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Abstract— We present an iterative algorithm for robustly esti-
mating the ego-motion and refining and updating a coarse depth
map using parametric surface parallax models and brightness
derivatives extracted from an image pair. Given a coarse depth
map acquired by a range-finder or extracted from a Digital
Elevation Map (DEM), ego-motion is estimated by combining
a global ego-motion constraint and a local brightness constancy
constraint. Using the estimated camera motion and the available
depth estimate, motion of the 3D points is compensated. We
utilize the fact that the resulting surface parallax field is an
epipolar field, and knowing its direction from the previous
motion estimates, estimate its magnitude and use it to refine
the depth map estimate. The parallax magnitude is estimated
using a constant parallax model (CPM) which assumes a smooth
parallax field and a depth based parallax model (DBPM), which
models the parallax magnitude using the given depth map. We
obtain confidence measures for determining the accuracy of the
estimated depth values which are used to remove regions with
potentially incorrect depth estimates for robustly estimating ego-
motion in subsequent iterations. Experimental results using both
synthetic and real data (both indoor and outdoor sequences)
illustrate the effectiveness of the proposed algorithm.

Index Terms— Direct methods, 3D modeling, surface parallax

I. INTRODUCTION

3D scene reconstruction and ego-motion estimation has
been an active area of research over the past few decades.

With increased use of range scanners and DEM’s, there is
considerable interest in fusing the depth information provided
by them with the information from image sequences to develop
robust algorithms for building enhanced 3D models. The
available depth information, however, is often noisy, coarse
and sparse (may lack data in certain regions). In this paper,
we address the problem of using such low quality sparse depth
information along with intensity images to estimate the ego-
motion and the depth map of the scene.

Majority of work on ego-motion estimation assume that
correspondences between image features or tokens are given
and focus on recovering structure and motion from these
features [1] [2] [3] [4] [5] [6] [7] [8] [9]. Another class
of methods [10] [11] [12] [13] assume that optical flow or
a set of dense correspondences is available between image
frames and recover dense 3D structure using them. However,
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recovering robust optical flow itself is a non-trivial problem.
Direct Methods [14] [15] [16] [17] [18] [19] [20] [21] try to
combine the correspondence estimation problem with structure
recovery by simultaneously estimating both structure and mo-
tion and avoiding the intermediate step of computing flow or
correspondences between features. These techniques minimize
the deviation of brightness change model (constant brightness
model or generalized dynamic image model [22]) with respect
to structure and motion parameters.

The algorithm presented in this paper comes under the
category of direct methods. Several direct methods focus on
expressing the image motion of rigid objects as a sum of
translational and rotational fields. Techniques such as [16] [21]
recover the 3D structure relative to the camera. Alternative
approaches such as ”plane + parallax” [23] [18] [24] [25]
[26] [27] recover the 3D structure relative to a reference plane.
Most of the ”plane+parallax” approaches assume the presence
of a dominant plane in the scene or a piece-wise planar model
[28] [29]. In these methods, the homography for the dominant
planar surface is estimated. This homography encapsulates the
rotational motion of the camera and the calibration effects. The
residual image motion is then an epipolar field and is due to
deviations of the scene structure from the planar surface. The
scene structure can thus be refined by estimating the residual
motion or the parallax. However, the above assumption is not
valid in several scenarios. In this paper, we show how any
non-planar surface can be used to recover dense 3D structure,
thereby not requiring the assumption that a piecewise planar
model or a dominant planar surface be present in the scene.
The approach presented here can work with general 3D scenes.

In addition, most of the previous approaches assume locally
smooth depth models for estimating depths [16] [19] or small
depth variations compared to the distance from the camera
[10] [17]. However, these assumptions are violated when the
depth variations are large (for example, in urban environments)
and at depth boundaries. The effect of noise in available data
may require a non-smooth local depth refinement. We show
how modeling the parallax field on depths can deal with
such cases. Besides, many of the previous methods use the
information from the entire image for estimating ego-motion
which may not be useful and can even contribute to errors.
We show how to discard potentially erroneous image regions
by incorporating a suitable confidence measure in estimating
depths.

