

Abstract

In this paper we present the results of a comparative
study of linear and kernel-based methods for face
recognition. The methods used for dimensionality
reduction are Principal Component Analysis (PCA),
Kernel Principal Component Analysis (KPCA), Linear
Discriminant Analysis (LDA) and Kernel Discriminant
Analysis (KDA). The methods used for classification are
Nearest Neighbor (NN) and Support Vector Machine
(SVM). In addition, these classification methods are
applied on raw images to gauge the performance of these
dimensionality reduction techniques. All experiments
have been performed on images from UMIST Face
Database.

1. Introduction

 Automatic face recognition has been a very active

research area in the last decade. The common approaches

for face recognition are of two types, local feature-based

[1][16] and global or “holistic” [7][8][10][17]. In the

local feature-based approach, typically a set of features is

extracted from the image (e.g. locations of facial features

such as nose, eyes etc.) and used to classify the face. The

main advantage of this approach is its relative robustness

to variations in illumination, contrast, and small amounts

of out-of-plane rotation. Its main disadvantage is that

there is generally no reliable method to extract an optimal
set of features, hence useful information may be lost in

the feature extraction step. In contrast, global approaches

use the entire image as the pattern to be classified, so no

information is lost. However, they tend to be more

sensitive to image variations. In this paper we will

concentrate on the global approach.

 When using global methods, we usually represent an

image of size nxm pixels as a vector in nm-dimensional

space. In practice, however, the nm-dimensional space is

often too large to allow robust and fast recognition. A

common way to resolve this problem is to use
dimensionality reduction techniques. Two of the most

effective techniques for this purpose are PCA and LDA.

 Principal component analysis (PCA) is a powerful

technique for extracting global structure from high-

dimensional data set. It has been widely adopted to reduce

dimensionality and extract abstract features of faces for face

recognition [7][8]. But the features extracted by PCA are

“global” features for all face classes and thus may not be

optimal for discriminating one face class from the others.

Kernel PCA (KPCA), recently proposed as a nonlinear

extension of PCA for face recognition [2][7], computes the
principal components in a high-dimensional feature space,

which is non-linearly related to the input space and thus can

extract non-linear principal components. However, similar

to the linear PCA, KPCA provides the directions

corresponding to largest variance in the data and these may

not necessarily be the best directions for discrimination.

 Linear Discriminant Analysis (LDA), on other hand,

finds the directions along which the classes can be

optimally differentiated. LDA has been widely used for face

recognition [10][17]. However, being a linear technique, it

may not perform well when severe non-linearity is
involved. To remedy this linear limitation of LDA, Kernel

Discriminant Analysis (KDA), a nonlinear approach based

on the kernel technique has been developed for extracting

nonlinear discriminant features. In this paper, we present

the results of a comparative study of the dimensionality

reduction methods discussed above. These methods are

described in detail in Appendix A.

2. Methodology

 We choose as our benchmark nearest neighbor

classification (NN) on raw input images after preprocessing

(hereafter referred to as raw data). This is because NN is the
simplest possible classification scheme, and it provides a

benchmark for comparison with more complex

classification schemes. For kernel based methods, we use a

polynomial kernel (,) (1 .) pk = +x y x y where p denotes the

degree of the polynomial, and Gaussian RBF kernel
2 2(,) exp(|| || /)k σ= −x y x y . SVM experiments were

performed using the publicly available SVMlight software

[6][14].

Himaanshu Gupta, Amit K Agrawal, Tarun Pruthi, Chandra Shekhar, Rama Chellappa
Department of Electrical & Computer Engineering

University of Maryland, College Park, MD 20742
Emails: {hgupta, aagrawal, shekhar, rama}@cfar.umd.edu, tpruthi@glue.umd.edu

An Experimental Evaluation of Linear and Kernel-Based Methods

for Face Recognition

���������	
����
������
�����������
��������������
���
���������
�����
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

2.1. Database

 All the experiments were conducted using the UMIST

database [9][18]. This database consists of cropped gray-

scale images of 20 subjects covering a range of

sex/race/appearance. The database also accounts for pose

variation with both profile and frontal views. There are a

maximum of 48 images per subject and a minimum of 19.

