
 

Abstract 
 

In this paper we present the results of a comparative 
study of linear and kernel-based methods for face 
recognition. The methods used for dimensionality 
reduction are Principal Component Analysis (PCA), 
Kernel Principal Component Analysis (KPCA), Linear 
Discriminant Analysis (LDA) and Kernel Discriminant 
Analysis (KDA). The methods used for classification are 
Nearest Neighbor (NN) and Support Vector Machine 
(SVM). In addition, these classification methods are 
applied on raw images to gauge the performance of these 
dimensionality reduction techniques. All experiments 
have been performed on images from UMIST Face 
Database. 
 
 

1.  Introduction 
 

     Automatic face recognition has been a very active 

research area in the last decade. The common approaches 

for face recognition are of two types, local feature-based 

[1][16] and global or “holistic” [7][8][10][17]. In the 

local feature-based approach, typically a set of features is 

extracted from the image (e.g. locations of facial features 

such as nose, eyes etc.) and used to classify the face. The 

main advantage of this approach is its relative robustness 

to variations in illumination, contrast, and small amounts 

of out-of-plane rotation.  Its main disadvantage is that 

there is generally no reliable method to extract an optimal 
set of features, hence useful information may be lost in 

the feature extraction step. In contrast, global approaches 

use the entire image as the pattern to be classified, so no 

information is lost. However, they tend to be more 

sensitive to image variations. In this paper we will 

concentrate on the global approach.  

     When using global methods, we usually represent an 

image of size nxm pixels as a vector in nm-dimensional 

space. In practice, however, the nm-dimensional space is 

often too large to allow robust and fast recognition. A 

common way to resolve this problem is to use 
dimensionality reduction techniques. Two of the most 

 

effective techniques for this purpose are PCA and LDA. 

      Principal component analysis (PCA) is a powerful 

technique for extracting global structure from high-

dimensional data set. It has been widely adopted to reduce 

dimensionality and extract abstract features of faces for face 

recognition [7][8]. But the features extracted by PCA are 

“global” features for all face classes and thus may not be  

optimal  for  discriminating one  face class from the others. 

Kernel PCA (KPCA), recently proposed as a nonlinear 

extension of PCA for face recognition [2][7], computes the 
principal components in a high-dimensional feature space, 

which is non-linearly related to the input space and thus can 

extract non-linear principal components. However, similar 

to the linear PCA, KPCA provides the directions 

corresponding to largest variance in the data and these may 

not necessarily be the best directions for discrimination.  

      Linear Discriminant Analysis (LDA), on other hand, 

finds the directions along which the classes can be 

optimally differentiated. LDA has been widely used for face 

recognition [10][17]. However, being a linear technique, it 

may not perform well when severe non-linearity is 
involved. To remedy this linear limitation of LDA, Kernel 

Discriminant Analysis (KDA), a nonlinear approach based 

on the kernel technique has been developed for extracting 

nonlinear   discriminant features. In this paper, we present 

the results of a comparative study of the dimensionality 

reduction methods discussed above. These methods are  

described in detail in Appendix  A. 

 

2. Methodology 
 

     We choose as our benchmark nearest neighbor 

classification (NN) on raw input images after preprocessing 

(hereafter referred to as raw data). This is because NN is the 
simplest possible classification scheme, and it provides a 

benchmark for comparison with more complex 

classification  schemes. For kernel based methods, we use a 

polynomial kernel ( , ) (1 . ) pk = +x y x y  where p denotes the 

degree of the polynomial, and Gaussian RBF kernel 
2 2( , ) exp(|| || / )k σ= −x y x y . SVM experiments were 

performed using the publicly available SVMlight software 

[6][14]. 
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2.1. Database 

 
     All the experiments were conducted using the UMIST 

database [9][18]. This database consists of cropped gray-

scale images of 20 subjects covering a range of 

sex/race/appearance. The database also accounts for pose 

variation with both profile and frontal views. There are a 

maximum of 48 images per subject and a minimum of 19. 

For illustration, the images of a single subject are shown 

in Figure 1. All images are taken by the same camera 

under tightly controlled conditions of illumination. Each 

image in the database is of size 112x92. 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 
 
Fig1. Images of a subject from the UMIST database 
 

2.2. Preprocessing 

 
    The original images were downsampled by a factor of 

4 in each dimension to 28x23. The downsampled images 

were histogram equalized, and normalized to zero mean 

and unit variance. 