Recently, there has been considerable research on sensitivity
and robustness of existing algorithms in computer vision
for SfM, optical flow etc. Kearney et. al. [30] did an error
analysis of gradient based methods for optical flow. Weng et.
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al. [5] use first-order perturbations in the inputs to estimate
the standard deviation of the error in the reconstructed scene
from perspective views. Broida and Chellappa [31] derived
Cramer-Rao lower bounds on the estimated error variance
of the structure and motion parameters from a sequence of
images under perspective projection. Young and Chellappa
[32] derived bounds on the estimation error for structure
and motion parameters from two images using optical flow.
Oliensis [33] did a least squares error analysis for SfM as
a function of camera motion. Soatto [34] proposed a global
error analysis by casting SfM as the minimization of a high-
dimensional quadratic cost function. In section III, we identify
local sources of error (in the depth refinement phase using
the surface parallax approach) such as errors due to sampling
and discretization in image gradients, errors near the Focus
of Expansion (FOE), and those due to homogeneous regions
and regions where local edge structure is aligned towards the
parallax direction. Errors in camera motion estimation and
noise in the available depth map will also create problems.
Fortunately, most of the above cases can be identified in the
image. The use of a eigen-value techniques allows us to define
a reasonable confidence measure in terms of eigen-values, thus
providing a measure of the quality of the depth estimates.

The rest of the paper is organized as follows. Section II
describes the algorithm. Section III identifies local sources of
error and suggests ways to handle them. Section IV presents
experimental results using both synthetic and real 3D models
(both indoor and outdoor image sequences). Qualitative and
quantitative comparisons of the estimated depth map and ego-
motion using CPM and DBPM and with previous algorithm
[16] are presented.

II. ALGORITHM

The proposed method is a direct approach that uses two
intensity images (referred to as key and offset frames) and an
initial coarse, noisy and incomplete depth map (referred to as
reference depth map) to estimate the ego-motion and the depth
map in an iterative fashion (we call these iterations global
iterations). We start with estimating the ego-motion given the
reference depth map and refining the available depth map
using the estimated ego-motion iteratively, until the motion
estimates converge or a specified number of iterations have
been reached.

Let p = (x, y) denote an image pixel and t denote the time
index. Assuming brightness constancy, we have

I(p, t) = I(p− u, t− 1) (1)

where I(p, t) and I(p, t−1) denote the key and offset frames
respectively. The 2D image motion u is given by [15]

u = AZ̃T + BΩ (2)

where B =

[
xy
f −(f + x2

f ) y

(f + y2

f ) −xy
f −x

]
, A =

[ −f 0 x
0 −f y

]
, Z̃ = 1

Z denotes the inverse depths, f

denotes the focal length (which we assume is known) and
(T ,Ω) denote the translational and rotational velocities of the

camera. For estimating ego-motion and depth, we minimize
the deviations from the brightness constancy equation

E =
∑

R

(I(p, t)− I(p− u, t− 1))2 (3)

over suitable image regions R.
A way to minimize (3) is to perform iterative Gauss-

Newton minimization (we call these iterations local iterations)
which uses a first order expansion of individual quantities
before squaring in error term E. Let i denote the global
iteration index, ui denote the current estimate of the flow
field during the ith global iteration (obtained from current
depth and motion estimates using (2)). Let dum

i and duZ
i

denote the incremental 2D motion for a local iteration due
to motion refinement and depth refinement respectively. The
appropriate motion (or depth) refinement can be estimated [19]
by minimizing

E(dum or Z
i ) =

∑

R

(∇IT dum or Z
i + ∆I)2 (4)

with respect to dum or Z
i , where ∇I = [Ix, Iy]T denotes the

spatial image derivatives and ∆I = I(p, t)− I(p− ui, t− 1)
denotes the difference of the key image and the warped offset
image according to ui which is obtained from current depth
and motion estimates.

A. Ego-Motion Estimation Given a Depth Map

Let Zi denote the current estimate of the depth map from
the previous global iteration (for the first global iteration we
use the reference depth map). To estimate the ego-motion, we
minimize (3) with respect to T and Ω using Zi as the depth
map. The region R is decided on the basis of the confidence
measure provided by the depth refinement phase as described
in section II-E (for the first global iteration we use the entire
image region).