For illustration, the images of a single subject are shown

in Figure 1. All images are taken by the same camera

under tightly controlled conditions of illumination. Each

image in the database is of size 112x92.

Fig1. Images of a subject from the UMIST database

2.2. Preprocessing

 The original images were downsampled by a factor of

4 in each dimension to 28x23. The downsampled images

were histogram equalized, and normalized to zero mean

and unit variance.

2.3. Generating Training and Test Data

 The database has variable number of images for

different subjects, but the same number of training and

test images for each subject were chosen so that the

results are not affected by number of images of any
particular subject. Ten runs of each experiment were

performed and the results were averaged. In each

experiment, nine randomly chosen images for each

subject were used in the training set, and nine

randomly chosen images for each subject were used in

the test set. The test and training set did not have any

images in common.

2.4 Dimensionality Reduction

 Dimensionality reduction is achieved by linear and

kernel-based methods. Linear methods used are PCA and

LDA, and kernel-based methods used are KPCA and

KDA. The mathematical details of these methods are

presented in Appendix A.

2.5 Classification

 After global features are extracted using PCA/KPCA or

LDA/KDA, classification is performed using two

approaches: Nearest Neighbor using the standard L2–norm

for Euclidean distance, and Support Vector Machine

[5][11], which is widely used for classification because of

certain desirable properties such as provable optimality and

low computational cost. Since the classic SVM was

formulated for the two-class problem, its basic scheme is
extended to multi-class face recognition by adopting a one-
versus-rest decomposition. This works by constructing c
SVMs for a c-class problem. Each SVM is trained to

separate its class from all the other classes and then an

arbitrator is used between the SVM outputs to produce the

final result.

 The simplest form of arbitrator is max-selector which

selects the class whose SVM output for that test vector is

maximum. However, the outputs of different SVMs may

not be on the same scale. We therefore use the following

arbitrator:

• Clip SVM outputs to [-1,1] and then apply the
max-selector.

• If more than one SVM outputs are 1, regard it as
ambiguous decision

• If maximum = -1, regard it as undecided
 We choose to count all the ambiguous and no-decisions

as errors so that it reflects the inability of one-versus-rest

technique to decide the true class.

3. Experimental Results

3.1. Classification by Nearest Neighbor

3.1.1. PCA/KPCA. In Figures 2 and 3, classification error

rates on test data are plotted against the number of principal

components (PCs), or equivalently the size of the projected

subspace. Since the size of training set is N = 180 (20

subjects x 9 images per subject), the maximum number of

PCs is 180.

 Figure 2 shows the error plots for PCA and KPCA using

polynomial kernel with degree 2,3 and 4. The dashed

horizontal line represents the error rate using NN on raw

data, which is obviously independent of the number of PCs.

Figure 3 shows the plot of classification error rates versus

number of PCs for a Gaussian RBF kernel with different

values of the kernel parameter (σ). Also plotted is the

result using PCA for comparison. An interesting

observation is that error performance is worse for

polynomial KPCA compared to PCA, and with increasing

kernel polynomial degree, error performance degrades even

���������	
����
������
�����������
��������������
���
���������
�����
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

further. This shows that higher order data correlations

may not always be useful. This result is in contrast with

the results presented in [13] (where better results are

obtained with polynomial kernels), which can attributed

to differences in the database and the precise form of the

polynomial kernel used. For Gaussian RBF kernel, error
performance improves with increasing kernel variance,

which can be explained as follows: At very low kernel

variance, the kernel dot product matrix reduces to the

trivial identity matrix for the training set, and for the test

set, the dot products between training and test vectors

will be very small, or vanish entirely due to numerical

underflow. Hence all projections for a particular test

vector will be close to zero and classification by NN

algorithm will be completely arbitrary. In other words,

information in the training set is not utilized. As variance

is increased, the above effect is reduced. The best

performance using a Gaussian kernel is obtained with

σ =0.26*d (where d is the dimension of training vector).