 

2.3. Generating Training and Test Data 

 
     The database has variable number of images for 

different subjects, but the same number of training and 

test images for each subject were chosen so that the 

results are not affected by number of images of any 
particular subject. Ten runs of each experiment were 

performed and the results were averaged. In each 

experiment, nine randomly chosen  images for  each   

subject   were used in   the   training   set,    and nine  

randomly chosen images for each subject were used in 

the test set. The test and training set did not have any 

images in common.  

 

2.4 Dimensionality Reduction 

 
     Dimensionality reduction is achieved by linear and 

kernel-based methods. Linear methods used are PCA and 

LDA, and kernel-based methods used are KPCA and 

KDA. The mathematical details of these methods are 

presented in Appendix A. 

 

2.5 Classification 

 
      After global features are extracted using PCA/KPCA or 

LDA/KDA, classification is performed using two 

approaches: Nearest Neighbor using the standard L2–norm 

for Euclidean distance, and Support Vector Machine 

[5][11], which is widely used for classification because of 

certain desirable properties such as provable optimality and 

low computational cost. Since the classic SVM was 

formulated for the two-class problem, its basic scheme is 
extended to multi-class face recognition by adopting a one-
versus-rest decomposition. This works by constructing c 
SVMs for a c-class problem. Each SVM is trained to 

separate its class from all the other classes and then an 

arbitrator is used between the SVM outputs to produce the 

final result. 

     The simplest form of arbitrator is max-selector which 

selects the class whose SVM output for that test vector is 

maximum. However, the outputs of different SVMs may 

not be on the same scale. We therefore use the following 

arbitrator: 

• Clip SVM outputs to [-1,1] and then apply the 
max-selector. 

• If more than one SVM outputs are 1, regard it as 
ambiguous decision 

• If maximum = -1, regard it as undecided 
     We choose to count all the ambiguous and no-decisions 

as errors so that it reflects the inability of one-versus-rest 

technique to decide the true class.  

 

3. Experimental Results 

 

3.1. Classification by Nearest Neighbor 

 
3.1.1. PCA/KPCA.  In Figures 2 and 3, classification error 

rates on test data are plotted against the number of principal 

components (PCs), or equivalently the size of the projected 

subspace. Since the size of training set is N = 180 (20 

subjects x 9 images per subject), the maximum number of 

PCs is 180. 

     Figure 2 shows the error plots for PCA and KPCA using 

polynomial kernel with degree 2,3 and 4.   The dashed 

horizontal line represents the error rate using NN on raw 

data, which is obviously independent of the number of PCs. 

Figure 3 shows the plot of classification error rates versus 

number of PCs for a Gaussian RBF kernel with different 

values of the kernel parameter (σ ). Also plotted is the 

result using PCA for comparison. An interesting 

observation is that error performance is worse for 

polynomial KPCA compared to PCA, and with increasing 

kernel polynomial degree, error performance degrades even  

���������	
����
������
�����������
��������������
���
���������
�����
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������



further. This shows that higher order data correlations 

may not always be useful. This result is in contrast with 

the results presented in [13] (where better results are 

obtained with polynomial kernels), which can attributed 

to differences in the database and the precise form of the 

polynomial kernel used. For Gaussian RBF kernel, error 
performance improves with increasing kernel variance, 

which can be explained as follows: At very low kernel 

variance, the kernel dot product matrix reduces to the 

trivial identity matrix for the training set, and for the test 

set, the dot products between training and test vectors 

will be very small, or vanish entirely due to numerical 

underflow. Hence all projections for a particular test 

vector will be close to zero and classification by NN 

algorithm will be completely arbitrary. In other words, 

information in the training set is not utilized. As variance 

is increased, the above effect is reduced. The best 

performance using a Gaussian kernel is     obtained with 

σ =0.26*d  (where d is the dimension of training vector). 

As σ is increased beyond this, performance saturates. 

Another interesting observation is that even the best 

KPCA performance (obtained by using a Gaussian RBF 

kernel) is not superior to that obtained using PCA. 

     In both cases, NN on raw data gives better 

performance compared to PCA and KPCA. This is a 

strong argument against using component analysis for 

face recognition. 