Let mi = [Ti, Ωi]T denote the ego-motion estimate from
the previous global iteration (for the first global iteration,
we use T = [0, 0, 1]T , Ω = [0, 0, 0]T ). Within each global
iteration, we refine the ego-motion estimate by performing
local iterations as follows. Let dT, dΩ be the incremental ego-
motion update for a local iteration. Using (2), we have

dum
i = AZ̃idT + BdΩ =

[
AZ̃i B

]
× dm (5)

where dm = [dT, dΩ]T denotes the incremental ego-motion.
Substituting the above equation in (4), we get

E(dum
i ) =

∑

R

(∇IT
[

AZ̃i B
]
dm + ∆I)2 (6)

where ∆I is calculated using ui obtained from mi and Zi. This
is a linear system in dm and a least square solution is obtained.
The update dm is added to the current motion estimate mi

to get a refined estimate. Thus at each local iteration, mi is
refined, a new value of ∆I is obtained using refined mi and
Zi and (6) is minimized to obtain further refinement dm. The
quality of fit can be determined by evaluating (3) using refined
mi and Zi. The local iterations are performed until the error
E in (3) stops decreasing or the change in motion dm falls
below a pre-define threshold (10−6).
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B. Depth Refinement using Ego-motion

Let Ti, Ωi denote the current ego-motion estimate and
Zi denote the available depth map estimate. Let dZi be the
incremental depth map estimate for the ith global iteration
and Zi+1 = Zi +dZi be the refined depth map. Using (2), the
incremental 2D motion can be written as

duZ
i = A(Z̃i+1 − Z̃i)Ti (7)

where Z̃i+1 = 1
Zi+1

, Z̃i = 1
Zi

. Thus, the incremental motion
due to depth refinement (surface parallax field) is in the
direction of the focus of expansion (FOE), i.e it is an epipolar
field. Since we have an estimate of camera motion Ti from
previous ego-motion estimate, we can constrain the direction
of the parallax field.

First, let Tz 6= 0. Defining the FOE as (xf = f Tx

Tz
, yf =

f
Ty

Tz
), we constrain the direction of the parallax field to lie

along the epipolar direction. Thus for each pixel (x, y) we
write

duZ
i (x, y) = β

[
x− xf

y − yf

]
(8)

where [x− xf , y − yf ]T denotes the parallax direction and β
denotes the parallax magnitude. Expanding ATi in (7), we get

duZ
i (x, y) = Tz

[
x− xf

y − yf

]
(Z̃i+1 − Z̃i)

Comparing the above equation with (8), one obtains

β = Tz(Z̃i+1 − Z̃i) (9)

Now consider the case Tz = 0. The epipolar field in that
case is oriented along the 2D direction [Tx, Ty]T . For example,
if the camera is moving along the X axis, the epipolar field
will be horizontal. Here we write duZ

i (x, y) as

duZ
i (x, y) = β

[
Tx

Ty

]
(10)

Expanding ATi in (7) using Tz = 0, we get

duZ
i (x, y) = −f

[
Tx

Ty

]
(Z̃i+1 − Z̃i)

Comparing the above equation with (10), one obtains

β = −f(Z̃i+1 − Z̃i) (11)

We first estimate β as follows. Using (8) (or (10) for Tz =
0), (4) can be written as

E =
∑

R

(Idβ + ∆I)2 (12)

where Id denotes the projection of the intensity gradient along
the parallax direction. The region R for depth refinement is
chosen to be a local neighborhood of N ×N pixels. We first
minimize (12) to get an estimate of β and then use β to obtain
refined depths Z̃i+1 using (11) or (9), depending on whether
Tz is zero or not. Next, we describe how to obtain the parallax
magnitude using various parallax models.

C. Estimating Parallax Magnitude
We estimate the parallax magnitude pixel by pixel. For each

pixel, (12) can be minimized with respect to β giving a least
squares (LS) solution. LS solution for solving a linear system
Ax = b to estimate x assumes noise to be present in b (∆I
here) only. However, a better estimate based on total least
squares (TLS) [35] can be obtained assuming both A and b (Id

and ∆I here) to be noisy (see for e.g. optical flow computation
in [36] [37] [38]).

The TLS solution can be formulated as minimizing

J =
〈
[gT γ]2

〉
(13)

with respect to γ where g = [Id, ∆I]T , γ = [β1, β2]T and <>
defines the mean operator

< f(x, y) >=
∫ ∞

−∞
w(x− x, y − y)f(x, y)dxdy (14)

where w is a windowing function. The parallax magnitude β
is then given by β = β1

β2
.