As σ is increased beyond this, performance saturates.

Another interesting observation is that even the best

KPCA performance (obtained by using a Gaussian RBF

kernel) is not superior to that obtained using PCA.

 In both cases, NN on raw data gives better

performance compared to PCA and KPCA. This is a

strong argument against using component analysis for

face recognition.

3.1.2. LDA/KDA. We would expect LDA, which is a
discrimination scheme, to give better classification results

compared to PCA, as the latter is primarily a

representation scheme. The results obtained support this

observation.

Fig 2. Plot of classification error rates for Linear and Polynomial
Kernel PCA with varying nu numbmberer of of pr principapal components. d d
denotes the degree of polynomial kernel.

 Figure 4 shows the error rates plotted against the

dimension of projected subspace for LDA and KDA with
polynomial kernel degree=2,3 and 4. LDA performs

better than NN on raw data. But as in PCA, polynomial

kernels perform poorly compared to LDA and the

performance degrades with increasing kernel degree. Figure

5 shows the results for RBF kernels with different

variances. Also plotted is the result using LDA for

comparison. The same reasoning as before can be applied to

argue that the performance will be poor at low RBF kernel
variance. As variance is increased, performance improves

and then saturates. In this case also, we observe that even

the best KDA (with RBF kernel) performance is not

superior to that obtained using LDA, which raises questions

about the appropriateness of using kernels for this

problem. However, unlike in the case of PCA/KPCA, we do

get improved performance over NN on raw data by using

LDA and KDA.

Figure3. Plot of classification error rates for Linear and Gaussian
RBF Kernel PCA with varying number of principal comp components. d is
the input vector dimension.

Figure 4.e 4. Plot of classisificacation error rates for LD LDA and P and Polynomnomial
KDA with varying dimemensionality of projected space. d denotes the
degree of polynomial kernel.

3.2. Classification using SVMs

 Figure 6 shows the classification error rates obtained by

using Linear SVM as the classifier after KPCA and KDA

using various kernels. Since SVMs have been shown to

���������	
����
������
�����������
��������������
���
���������
�����
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

perform well even when applied directly to raw input

without any dimensionality reduction [12], we have

showed that result as the “Raw” bar. The figure also

shows the classification error rate on raw data using

NN. We observe that Gaussian RBF KDA gives the best

result in this case over PCA, KPCA and is only
marginally better than the results using LDA. Figure 7

shows the classification error rates using Linear PCA

and LDA followed by kernel SVMs (using polynomial

kernels of degree 2 and 3, and Gaussian RBF kernel).

We observe that LDA followed by Gaussian RBF SVM

gives the best error performance.

Figure 5. Plot of classification error rates for LDA and Gaussian
RBF KDA with varying dimensionality of projected space. The
values of the kernel paramemeterσ are indicated as a mumultiple of

the pattern dimemension d.

Figure 6. Bar graph showing classification error rates for
classification using g Linear SVMsMs. In the above figure, d=d=2,3 3
implies degree 2,3 polynomial kernels. σ =0.08*D for Gaussian

RBF KPCF KPCA.A. , and σ =0.06*D D for Ga Gaussian RB RBF KDA, whwhere D is

the dimension of the input vector.

4. Conclusions and Future Work

 After comparison of various linear and non-linear

techniques, we arrive at the following conclusions:

• Although kernels enable us to work in a high

dimension feature space, they do not always ensure

better performance. Introduction of kernels might even

degrade the performance if the problem is close to

linearly separable. Moreover, the choice of optimal

kernel is not always obvious.

• LDA/KDA outperform PCA/KPCA because of the

inherent discrimination ability of the former.

• The SVM classifier outperforms the Nearest Neighbor

algorithm in all the methods used for feature extraction.

In SVM classifier, we find that kernel SVM with linear

preprocessing (PCA/LDA) performs better than Linear

SVM with non-linear preprocessing (KPCA/KDA),

though in spirit both are similar. The lowest error

performance of 1.77% was achieved on UMIST

database by using LDA with RBF SVM classifier.

