

Theoretical Bounds in Distortion Estimation Algorithm

Yuandong Tian Robotics Institute Carnegie Mellon University yuandong@andrew.cmu.edu	Srinivasa Narasimhan Robotics Institute Carnegie Mellon University srinivas@cs.cmu.edu
--	---

March 10, 2010

1 Proof of the pullback bound (Eqn. 4) in [1]

Denote the pull-back operation H that maps a distorted image I_p using the parameters q to a new (possibly less distorted) image $H(I_p, q)$. In the following we shall prove

$$\|H(I_p, q) - I_{p-q}\| \leq R\|p - q\| \quad (1)$$

for the following setting of H :

	Forward Case	Backward Case
Generating function	$G = G_F$	$G = G_B$
Pull-back operation	$H = G_B$	$H = G_F$

Table 1: The generating function and pull-back operation in the forward and backward case.

Fig. 1 shows the intuition of Eqn. 1, in particular, the reason why $H(I_p, p) = T$ in both forward and backward cases. Although the intuition shown in Fig. 1 is valid for any warping function $W(x, p)$, we only consider linear warping, i.e., $W(x, p) = x + B(x)p$ in the proof. Here $B(x) = [b_1(x), b_2(x), \dots, b_d(x)]$ are a set of orthonormal warping bases.

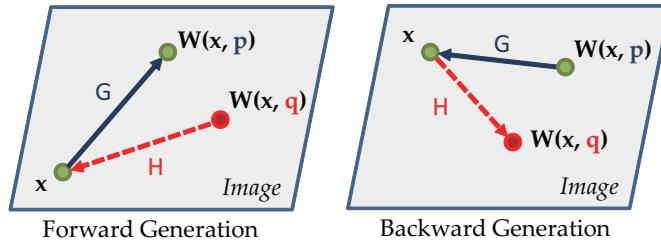


Figure 1: The mechanism of the pull-back operation H . In forward generation, a pixel x in the template is pushed to the position $W(x, p)$ in the distorted image by the generating function G . The corresponding pull-back operation H do the opposite: it takes the pixel value at $W(x, q)$ in the distorted image, and stores it at position x in the resulting image $H(I_p, q)$. In the case of $p = q$, the pixel pushed by G is the same pixel pulled by H , yielding $H(I_p, p) = T$. Similarly we define H in backward generation.

In the following, we give the bound for backward warping case $G = G_B$, in which the pull-back operation is $H = G_F$. Similarly we can prove the forward case.

Theorem 1.1 (The Upper bound of the pull-back operation H) *Suppose the (backward) distorted image I_{p-q} maps the pixel at L_G on the template image T to position $y \in \mathbb{R}^2$, and the pulled-back image $H(I_p, q) = G_F(I_p, q)$ maps the pixel at L_H on the template image T to the same position y . Then we have the following bound if there exists an x so that $y = x + B(x)q$ (Or $W(x, q)$ is onto):*

$$\|L_G - L_H\|_1 \leq R'\|p - q\|_1 \quad (2)$$

where $R' = 2B_0 \min(B_1\|\mathbf{q}\|_1, 2)$, $B_0 = \|B\|_\infty$ and $B_1 = \max_j \max_{\mathbf{x}} \max(\|\nabla b_j^x(\mathbf{x})\|_1, \|\nabla b_j^y(\mathbf{x})\|_1)$ is the gradient bound of basis $B(\mathbf{x})$ (Note: $\mathbf{b}_j(\mathbf{x}) = [b_j^x(\mathbf{x}); b_j^y(\mathbf{x})]$ is a column vector at each \mathbf{x}). Therefore, we have

$$\|H(I_{\mathbf{p}}, \mathbf{q}) - I_{\mathbf{p}-\mathbf{q}}\|_\infty \leq R\|\mathbf{p} - \mathbf{q}\|_1 \quad (3)$$

where $R = R'Q_1$ and $Q_1 = \max_{\mathbf{x}} \|\nabla T(\mathbf{x})\|_1$ is the gradient bound of the template T .