1) Solving for CPM: We assume β to be constant over
the region R leading to the constant parallax model. This is
similar in spirit to having a smoothness constraint on depths
by assuming a smooth depth model (constant or planar) (as
in [16] [19]) or assuming constant dZi over the neighborhood
to estimate Zi+1. To avoid the trivial solution γ = 0, the
constraint γT γ = 1 is imposed. Using Lagrange multipliers,
the error function can be written as
J =

〈
γT ggT γ

〉
+ λ(1− γT γ) = γT Gγ + λ(1− γT γ)

G =
〈
ggT

〉
=

[
< I2

d > < Id∆I >
< Id∆I > < ∆I2 >

]
(15)

Differentiating with respect to γ, we get Gγ = λγ. Since
G is a 2 × 2 real symmetric matrix, there will be two valid
eigen-value/eigen-vector pairs. Let λ1 ≥ λ2 be the valid
eigen-values. The eigen-vector corresponding to λ2 will be
the solution for γ.

2) Solving for DBPM: The assumption of a locally smooth
depth model is violated at depth boundaries when significant
depth variations are present. Also, the effect of noise in
the available depth map estimate (from a range finder or
DEM) may require a non-smooth depth refinement within the
neighborhood. Thus, in such cases, the parallax magnitude is
not smooth over the neighborhood. From (9) and (11), we
observe that the parallax magnitude β depends on Z̃i+1−Z̃i =

1
Zi+1

− 1
Zi

= −dZi

Z2
i

. Noting that the parallax magnitude depends
on inverse depths, DBPM is defined as

β = a0 +
a1

Zi
+

a2

Z2
i

(16)

where the parameters a0, a1 and a2 are assumed to be constant
within the neighborhood. Note that even though a parametric
model is used to model β, it allows the parallax magnitude
to vary non-uniformly within the region since the model is
based on depth values that can vary non-uniformly within the
region.

Define B =

[
1 Z̃i Z̃2

i 0 0 0
0 0 0 1 Z̃i Z̃2

i

]
. Using DBPM,

we write
γ = Bp (17)
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where p = [a0, a1, . . . , a5]T denotes the model parameters to
be estimated. To avoid the trivial solution γ = 0, the constraint
γT γ = 1 is imposed. Using Lagrange multipliers, the error
function can be written as

J =
〈
γT ggT γ

〉
+ λ(1− γT γ) = pT Tp + λ(1− pT DP )

(18)

where T =
〈
BT ggT B

〉
and D = BT B. Differentiating with

respect to p, we get Tp = λDp subject to pT Dp = 1.
Thus the minimization problem is converted into the solving
a generalized eigenvalue system. Since the rank of D is two,
there will be only two valid generalized eigen-value/eigen-
vector pair. Let λ1 ≥ λ2 be the valid generalized eigen-values.
The generalized eigen-vector corresponding to λ2 will be the
solution for p. Using the estimate p and (17), one can obtain
γ and hence β.

D. Regions with No Prior Depth Information

The initial reference depth obtained from a range sensor
or DEM may be lacking in information in certain regions.
For e.g. in some regions no prior depth information may be
available. A reasonable assumption is to assume a constant
depth value for such regions in the reference depth map. From
(16), we observe that if the available depths are constant over
the region R, the DBPM reduces to CPM. So for such regions,
one can selectively use the CPM in our formulation. We will
show in section IV that for scenes with sufficiently low depth
variations, no prior depth information may be required by the
algorithm and good results can be obtained starting from a flat
initial depth.

E. Confidence Measures

Confidence measures based on eigen-values and/or con-
dition number have been proposed in [37] [39]. We use
C = (λ1−λ2

λ1+λ2
)2 as the confidence measure for depth estimation.

When the solution is estimated reliably, λ2 will be close to
zero and λ1 will be sufficiently greater than zero and hence
confidence will be close to one. In addition, we assign a
confidence of zero whenever the magnitude of Id falls below
some pre-defined threshold to avoid ill-conditioning of the
system. Thus homogeneous regions, regions where local edge
structure is aligned along the parallax direction and regions
near FOE are assigned a confidence of zero. Note that the
above confidence measure is normalized between 0 and 1.
When both λ1 and λ2 are close to zero, it may be unreliable.
Hence, a threshold on the sum of eigen-values is used to
identify such cases and confidence measure at those pixels
is set to zero. The region R for estimating ego-motion in
section II-A is composed of those pixels where C exceeds
a pre-defined threshold.