Figure 7. Bar graph showing classification er error rates using Kernel
SVSVMs .In the above figure, SRSRBFBF=RBFBF SVSVM, Sd Sd2=PoPolynomial SVM
with degree 2, Sd3= Polynomial SVM wM with degregree 3.

 In future, we plan to perform this study on other publicly

available face databases like Yale and CMU-PIE databases,

and evaluate the performance of these methods under more

difficult conditions. Also, we would like to apply these

methods to the problems of Face Detection and Recognition

using Gait.

Appendix A

Principal Component Analysis (PCA)

 Let 1 2, ,...., }χ = { Nx x x be the training set, where

each i
x represents a training vector, N is the size of training

set and d is the dimensionality of the input vector. Using
linear PCA, the maximum dimension of the projected

subspace is min(N,d). Let
1

[| | |]
N

X =
2

x x x denote the

matrix containing the training vectors. PCA involves finds

���������	
����
������
�����������
��������������
���
���������
�����
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

the eigenvectors of the covariance matrix, solving the

following equation

 T
XX λ=e e (1)

where e is an eigenvector and λ an eigenvalue. Using

the method of Kirby and Sirovich [15], we pre-multiply

both sides by TX , and then equation (1) can be written as

 K λ=α α (2)

where TK X X= and TX= eα . K is referred to as the

inner product matrix of the training samples since

()ij i jK = ⋅x x .

This is a standard eigenvalue problem, which can be

solved for α and λ . From (2), we get X=e α (after

normalization
λ

= αα). The projections on the first q

eigenvectors (corresponding to largest q eigenvalues)

constitute the feature vector. For a test vector x, the

principal component y corresponding to eigenvector e is

given by

 1(()T T T N

i i i
y X X αΤ

== =) = = ⋅e x x x x xα αα α (3)

where ⋅a b denotes the inner (dot) product of vectors a

and b.

Kernel PCA in Feature Space

 Kernel based methods can map the input space to a

high (possibly infinite) dimensional feature space in a

non-linear way. The projection into higher space is done

using inner products without explicit computation of the

mapping, which makes it computationally feasible.

Essentially, the computations are done in a subspace of

dimension N of a higher dimensional space. In contrast to

PCA, the dimension of the projected subspace can reach
N using KPCA. The basic concept of kernel PCA is to

first map the input data χ into a feature space F via a

non-linear mapping ()φ ⋅ and then perform a linear PCA

in F. The motivation is that a training set, which may not

be linearly separable in input space, may be linearly
separable in the mapped space.

 Again, let
1

[| | ... |]
N

X =
2

x x x denote the matrix

containing the training vectors, and let

1
[) | |)]

N
Φ = ((x xφ φ be its image in the feature

space. Assuming that the mapped data are centered, i.e.,

1 () 0N

i i= =xφ (the centering method in F is explained at

the end of this sub-section) let K Τ= Φ Φ , with

).)
ij i j

K = ((x xφ φ . Then the principal directions satisfy

equation (2) and are given by = Φe α (after

normalization of α). For a test vector x, the principal

component y corresponding to eigenvector e is given by:

 1))).)T N

i i i
y αΤ Τ

== (= Φ (= ((e x x x xαφ φ φ φ (4)

 The dot-product matrix K can be computed by

choosing a kernel k(x,y) such that

(,)).)
i j i j ij

k K= ((=x x x xφ φ , and thus avoiding any

computation in the high dimensional feature space. This is

referred to as the “kernel trick”. Then, the first q principal
components (assuming that the eigenvectors are sorted in a

descending order of eigenvalues) constitute the q-

dimensional feature vector for a face pattern.

 In general, the assumption of centered data in feature

space made above is not reasonable. A method to center the

mapped data is described here: Let

()) 1/ *)ij j iN
∼ = (− (x x xφ φ φ , 1 j N≤ ≤ be the centered

mapped data in the feature space.

1 2[() | () | ... | ()] /)N N N N×
∼ ∼ ∼ ∼Φ = = Φ(− 1x x x Ιφ φ φ be the

matrix containing the centered mapped training vectors.