Proof According to Fig. 1, $H(I_{\mathbf{p}}, \mathbf{q})$ essentially moves the pixel $L_H \equiv \mathbf{x} + B(\mathbf{x})\mathbf{p}$ on the template T to the position $\mathbf{x} + B(\mathbf{x})\mathbf{q}$:

$$H : L_H \equiv \mathbf{x} + B(\mathbf{x})\mathbf{p} \longrightarrow \mathbf{x} + B(\mathbf{x})\mathbf{q} \quad (4)$$

This is valid for any $\mathbf{x} \in \mathbb{R}^2$. On the other hand, for the pixel \mathbf{y} on distorted image $I_{\mathbf{p}-\mathbf{q}}$, it comes from the pixel $L_G \equiv \mathbf{y} + B(\mathbf{y})(\mathbf{p} - \mathbf{q})$ on the template T :

$$G : L_G \equiv \mathbf{y} + B(\mathbf{y})(\mathbf{p} - \mathbf{q}) \longrightarrow \mathbf{y} \quad (5)$$

Since $W(\mathbf{x}, \mathbf{q})$ is onto, there exists \mathbf{x} so that $\mathbf{y} = \mathbf{x} + B(\mathbf{x})\mathbf{q}$, then Eqn. 5 becomes

$$G : L_G \equiv \mathbf{x} + B(\mathbf{x})\mathbf{q} + B(\mathbf{x} + B(\mathbf{x})\mathbf{q})(\mathbf{p} - \mathbf{q}) \longrightarrow \mathbf{x} + B(\mathbf{x})\mathbf{q} \quad (6)$$

Note the destination(right) part of Eqn. 4 and Eqn. 6 are the same (\mathbf{y}), while the difference between the source(left) part of Eqn. 4 and Eqn. 6 is:

$$L_G - L_H = [B(\mathbf{x} + B(\mathbf{x})\mathbf{q}) - B(\mathbf{x})](\mathbf{p} - \mathbf{q}) \quad (7)$$

so we directly have the bound $\|L_G - L_H\|_1 \leq 4B_0\|\mathbf{p} - \mathbf{q}\|_1$ where $B_0 = \|B\|_\infty = \max_{\mathbf{x}} \max_{ij} B_{ij}(\mathbf{x})$. In addition, using intermediate value theorem, from Eqn. 7 there exists $\{\xi_1^x, \xi_2^x, \dots, \xi_d^x\}$ and $\{\xi_1^y, \xi_2^y, \dots, \xi_d^y\}$ on the 2D line segment $[\mathbf{x}, \mathbf{x} + B(\mathbf{x})\mathbf{q}]$ so that:

$$B^x(\mathbf{x} + B(\mathbf{x})\mathbf{q}) - B^x(\mathbf{x}) = \mathbf{q}^T B(\mathbf{x})^T [\nabla b_1^x(\xi_1^x), \nabla b_2^x(\xi_2^x), \dots, \nabla b_d^x(\xi_d^x)] \quad (8)$$

$$B^y(\mathbf{x} + B(\mathbf{x})\mathbf{q}) - B^y(\mathbf{x}) = \mathbf{q}^T B(\mathbf{x})^T [\nabla b_1^y(\xi_1^y), \nabla b_2^y(\xi_2^y), \dots, \nabla b_d^y(\xi_d^y)] \quad (9)$$

where $B^x(\mathbf{x}) = [b_1^x(\mathbf{x}), b_2^x(\mathbf{x}), \dots, b_d^x(\mathbf{x})]$ and $B^y(\mathbf{x}) = [b_1^y(\mathbf{x}), b_2^y(\mathbf{x}), \dots, b_d^y(\mathbf{x})]$ are the x and y component of $B(\mathbf{x})$. Then:

$$|L_G^x - L_H^x| \leq B_1 B_0 \|\mathbf{q}\|_1 \|\mathbf{p} - \mathbf{q}\|_1 \quad (10)$$

$$|L_G^y - L_H^y| \leq B_1 B_0 \|\mathbf{q}\|_1 \|\mathbf{p} - \mathbf{q}\|_1 \quad (11)$$

where $B_1 = \max_j \max_{\mathbf{x}} \max(\|\nabla b_j^x(\mathbf{x})\|_1, \|\nabla b_j^y(\mathbf{x})\|_1)$. Hence the bound. \blacksquare

References

- [1] Y. Tian and S. Narasimhan. A Globally Optimal Data-Driven Approach for Image Distortion Estimation. *CVPR*, 2010. 1