F. Algorithm Outline

1) Get the initial reference depth map Z0, key and offset
frames. Set the global iteration index i = 1.

2) Estimate the camera motion mi using Zi−1 (as explained
in II-A)

3) Refine the depths using mi and Z0 using DBPM or
CPM. Let the refined depths be Zi. Obtain confidence
measures for depth estimates. Set i → i + 1.

4) Repeat step 2 by setting R to those regions in image
where the confidence in depth estimates is greater than
a pre-defined threshold. Repeat step 3.

5) Stop when the maximum iterations are reached or ego-
motion parameters converge.

III. ERROR IDENTIFICATION

We now identify various sources of error that influence
the depth estimates, including camera motions for which
algorithm can fail. Errors consists of those due to discretization
of the derivative operator, sampling measurement errors and
statistical errors caused by noise in the imaging process and
in the reference depth map (due to range sensor noise for
example.)

A. Gradient Measurement Error

Errors in spatial gradient measurement are related to higher
order spatial image gradients. First order discrete difference
operators introduce a large error in spatial gradients Ix and
Iy . Error in Ix, εIx ≈ (∆x)Ixx for a forward differencing
operator [30] and εIx ≈ (∆x)2Ixxx [38] for the central
differecing operator. Better derivative operators include series
designed operators [40] with a large support for accurate
derivative computation. Since gradient errors are related to
higher order derivatives, this emphasizes the need for proper
prior smoothing of images. In addition, the errors in gradients
will also be corrupted by the errors in brightness estimates
and sampling errors. In [41], it was shown that the total least
square solution for computing 1-D optical flow is unbiased as
compared to a least square solution if the noise is isotropic
in all gradients which is another advantage of having a total
least squares solution.

∆I in (4) can be regarded as a directional derivative in the
direction u (if u = 0, it reduces to a temporal derivative).
The error in estimating the directional derivative grows as the
square of the flow magnitude [30] (parallax magnitude in our
case). Thus we expect regions with high parallax magnitude
to have high error in estimated depths.

B. Non-uniform Parallax and Ill-conditioning

The assumption of constant parallax magnitude within a
small neighborhood is violated at depth boundaries and with
errors in available depth estimates. As a result, local optimiza-
tion will provide inferior results. This can be alleviated using
DBPM where the parallax magnitude is derived from the depth
values itself.

The accuracy of the estimated parallax magnitude depends
on errors in Id, ∆I and error propagation of the linear system.
The errors in Id depend on spatial image derivatives and
camera translational motion. When Tz 6= 0, Id = Ix(x −
xf )+ Iy(y− yf ). The system will be ill-conditioned when Id

is close to zero. In such cases, a small error in these values
can cause a large error in β. Consider the following scenarios
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1) Homogeneous regions: No intensity variation in spatial
direction. Ix = Iy = 0.

2) Spatial intensity gradient is in a direction perpendicular
to the parallax direction, i.e. [Ix, Iy]T ⊥ [x − xf , y −
yf ]T . Physically, this corresponds to the case when local
edge structure is aligned along the direction of FOE.

3) Regions near FOE: x ≈ xf , y ≈ yf .
For all the above cases, Id is close to zero and hence no
reliable solution can be obtained. These conditions, however
can be identified in the image. If Tz = 0, Id = IxTx + IyTy ,
and hence, the first two cases mentioned above will lead to
errors.

The conditioning can be improved by using a large neigh-
borhood size. The risk involved in using a large neighbor-
hood is that the parallax model may not be valid. Thus
the neighborhood size N defining the window function w
should be carefully chosen. We use the adaptive windowing
approach presented in [37]. Initially, a small window size is
used to estimate the parallax and is adaptively increased until
the confidence measure (as described in section II-E ) stops
increasing.