Then, the inner product matrix ~K for the centered mapped

data can be obtained from inner product matrix K of non-

centered data by

T T~

() ()N N N NK K
N N

× ×∼ ∼= Φ Φ = − −
1 1

I I (5)

where NxNI is a NxN identity matrix and NxN1 is a NxN

matrix of all ones.

Fisher’s Linear Discriminant

 LDA [3] finds a linear transformation by maximizing

the between-class variance and minimizing the within-class

variance. Assume
1

N training samples 1 1

1 1
{ ,..., }

N
χ1 = x x

belong to class 1 and
2

N samples 2 2

2 1 2
{ ,..., }

N
χ = x x belong

to class 2 with
1 2

N N N= + . Let
1

1 1

1 1[| ... |]NX = x x ,

2

2 2

2 1[| ... |]NX = x x and 1 2
1 2

[|]dxN dxN dxN
X X X= be the

matrix containing all the training vectors. Fisher’s linear

discriminant is given by the vector w, which maximizes

 ()
T

B

T

W

S
J

S
= w w

w
w w

 (6)

where

1 2 1 2

1,2

()()

()()

T

B

T

W i i
i Xi

S

S
= ∈

= − −
= − −

x

m m m m

x m x m

are the between and within class scatter matrices

respectively and im are the class sample means given by

1

1 iNi
ji j

i
N

==m x . The maximization of (6) results in a

generalized eigenvalue problem
B W

S Sλ=w w . If
W

S is

non-singular,
1

1 2

1

1 2

()

| () |

w

opt

w

S

S

−

−

−
=

−

m m
w

m m

. Now we will present a

mathematical formulation that will express the cost function

()J w in terms of the dot-product matrix of the input

training samples.

���������	
����
������
�����������
��������������
���
���������
�����
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

 Let us define,
1 1 11

/
N x

N1v = ,
2 1 22

/
N x

N= 1v ,
1

1 1

T

xN= 1u ,

2
2 1

T

xN= 1u ,
1 2 1

1 []
T

N N xN= I | 0I , and
1 2 2

2 []
T

N xN N= 0 | II ,

where mxn1 (mxn0) denote an mxn matrix of all ones

(zeroes), and
m

I denotes the mxm identity matrix.

 Now, we can express the numerator of Equation

(6) as
1 2 1 2

()()
T T T

B
S KQKΤ= − − =w w w m m m m w α α

where TK X X= is the dot product matrix, and

1 1 2 1 1 2 2
()()

TQ = − −
2

I I I I vv v v . The denominator can be

expressed as T

W
S KRKΤ=w w α α , with

1 2
R R R= +

where ()()
T T T

i i i i i i i i i
R = − −I I I Iv u v u , i=1,2. Hence,

maximizing (6) is equivalent to maximizing

 (
KQK

J
KRK

Τ

Τ
) = α αα

α α
 (7)

which is in terms of the input dot-product matrix K.

Discriminant Analysis in Feature Space

 As in the case of PCA, we can use the kernel idea for

LDA to find non-linear directions by first mapping the

data non-linearly into some feature space F and

computing Fisher’s linear discriminant there, thus

implicitly yielding a non-linear discriminant in input

space. Let ()φ ⋅ be a non-linear mapping to some feature

space F. Let
1
) | ... |)]

N
Φ = [((x xφ φ be the matrix which

contains the non-linear mappings of all the training
samples. To find the linear discriminant in F we need to

maximize

 ()
T

B

T

W

S
J

S

Φ

Φ
= w w

w
w w

 (8)

 Again, this problem can be reduced to a eigenvalue

problem of the same form as in LDA. Instead of mapping

the data explicitly into the feature space, we seek a

formulation of the algorithm which uses only the dot-

products).)i j((x xφ φ of the images of training patterns in

feature space. We are then able to compute these dot-

products efficiently without mapping explicitly to F.
 As shown in the LDA case, the cost function in this

can be reduced to the form in Equation 7. In this case, the

dot-product matrix K is ΤΦ Φ , and can be computed by

choosing a kernel of the form (,)).)i j i j ijk K= ((=x x x xφ φ .

