tering albedos), in addition to the physical properties (densi-egendre coefficients.

ties and velocities), resulting in completely new colors and . . s
appearances as th)e mediumgevolvesﬂndeyexternal forces. 8- Discussion of Limitations and Future Work

Single Scattering based rendering of participating me- Our goal in this paper is fast rendering of non-homogenous

dia; We demonstrate the visual effects of both relighting®"d dynamic participating media. We achieve this by repre-
the medium under the single scattering model, and varyingenting the spatio-temporally varying intensity (rendering), as
! ell as density and velocity (simulation) fields in a reduced

the viewpoint and scattering albedos, as the medium evolv ; ; / - .
under user defined forces (supplementary video). We alsgnaiviic Legendre space. This results in a single scattering
show interesting effects of shadowgrams that are cast by tigaased rendering technique for smooth non-homogenous and
medium on a background plane (Figuteand 14). ynamic m_edla, a significant improvement over 3|mllar tech-
niques which make the severely limiting assumption of ho-
3D Visual effects resulting from volumetric scattering in  mogenous medium densitieSRNNO0Y. We believe this is
non-homogenous and dynamic participating medialn the  the first work that provides a unified framework for both mod-
examples of Figuré5and Figurel, we add non-homogenous eling and rendering in an analytic reduced space, and hope
mist to scenes with large depth variation. Notice how disthis can help bridge the gap between model reduction in flu-
tant objects appear brighter due to the airligkn$24 effect.  ids and pre-computed radiance transfer in rendering. How-
Reproducing such effects accurately, particularly for nonever, the speed and analytic nature of the technique come at

(© Association for Computing Machinery, Inc. 2007.
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the cost of its limited ability to handle high frequency fluid

[HLO1] HARRIS M., LASTRA A.: Real-time cloud rendering. In

phenomena. Indeed, using only a global Legendre Polynomi- Eurographicg(2001), pp. 76-842
als basis offers limited local control and allows only for thejeno1] &nsen H. W.: Realistic image synthesis using photon

box-boundary conditions making it difficult to account for
complex effects like local vorticities, turbulence and object:
inside the medium. Also, beingglobal sub-space method

it offers low flexibility on the domain boundaries.

These limitations can be addressed by augmenting th&H84]

mapping A. K. Peters, Ltd., Natick, MA, USA, 20011

S[JMLHOl] JENSENH. W., MARSCHNERS. R., LEVOY M., HAN-

RAHAN P.: A practical model for subsurface light transport. In
Proceedings of SIGGRAP{2001), pp. 511-51&

KAJIYya J. T., HERZENB. P. V.: Ray tracing volume den-

global Legendre polynomials basis, which capture the major- sities. SIGGRAPH Comput. Graph. 18 (1984), 165-1741

ity of the energy of the fluid flow, with a local-support ba-

[Kos24] KoscHMIEDERH.: Theorie der horizontalen sichtweite.

sis such as Haar-Wavelets or spatial voxels, thus accounting beitr. InPhys. Freien Atm(1924), pp. 171-1817

for the spatially sparse ’residual energy’. This is similar in LBCY4]
spirit to adding local high frequency turbulence, or vortici-

LANGUENOUE., BOUATOUCHK., CHELLE M.: Global
illumination in presence of participation media with gengmalp-

ties [FSJO] to counter the dampening caused by the Stable erties. InFifth Eurographics Workshop on Renderi(i94). 1

Fluids semi-Lagrangian technique. Also, high frequency de
tails in a particular dimension can be captured by keeping th
full spatial representation and using Legendre expansion in

the remainnig directions. Using suleiibrid basegan provide

@/IaxSG] Max N. L.: Atmospheric illumination and shadows. In
Proceedings of SIGGRAP{986), pp. 117-1242

[Max94] Max N. L.: Efficient light propagation for multiple

the desired local control in addition to computational speed- anisotropic volume scattering. fth Eurographics Workshop

ups, and in our opinion, forms a very promising direction for
future research. Since we also make assumptions of singld¥FJ02]

on Renderind1994), pp. 87-1041
NGUYEN D. Q., FEDKIW R., ENSENH. W.: Physically

scattering, orthographic viewing and distant lighting, extend- Pased modeling and animation of fire. Rroceedings of SIG-

ing our system to perspective viewer and more general, near-

field lighting is another research direction worth exploring.
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Light Source and View Point Variation Variation in Scattering Properties
Figure 13: 3D Legendre domain RenderingHere we consider amoke-cubelluminated by distant light source(s). The image is formed
at an orthographic viewer observing the scene. Since thdeadfoour pipe-line is in the reduced Legendre domain, the naa control the
view-point, lighting and scattering albedo interactivelotice the varying shadow-gram patterns on the wall as theke evolves. The smoke
and the shadow become darker as we decrease the albedoe@aoroke and shadows can be created by varying the scati@opgrties
differently across the color channels. This example rexi64 coefficients for density and velocity, a6 coefficients for intensity fields.

Figure 14: 3D Legendre domain simulation and advection ofoptical profies: 3D Simulation results for a vertically upwards axial impails
applied to avase shapegmoke density field.. Also, we advect the optical propeati¢glse media (scattering albedos) along with the densities
and velocities to create the effect of mixing of differentlimeThis example required16 Legendre coefficients for density and velocity fields

(simulation) andb12 coefficients for intensity fields (rendering).

oy

Clear Weather Homogenous mist Non-homogenous mist Attenuation

Figure 15: Rendering of Non-homogenous participating medi@ur technique can be used to render non-homogenous medialasnder
the single scattering model efficiently. Here we add mist ¢tear weather scene (Images courtesy Google Earth). Nonelgenous density
distributions, for example the high mist density over tHeslarovides for more realism as compared to homogenous Aigsi, notice how
distant objects appear brighter due to the air-light effezhereas distant objects appear darker in the attenuatinly-image.

S Vi

. % )
he ) /- ¥ f 4 WS N \
Figure 16: Snapshots from a fly-through of Swiss Alps with Non-homageand dynamic fog added (Images courtesy Google Earthpdma
have been tone-mapped to high-lite the non-homogeneibeahedium. Complete video is included with the supplemeretdrial.
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