C. Effect of Camera Motion

Since the proposed algorithm is a parallax based algorithm,
camera motion must include translation. Thus the case of pure
rotation falls into a degenerate case. Hence, if the camera
translation is close to zero, the estimated depths will not
reliable. In all cases, errors in camera motion estimate will
lead to errors in parallax estimation. Let ex denote the error
in any quantity x. Then the error in Id due to errors in camera
motion is

eId
= −Ixexf

− Iyeyf
(19)

The errors in ∆I will occur through the errors in optical flow
estimates u. Let eu be the errors in optical flow estimates
due to errors in camera motion. The estimated directional
derivative will be

∆̂I = I(p, t)− I(p− u− eu, t− 1) (20)

Assuming eu to be small, we can approximate

∆̂I = I(p + eu, t)− I(p− ui, t− 1) = ∆I +∇Ieu

Thus the error in ∆I is e∆I = ∆̂I − ∆I = ∇Ieu. Thus,
errors in the camera motion estimate introduce an error in both
Id and ∆I , and these errors depend on spatial image gradients.
Thus, we see that there are several factors which interact in
a complex way to determine the accuracy of the estimated
parallax magnitude and hence depths.

IV. EXPERIMENTS

We conducted experiments using both synthetic and real im-
ages. For synthetic images, we present results on the Yosemite
sequence (referred to as YOS) and a 3D model of an urban
environment (referred to as 3DS). For real images, results on
an outdoor and indoor sequence are presented (referred to as
Outdoor and LABS respectively). The experiments show the
effectiveness of the algorithm for different camera motion in

terms of the FOE being in the image region (YOS, Outdoor),
FOE outside the image region (3DS), FOE at infinity (LABS)
and scene structure in terms of high depth variability (YOS,
3DS, Outdoor), low depth variability (LABS). We have also
implemented the multi-resolution algorithm described in [16]
(referred to as HANNA and provide comparisons with it.
For HANNA, we use a fixed 5 × 5 neighborhood for local
optimization (as in [16]) with 3 levels of resolution. The
percentage depth error is defined as

100
N

N∑
1

(
true depth− computed depth

true depth
)2 (21)

where N denotes the number of pixels following [16]. In
all experiments, one local iteration was done for depth
refinement. The confidence threshold for choosing the
region R for ego-motion estimation was set to 0.3. In
all examples, we smooth the images using a Gaussian
filter with standard deviation of 1 along the spatial axes. For
computing derivatives along the spatial axes, a series-designed
filter of radius 5 was used whose filter coefficients are
[0.0036,−0.0381, 0.2,−0.8, 0, 0.8,−0.2, 0.0381,−0.0036].
Thus gradient estimates and hence the depth estimates will
be unreliable at the periphery of the image due to the lack of
sufficient information in computing derivatives. For synthetic
sequences, the error depth maps are also shown (gray color
coded with white indicating large errors and black indicating
zero error).

A. Yosemite

We present result on Yosemite sequence. The cloud regions
were not included in the experiment. Figs. 1(a), 1(b) and 1(c)
show the key image, the true depth map for the key image and
the initial reference depth map respectively. The depth map
is color coded (darker regions are farther from the camera).
As a coarse depth map from an independent source was not
available, we obtain the initial reference depth map from the
true depth map as follows.

The initial reference depth map was obtained by first
smoothing the true depth map with a constant filter of size
25 × 25 pixels to get a highly coarse depth map. Gaussian
noise was then added to it. A rectangular region in the center
(Fig. 1(c)) of the coarse and noisy depth map was modified
to a constant depth value which is equivalent to having no
depth information in that region. In addition, the rectangular
region in the center also introduces significant artificial depth
discontinuities (at the boundaries of the rectangle) in the depth
map which are not present in the true depth map. Thus the
initial reference depth map is coarse, noisy, lacks information
in certain regions and has depth discontinuities.

We performed a total of 10 global iterations. The true
FOE and rotational velocities (in radians) are (0, 0.17) and
(0,−0.0017, 0.0003) respectively. Figs. 2(a) and 2(b) shows
the convergence of FOE estimates (xf , yf ) with global itera-
tions using CPM, DBPM and HANNA respectively. The FOE
estimate converges to the true value for DBPM. Estimated
rotational parameters using DBPM at the end of global iter-
ations are (0,−0.0018, 0.0005) which are close to the true
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(a) Key image (b) True depth map (c) Reference depth map

(d) Estimated depth map using DBPM (e) Estimated depth map using CPM (f) Estimated depth map using HANNA

(g) Error depth map for DBPM (h) Error depth map for CPM (i) Error depth map for HANNA

(j) Regions (in white) where C ≥ 0.1 for (d) (k) Novel View (l) Novel View

Fig. 1. YOS: (k and l) Rendered scene from novel viewpoints using depth map estimated using DBPM.
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Fig. 2. YOS: (a and b) Convergence of xf and yf estimates. (c) Mean confidence over the entire image using DBPM.