 

3.1.2. LDA/KDA. We would expect LDA, which is a 
discrimination scheme, to give better classification results 

compared to PCA, as the latter is primarily a 

representation scheme. The results obtained support this 

observation. 

 
Fig 2. Plot of classification error rates for Linear and Polynomial 
Kernel PCA with varying nu numbmberer of of pr principapal components. d  d 
denotes the degree of polynomial kernel. 
 

      Figure 4  shows the error  rates plotted against the 

dimension of projected subspace for LDA and  KDA with 
polynomial kernel degree=2,3 and 4. LDA performs 

better than NN on raw data. But as in PCA, polynomial 

kernels perform poorly compared to LDA and the 

performance degrades with increasing kernel degree. Figure 

5 shows the results for RBF kernels with different 

variances. Also plotted is the result using LDA for 

comparison. The same reasoning as before can be applied to 

argue that the performance will be poor at low RBF kernel 
variance. As variance is increased, performance improves 

and then saturates. In this case also, we observe that even 

the best KDA (with RBF kernel) performance is not 

superior to that obtained using LDA, which raises questions 

about the appropriateness of using  kernels  for this 

problem. However, unlike in the case of PCA/KPCA, we do 

get improved performance over NN on raw data by using 

LDA and KDA. 

 
Figure3. Plot of classification error rates for Linear and Gaussian 
RBF Kernel PCA with varying number of principal comp components. d is 
the input vector dimension.  
                     

Figure 4.e 4. Plot of classisificacation error rates for LD LDA and P and Polynomnomial 
KDA with varying dimemensionality of projected space. d denotes the 
degree of polynomial kernel. 

 

3.2. Classification using SVMs 

 
     Figure 6 shows the classification error rates obtained by 

using Linear SVM as the classifier after KPCA and KDA 

using various kernels. Since SVMs have been shown to 
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perform well even when applied directly to raw input 

without any dimensionality reduction [12], we have 

showed that result as the “Raw” bar. The figure also 

shows the  classification  error rate on raw data using 

NN. We observe that Gaussian RBF KDA gives the best 

result in this case over PCA, KPCA and is only 
marginally better than the results using LDA. Figure 7 

shows the classification error rates using Linear PCA 

and LDA followed by kernel SVMs (using polynomial 

kernels of degree 2 and 3, and Gaussian RBF kernel). 

We observe that LDA followed by Gaussian RBF SVM 

gives the best error performance.  

 
Figure 5. Plot of classification error rates for LDA and Gaussian 
RBF KDA with varying dimensionality of projected space. The 
values of the kernel paramemeterσ are indicated as a mumultiple of 

the pattern dimemension d. 
 

Figure 6. Bar graph showing classification error rates for 
classification using g Linear SVMsMs. In the above figure, d=d=2,3 3 
implies degree 2,3 polynomial kernels. σ =0.08*D for Gaussian 

RBF KPCF KPCA.A. , and σ =0.06*D D for Ga Gaussian RB RBF KDA, whwhere D is 

the dimension of the input  vector. 
 

4. Conclusions and Future Work 
 
      After comparison of various linear and non-linear 

techniques, we arrive at the following conclusions:  

• Although kernels enable us to work in a high 

dimension feature space, they do not always ensure 

better performance. Introduction of kernels might even 

degrade the performance if the problem is close to 

linearly separable. Moreover, the choice of optimal 

kernel is not always obvious.  

• LDA/KDA outperform PCA/KPCA because of the 

inherent discrimination ability of the former.  

• The SVM classifier outperforms the Nearest Neighbor 

algorithm in all the methods used for feature extraction. 

In SVM classifier, we find that kernel SVM with linear 

preprocessing  (PCA/LDA) performs better than Linear 

SVM with non-linear preprocessing (KPCA/KDA), 

though  in spirit both are similar. The lowest error 

performance of 1.77% was achieved on UMIST 

database by using LDA with RBF SVM classifier. 

 

 
Figure 7. Bar graph showing classification er error rates using Kernel 
SVSVMs .In the above figure, SRSRBFBF=RBFBF SVSVM, Sd Sd2=PoPolynomial SVM 
with degree 2, Sd3= Polynomial SVM wM with degregree 3. 

 
     In future, we plan to perform this study on other publicly 

available face databases like Yale and CMU-PIE databases, 

and evaluate the performance of these methods under more 

difficult conditions. Also, we would like to apply these 

methods to the problems of Face Detection and Recognition 

using Gait.  

