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Distortions in the real world

Cloth deformation

Turbulence

ortin! Distorti

dEort

4 ] D)l F';I

Optical scanning of text




Problem statement
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Distortion model

W(x; p) =x + B(x)p
Bases ~ \Pammeters

Choice of Bases:

Closed-form (e.g. Atfine)

From Physical Simulation

From Measurement




Related work
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Our algorithm overcomes both problems



Spaceship returning to the Earth
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Spaceship returning to the Earth
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Spaceship returning to the Earth
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Spaceship returning to the Earth
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Spaceship returning to the Earth
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Spaceship returning to the Earth
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Similar operations for images

Parameter space
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Similar operations for images

Parameter space
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Similar operations for images
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Similar operations for images
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The three components of our algorithm
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NN in image vs. parameter space
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NN in image vs. parameter space

Failure case
(one-to-many mapping)

Ip=lq for p#q

Lol —II<lp—gl<L,I,—1Il



The three components of our algorithm
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The pull-back operation H

1,
X

H(Ip, q) : O Iq, q known

Less distorted image

If distortion is invertible, e.g. atfine

H(I,, q)=1Inverse (I, q)=1,,

[S. Baker and I. Matthews, CVPR 2001]



Non-invertible distortions

For the case of

Wi(x; p) =x + B(x)p

We prove the following upper bound:

I1,.,- H(L,, g)I S@Hp—q\\

A constant related to [V B(x)ll and IV Tl

Failure case = Large resampling artifacts:

I1,.,- H(I,, 91 <R lip-gll +(...)



The distribution of training samples
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Training sample distribution

Parameter space
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Training sample distribution
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Training sample distribution
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Number of training samples
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Simulations
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Drift-free video tracking
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Drift-free video tracking

Video frame I "
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Drift-free video tracking
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Drift-free video tracking
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Drift-free video tracking

| * 2 iterations
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Water distortions
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Bases for water distortion
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Correcting water distortions

Distorted image Template
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Video rectification/Surface reconstruction

Original video
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Video rectification

Original video Rectified video
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Video tracking




Video Tracking

Template tracking Our approach

M- nm MW """"\bna‘x%w
Bl Via 4100 MRS - l--‘“' “‘-"‘wﬂww;;awmwﬂ

‘*W-‘Om*@‘tt:

i “‘Q"‘—v\‘} ‘v ,xf
:’ Bl N

i) Ot




Cloth deformation
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Cloth tracking
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Summary

* An iterative algorithm converges to the global
optimum with much fewer training samples.
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Thank you!

http://www.cs.cmu.edu/~ILIM
http://www.cs.cmu.edu/~yuandong
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