TABLE I
YOS: PERCENTAGE DEPTH ERRORS FOR INITIAL COARSE DEPTH MAP AND

ESTIMATED DEPTH MAPS USING DBPM, CPM AND HANNA.

Percentage depth error

Initial coarse depth map 59.40

Estimated using CPM 32.17

Estimated using HANNA 26.01

Estimated using DBPM 02.27

values. Fig. 2(c) shows the mean confidence over the entire
image using DBPM which increases as depths get refined
and become stable. Thus the proposed confidence measure
is indeed a good indication of the reliability of the depth
estimates. The estimated depth maps at the end of global
iterations using DBPM, CPM and HANNA are shown in
Figs. 1(d), 1(e) and 1(f) respectively. Figs. 1(g), 1(h) and 1(i)
shows the error depth maps for DBPM, CPM and HANNA
respectively. Qualitatively, the depth map estimated using
DBPM is better. Also, the artificial depth discontinuities in the
center of reference depth map are not removed by CPM but
are handled properly by DBPM. Table I gives the percentage
depth error between the true depth map and the estimated
depth maps using DBPM, CPM and HANNA. These numbers
are calculated at pixels where the confidence C at the end
of global iterations is greater than 0.1 (shown in Fig. 1(j)).
The estimated depth map obtained using DBPM was rendered
in OpenGL followed by texture mapping. Figs. 1(k) and 1(l)
shows two novel views of the rendered texture mapped 3D
model.

B. Urban 3D Model

A semi-synthetic 3D model (with real textures) of an
urban environment was rendered in OpenGL. The synthetic
3D model consists of buildings and objects in front of the
buildings. We simulate a sequence of images by moving a
virtual camera in the scene. The depth maps were obtained
from the OpenGL Z buffer. Figs. 3(a), 3(b) and 3(c) show
the key image, the true depth map for the key image and the
initial coarse and noisy reference depth map respectively. The
depth map is color coded (darker regions are farther from the
camera). Note that there is no information for certain image

TABLE II
3DS: PERCENTAGE DEPTH ERROR FOR THE INITIAL COARSE DEPTH MAP

AND ESTIMATED DEPTH MAPS USING DBPM, CPM AND HANNA.

Percentage depth error

Initial coarse depth map 47.09

Estimated using HANNA 43.49

Estimated using CPM 10.72

Estimated using DBPM 03.56

regions in reference depth map, namely, the part of the building
in the center of the depth map and the two spheres in front. For
all such regions a constant depth value was chosen as the initial
depth estimate. We performed a total of 15 global iterations.
Fig. 4(a) and 4(b) shows the convergence of FOE values for
CPM, DBPM and HANNA and Fig. 4(c) shows the mean
confidence over the entire image for DBPM. The true FOE
and the rotational velocities for this example are (0.20,−0.39)
and (0.0018,−0.0017, 0.0020) respectively. The final esti-
mated FOE values and rotational parameters using DBPM
are (0.21,−0.34) and (0.0016,−0.0017, 0.0021) respectively
which are close to true values. Figs. 3(d), 3(e) and 3(f) show
the estimated depth map using DBPM, CPM and HANNA re-
spectively (regions in white indicating background or negative
depths). Figs. 3(g), 3(h) and 3(i) show the error depth maps
for DBPM, CPM and HANNA respectively. Table II gives
the percentage depth error between the true depth map and
the initial sparse depth map. The texture mapped 3D model
rendered from depth map estimated using DBPM is shown in
Fig. 3(k).

C. Outdoor Sequence

A DEM model of Baltimore downtown (inner harbor area)
was rendered in OpenGL and the reference depth map was
obtained using the Z buffer as shown in Fig. 5(b). The
depth map is color coded (brighter regions are farther from
the camera). The regions where no depth information is
available is shown in black. Fig. 5(a) shows the key frame
from the video sequence which was captured using a Sony
camcorder placed on a cart (not mounted) moving across a
street. Thus the camera motion was not very smooth. The
dominant translational motion was in the camera’s Z direction
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(a) Key image (b) True depth map (c) Reference depth map

(d) Estimated depth map using DBPM (e) Estimated depth map using CPM (f) Estimated depth map using HANNA