 

Appendix A 

 
Principal Component Analysis (PCA) 

 

     Let 1 2, ,...., }χ = { Nx x x  be the training set, where 

each i
x  represents a training vector, N is the size of training 

set and d is the dimensionality of the input vector. Using 
linear PCA, the maximum dimension of the projected 

subspace is min(N,d). Let 
1

[ | | ..... | ]
N

X =
2

x x x  denote the 

matrix containing the training vectors. PCA involves finds  
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the eigenvectors of the covariance matrix, solving the 

following equation 

                                   T
XX λ=e e                                   (1) 

where e  is an eigenvector and λ an eigenvalue. Using 

the method of Kirby and Sirovich [15], we pre-multiply 

both sides by TX , and then equation (1) can be written as  

                                   K λ=α α                                     (2) 

where TK X X= and TX= eα . K is referred to as the 

inner product matrix of the training samples since 

( )ij i jK = ⋅x x . 

This is a standard eigenvalue problem, which can be 

solved for α  and λ . From (2), we get X=e α  (after 

normalization 
λ

= αα ). The projections on the first q 

eigenvectors (corresponding to largest q eigenvalues) 

constitute the feature vector. For a test vector x, the 

principal component y corresponding to eigenvector e is 

given by 

     1( ( )T T T N

i i i
y X X αΤ

== = ) = = ⋅e x x x x xα αα α        (3) 

where ⋅a b  denotes the inner (dot) product of vectors a 

and b. 

 

Kernel PCA in Feature Space 

     Kernel based methods can map the input space to a 

high (possibly infinite) dimensional feature space in a 

non-linear way. The projection into higher space is done 

using inner products without explicit computation of the 

mapping, which makes it computationally feasible. 

Essentially, the computations are done in a subspace of 

dimension N of a higher dimensional space. In contrast to 

PCA, the dimension of the projected subspace can reach 
N using KPCA.  The basic concept of kernel PCA is to 

first map the input data χ  into a feature space F via a 

non-linear mapping ( )φ ⋅  and then perform a linear PCA 

in F. The motivation is that a training set, which may not 

be linearly separable in input space, may be linearly 
separable in the mapped space.  

    Again, let 
1

[ | | ... | ]
N

X =
2

x x x  denote the matrix 

containing the training vectors, and let 

1
[ ) | ........ | )]

N
Φ = ( (x xφ φ  be its image in the feature 

space. Assuming that the mapped data are centered, i.e., 

1 ( ) 0N

i i= =xφ  (the centering method in F is explained at 

the end of this sub-section) let K Τ= Φ Φ , with 

). )
ij i j

K = ( (x xφ φ . Then the principal directions satisfy 

equation (2) and are given by = Φe α  (after 

normalization of α ). For a test vector x, the principal 

component y corresponding to eigenvector e is given by: 

         1) ) ). )T N

i i i
y αΤ Τ

== ( = Φ ( = ( (e x x x xαφ φ φ φ         (4) 

    The dot-product matrix K can be computed by 

choosing a kernel k(x,y) such that 

( , ) ). )
i j i j ij

k K= ( ( =x x x xφ φ , and thus avoiding any 

computation in the high dimensional feature space. This is 

referred to as the “kernel trick”. Then, the first q principal 
components (assuming that the eigenvectors are sorted in a 

descending order of eigenvalues) constitute the q-

dimensional feature vector for a face pattern. 

      In general, the assumption of centered data in feature 

space made above is not reasonable. A method to center the 

mapped data is described here: Let 

( ) ) 1/ * )ij j iN
∼ = ( − (x x xφ φ φ , 1 j N≤ ≤  be the centered 

mapped data in the feature space. 

1 2[ ( ) | ( ) | ... | ( )] / )N N N N×
∼ ∼ ∼ ∼Φ = = Φ( − 1x x x Ιφ φ φ  be the 

matrix containing the centered mapped training vectors. 

Then, the inner product matrix ~K  for the centered mapped 

data can be obtained from inner product matrix K of non-

centered data by 

          
T T~

( ) ( )N N N NK K
N N

× ×∼ ∼= Φ Φ = − −
1 1

I I        (5) 

where NxNI  is a NxN identity matrix and NxN1 is a NxN 

matrix of all ones. 