The projection yj of a test vector x corresponding to jth

eigenvector is given by

 1 1(,)).)j jN N
ii ij i i i

y k α= == α = ((x x x xφ φ (9)

Acknowledgement

 We are grateful to UMIST, UK for making the

UMIST face database available for public research, and

for granting permission to publish images of the subject
in this paper.

References

[1] B.S. Manjunath, R. Chellappa, C. von der Malsburg, “A
Feature Based Approach to Face Recognition”, in
Proceedings, IEEE Conference on Computer Vision and
Pattern Recognition, pp.373-378, 1992.

[2] Kwang In Kim, Keechul Jung and Hang Joon Kim,
“Face Recognition Using Kernel Principal Component

Analysis”, IEEE Signal Processing letters, Vol 9, No. 2,
Feb 2002.

[3] Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard
Schölkopf, Klaus-Robert Müller, “Fisher Discriminant
Analysis With Kernels”, Neural Networks for Signal
Processing IX, 1999

[4] Bernhard Scholkpof, Alexander Smola, and Klaus-
Robert Muller, “Nonlinear Component Analysis as a

kernel Eigenvalue Problem”, Tubingen, Germany, Tech.
Report No 44, Dec 1996.

[5] Christopher J C Burges, “A Tutorial on Support Vector
Machines for Pattern Recognition”, Bell Laboratories,
Lucent Technologies, 1998.

[6] T. Joachims, “Making large-Scale SVM Learning
Practical. Advances in Kernel Methods - Support Vector
Learning”, B. Schölkopf and C. Burges and A. Smola
(ed.), MIT-Press, 1999.

[7] W. Y. Zhao, R. Chellappa, A. Rosenfeld, and P. J.
Phillips, “Face recognition: A literature survey”, UMD
CfAR Technical Report CAR-TR-948, 2000.

[8] M.Turk and A.Pentland, “Eigenfaces for recognition”,
Journal of Cognitive Neuroscience, 3(1):71-86,1991.

[9] UMIST Face Database, UK. URL:
http://images.ee.umist.ac.uk/danny/database.html.

[10] K.Etemad and R.Chellappa, “Discriminant Analysis for

recognition of human face images”, Journal of the
Optical Society of America A,14(8):1724-1733, 1997.

[11] V.Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag, NY, 1995.

[12] G.D Guo, S.Z.Li, and K.L. Chan, “Face recognition by
Support Vector Machines”, Proc. Int. Conf. Automatic
Face and Gesture Recognition, pp.196-201, 2000.

[13] Yang, M. H., “Kernel EigenFaces vs Kernel Fisherfaces:

Face Recognition using Kernel Methods”, Proc. of the
Fifth Int. Conf. on Automatic Face and Gesture
Recognition, pp215-220, May 2002.

[14] SVMlight software,URL: http://svmlight.joachims.org.
[15] L. Sirovich, M. Kirby, “Low dimensional procedure for

the characterization of human faces”, Journal of Optical
Society of America, Vol.4, No.3, pp.519-524, 1987.

[16] L. Wiskott, J..M. Fellous, C. von der Malsburg, “Face

Recognition by Elastic Bunch Graph Matching”, IEEE
Trans. On Pattern Analysis and Machine Intelligence,
Vol. 19, pp. 775-779, 1997.

[17] P.N Belhumeur, D.J Kriegman, J.P. Hespanha,
“Eigenfaces vs. Fisherfaces: Recognition Using Class
Specific Linear Projection”, IEEE Conference on Pattern
Analysis and Machine Intelligence, Vol. 19, pp. 711-720,
1997.

[18] Daniel B. Graham, Nigel M. Allinson, “Face

Recognition: From Theory to Applications”, NATO ASI
Series F, Computer and Systems Sciences, Vol. 163, pp.
446-456, 1998.

���������	
����
������
�����������
��������������
���
���������
�����
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