(g) Error depth map for DBPM (h) Error depth map for CPM (i) Error depth map for HANNA

(j) Regions (in white) where C ≥ 0.1 for (d) (k) Texture mapped 3D model

Fig. 3. 3DS
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Fig. 4. 3DS: (a and b) Convergence of xf and yf estimates. (c) Mean confidence over the entire image using DBPM.
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Fig. 7. LABS: (a) Convergence of ego-motion parameters using DBPM,
CPM and HANNA. (b) Mean confidence over the whole image using DBPM
and CPM.

with vertical motion close to zero.
The estimated FOE parameters using DBPM, CPM and

HANNA are shown in Figs. 6(a) and 6(b). Fig. 6(c) shows
the mean confidence over the entire image using DBPM.
Figs. 5(d), 5(e) and 5(f) show the estimated depth maps
(brighter regions are farther) using DBPM, CPM and HANNA
respectively. Note the correctly estimated pole and box in the
center and the lamp post in the top right corner. Fig. 5(c)
shows the texture mapped 3D model rendered from the depth
map estimated using DBPM.

D. LABS Sequence

A video sequence of several toy objects was taken in a lab.
The dominant camera motion was in the X direction. Fig. 8(d)
shows the key image from the sequence. For this sequence, we
did not have any prior depth information for the entire image.
Also, since this is an indoor lab sequence, the variation in the
scene depth is small. Therefore, the reference depth map was
chosen to be a constant all over the image. A total of 15 global
iterations were performed. Fig. 7(a) shows the convergence of
ego-motion parameters with global iterations for CPM. The
final estimated ego-motion parameters using CPM were Tx =
1.04, Ty = 0.01, Tz = −0.03, wx = 0, wy = 0.0012, wz =
0. Thus the ego-motion parameters were estimated correctly
(since Ty and Tz are zero, Tx and depths can be recovered only
up to a scale factor). Figs. 8(b) shows the estimated depth map
using CPM (darker regions are farther).

Since the initial depth map Z0 is a constant over the entire
image, as explained in section II-D, the DBPM simplifies to

CPM. However, for the sake of completeness and comparison,
we estimate the ego-motion and depth map using DBPM by
adding a small amount of noise in the reference depth map.
Fig. 7(a) shows the convergence of the ego-motion parameters
with global iterations for DBPM and HANNA. Fig. 7(b)
shows the mean confidence measure over the entire image
using CPM and DBPM which increases as depths get refined.
The final estimated ego-motion parameters using the DBPM
were Tx = 0.97, Ty = 0.01, Tz = −0.03, wx = 0, wy =
0.0011, wz = 0, which are close to the ego-motion estimates
obtained using CPM. Figs. 8(a) and 8(c) shows the estimated
depth map using DBPM and HANNA respectively (darker
regions are farther). Note the finely extracted depth boundaries
for different objects for both DBPM and CPM as compared
to HANNA. Figs. 8(e) and 8(f) show two novel views of the
texture mapped 3D model rendered in OpenGL from the depth
map estimated using DBPM. Thus, this example shows that
for indoor environments, our algorithm works well using both
CPM and DBPM.

V. CONCLUSIONS

An iterative algorithm is presented for estimating ego-
motion and depth recovery from a noisy, coarse and sparse
depth map and image derivatives. A constant parallax model
and a new depth based parallax model for handling significant
depth variations and noise was described for modeling the
parallax field and a total least squares solution along with
confidence measures are derived for both models. Results
and comparisons on synthetic and real sequences (indoor and
outdoor sequences) shows the effectiveness of our approach for
various camera motions and scene structure. In the presence
of significant depth variations and noise in depth estimates,
the depth based parallax model performs much better. When
the depth variations in the scene is less, an initial flat depth
can be used without the need for any prior depth information.
Future efforts will focus on extending the algorithm to multiple
frames and to incorporate a generalized brightness model to
deal with scenes with time-varying illumination.
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(a) Key image (b) Reference depth map (c) Texture mapped 3D model using DBPM

(d) Estimated depth map using DBPM (e) Estimated depth map using CPM (f) Estimated depth map using HANNA

Fig. 5. Outdoor
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Fig. 6. Outdoor: (a and b) Convergence of xf and yf estimates. (c) Mean confidence over the entire image using DBPM.

assistance in data collection.
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