 

Fisher’s Linear Discriminant 

 
      LDA [3] finds a linear transformation by maximizing 

the between-class variance and minimizing the within-class 

variance. Assume 
1

N  training samples 1 1

1 1
{ ,..., }

N
χ1 = x x  

belong to class 1 and 
2

N  samples 2 2

2 1 2
{ ,..., }

N
χ = x x  belong 

to class 2 with 
1 2

N N N= + .  Let
1

1 1

1 1[ | ... | ]NX = x x , 

2

2 2

2 1[ | ... | ]NX = x x   and 1 2
1 2

[ | ]dxN dxN dxN
X X X=  be the 

matrix containing all the training vectors. Fisher’s linear 

discriminant is given by the vector w, which maximizes 

                                  ( )
T

B

T

W

S
J

S
= w w

w
w w

                               (6)   

where 

1 2 1 2

1,2

( )( )

( )( )

T

B

T

W i i
i Xi

S

S
= ∈

= − −
= − −

x

m m m m

x m x m
 

are the between and within class scatter matrices 

respectively and im  are the class sample means given by 

1

1 iNi
ji j

i
N

==m x . The maximization of (6) results in a 

generalized eigenvalue problem 
B W

S Sλ=w w . If 
W

S  is 

non-singular, 
1

1 2

1

1 2

( )

| ( ) |

w

opt

w

S

S

−

−

−
=

−

m m
w

m m

. Now we will present a 

mathematical formulation that will express the cost function 

( )J w  in terms of the dot-product matrix of the input 

training samples. 
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      Let us define,
1 1 11

/
N x

N1v = ,
2 1 22

/
N x

N= 1v ,
1

1 1

T

xN= 1u , 

2
2 1

T

xN= 1u , 
1 2 1

1 [ ]
T

N N xN= I | 0I , and 
1 2 2

2 [ ]
T

N xN N= 0 | II , 

where mxn1 ( mxn0 ) denote an mxn matrix of all ones 

(zeroes), and 
m

I  denotes the mxm identity matrix. 

      Now, we can  express  the  numerator  of  Equation 

(6) as 
1 2 1 2

( )( )
T T T

B
S KQKΤ= − − =w w w m m m m w α α  

where TK X X=  is the dot product matrix, and 

1 1 2 1 1 2 2
( )( )

TQ = − −
2

I I I I vv v v . The denominator can be 

expressed as T

W
S KRKΤ=w w α α , with 

1 2
R R R= +  

where ( )( )
T T T

i i i i i i i i i
R = − −I I I Iv u v u ,  i=1,2. Hence,  

maximizing (6) is equivalent to maximizing 

                             (
KQK

J
KRK

Τ

Τ
) = α αα

α α
                         (7) 

which is  in terms of the input dot-product matrix K.  

 

Discriminant Analysis in Feature Space 

     As in the case of PCA, we can use the kernel idea for 

LDA to find non-linear directions by first mapping the 

data non-linearly into some feature space F and 

computing Fisher’s linear discriminant there, thus 

implicitly yielding a non-linear discriminant in input 

space. Let ( )φ ⋅  be a non-linear mapping to some feature 

space F. Let 
1
) | ... | )]

N
Φ = [ ( (x xφ φ  be the matrix which 

contains the non-linear mappings of all the training 
samples. To find the linear discriminant in F we need to 

maximize 

                            ( )
T

B

T

W

S
J

S

Φ

Φ
= w w

w
w w

                                 (8) 

     Again, this problem can be reduced to a eigenvalue 

problem of the same form as in LDA. Instead of mapping 

the data explicitly into the feature space, we seek a 

formulation of the algorithm which uses only the dot- 

products ). )i j( (x xφ φ  of the images of training patterns in 

feature space.  We are then able to compute these dot-

products efficiently without  mapping explicitly to F. 
     As shown in the LDA case, the cost function in this 

can be reduced to the form in Equation 7. In this case, the 

dot-product matrix K is ΤΦ Φ , and can be computed by 

choosing a kernel of the form ( , ) ). )i j i j ijk K= ( ( =x x x xφ φ . 

The projection yj of a test vector x corresponding to jth
  

eigenvector  is given by 

          1 1( , ) ). )j jN N
ii ij i i i

y k α= == α = ( (x x x xφ φ               (9) 
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