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Water fluctuation Turbulence

Distortions in the real world

Cloth deformation Optical scanning of text



Problem statement

Dense Warping Field  
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Distorted image Ip
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W(x; p) = x + B(x)p
Bases Parameters

Distortion model

Closed-form (e.g. Affine)

From Physical Simulation

From Measurement

Choice of Bases:



Related work

Local Minima

• Discriminative Approach

• Generative Approach

Exponential #samples

AAM [Cootes et al, 2001]Lucas-Kanade [1981]

Exemplar-based [Fathi et al, 2007] RVM [Agarwal et al, 2004]

Our algorithm overcomes both problems
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Spaceship returning to the Earth
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Similar operations for images
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Nearest Neighbor
(in image space)

Test image Ip

p unknown

The three components of our algorithm
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NN in image vs. parameter space
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Failure case 
(one-to-many mapping)

Ip = Iq for p ≠ q

Parameter curve

Ip

Iq

p

q

NN in image vs. parameter space

L 1‖Ip – Iq‖ ≤ ‖p – q‖ ≤ L 2‖Ip – Iq‖



Nearest Neighbor
(in image space)
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The pull-back operation H

If distortion is invertible, e.g. affine

H(Ip,  q) = Inverse (Ip,  q) = Ip-q

H(Ip,  q) :
Less distorted image

** Iq, q known

Ip

[S. Baker and I. Matthews, CVPR 2001]



Non-invertible distortions

‖Ip-q - H(Ip , q)‖ ≤ R ‖p-q‖

For the case of

We prove the following upper bound:

A constant related to ‖B(x)‖ and ‖T‖

W(x; p) = x + B(x)p

Failure case   Large resampling artifacts:

‖Ip-q - H(Ip , q)‖ ≤ R ‖p-q‖ + ……



The distribution of training samples
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Nearest Neighbor

Dense
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Nearest Neighbor

O(1/ε)d

O(Cd log(1/ε))

Number of training samples

Parameter  space

Accuracy = 1/ε



Simulations
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Drift-free video tracking

Video frame It
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Drift-free video tracking
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Drift-free video tracking
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Drift-free video tracking
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Drift-free video tracking

2 iterations

No drifting
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Water distortions

video
camera

scene

stick

Experimental setup

water



Water Bases Overlapping partition

[Tian and Narasimhan, ICCV 09]

Bases for water distortion



Correcting water distortions

Distorted image Template

Feature Matching B-spline [Rueckert et al.]Our approach



Video rectification/Surface reconstruction

Original video

Water surface reconstruction

B-spline [Rueckert et al.]

Our approach



Video rectification

Original video Rectified video



Video tracking



Video Tracking

Template tracking Our approach



Cloth deformation

Affine Bases / Trackers

Locally smooth random Bases



Cloth tracking 

Tracking resultOriginal video

[Data from Taylor  et.al,  CVPR 2010]



Paper bending

Tracking resultOriginal video

[Data from M. Salzmann et al. 2007]



*

Summary

• An iterative algorithm converges to the global 
optimum with much fewer training samples. 

• Drift-free tracking, image & surface reconstruction 

* * *
* **

t+1*
t*



Thank you!

http://www.cs.cmu.edu/~ILIM
http://www.cs.cmu.edu/~yuandong

http://www.cs.cmu.edu/~ILIM
http://www.cs.cmu.edu/~yuandong

