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Abstract. We address the problem of fusing sparse and noisy depth
data obtained from a range finder with features obtained from intensity
images to estimate ego-motion and refine 3D structure of a scene using
a Rao-Blackwellized particle filter. For scenes with low depth variability,
the algorithm shows an alternate way of performing Structure from Mo-
tion (SfM) starting with a flat depth map. Instead of using 3D depths,
we formulate the problem using 2D image domain parallax and show
that conditioned on non-linear motion parameters, the parallax magni-
tude with respect to the projection of the vanishing point forms a linear
subsystem independent of camera motion and their distributions can be
analytically integrated. Thus, the structure is obtained by estimating
parallax with respect to the given depths using a Kalman filter and only
the ego-motion is estimated using a particle filter. Hence, the required
number of particles becomes independent of the number of feature points
which is an improvement over previous algorithms. Experimental results
on both synthetic and real data show the effectiveness of our approach.

1 Introduction

SfM refers to the estimation of 3D scene structure and sensor motion given
monocular or stereo images. With increasing availability of range sensors in 3D
modeling, the need for fusing the depth information from these sensors with in-
formation from intensity images naturally arises. However, the available depth
data from range sensors is often noisy and coarse. We focus on using such coarse
and noisy depth information along with sparse noisy features detected from in-
tensity images to refine the depths and estimate the ego-motion under perspec-
tive projection. A moving camera can be viewed as a dynamical system where
a state space model can be used to describe the motion and/or depths with the
noisy 2D feature points denoting the observations. This approach was used in
[1] where a Kalman filter was used to fuse information from a sequence of im-
ages. In [2], the problem was reformulated to reduce the size of the state space
and an extended Kalman filter was used to handle the non-linearities. The use
of prior rate data for SfM was demonstrated in [3]. Recently, Sequential Monte
Carlo (SMC) methods have emerged as a powerful tool for estimation, prediction
and filtering of non-linear dynamical systems. Kitagawa [4] proposed a Monte
Carlo filter for non-linear/non-gaussian dynamical systems. The bootstrap filter
proposed by Gordon [5] is a similar variant of the SMC method. Several SMC



methods have been proposed to handle various problems in computer vision such
as shape and contour tracking [6], SfM [7], tracking [8], and self-calibration [9].
Most of the existing methods for SfM can be divided into two broad categories
[10]
– Methods which reduce SfM such as [7]. These methods eliminate depths

from the state space (e.g. utilizing the epipolar constraints) and estimate
the camera motion. The structure can be estimated after motion estimation
in a variety of ways such as using another Sequential Importance Sampling
(SIS) procedure as in [7].

– Methods which attempt to estimate both structure and motion simultane-
ously. Here the state space consists of both structure and motion parame-
ters and the size of state space increases linearly with the number of feature
points.

With respect to the problem at hand, both approaches have limitations. The first
approach eliminates depths in motion estimation. Thus, even if we have some
prior depth information, such information can not be used to improve the motion
estimates. The second approach has a considerable disadvantage that the size of
state space increases linearly with the number of feature points as structure is
also a part of the state space. Thus the number of particles in the particle filtering
scheme needs to increase [11][12] which makes it computationally inefficient and
unstable. To overcome the above limitations, we propose a very simple analytical
formulation which has the following advantages
– Structure and motion are estimated simultaneously with a method for in-

corporating prior depth information. Thus structure is also a part of the
state space. Thus our approach can deal with general 3D scenes and is not
restricted.

– Although structure is a part of state space, the number of particles required
is independent of the number of feature points.

The approach proposed in this paper is based on the Rao-Blackwellisation
[13] and marginalized particle filter schemes [11]. If one can find a linear subsys-
tem in the state space model conditioned on the rest of the states, the distribu-
tions corresponding to linear states can analytically integrated. We show that
by working in a 2D domain using parallax, the parallax magnitude with respect
to the projection of the vanishing point form a linear subsystem conditioned on
the non-linear motion parameters. Thus, in our formulation, the non-linear part
of the state space for which a particle filter is used consists of only the motion
parameters and the distributions of the linear part (consisting of parallax mag-
nitudes) is estimated using a Kalman filter. Prior information on depths can be
transferred as prior information on parallax magnitudes and hence an efficient
way of incorporating prior depth information can be obtained. In addition, for
scenes with low depth variability, the approach can be viewed as an alternate
way of performing SfM starting from a flat depth map.

2 Algorithm

Let the Z axis of the camera point in the direction of the principal axis. At time
instant 0, the camera coordinate system is aligned with the world coordinate sys-



tem. We parameterize the motion at time t as mt = (ωx, ωy, ωz, α, γ, s) where
Ψ t = (ωx, ωy, ωz) are the total rotational angles along the X, Y and Z axis upto
current time t, (α, γ) denotes the elevation and azimuth angles and s denotes the
scale. The translation direction is then [sin(α) cos(γ), sin(α) sin(γ), cos(α)]T and

the total translation upto current time is T (α, γ, s) =




Tx

Ty

Tz


 = s×




sin(α) cos(γ)
sin(α) sin(γ)

cos(α)


.

Thus the overall camera motion in the world coordinate system is estimated. The
rotation matrix Rt is then given by (1)

Rt =




η2
1 + (1− η2

1)τ η1η2(1− τ) + η3ζ η1η3(1− τ)− η2ζ
η1η2(1− τ)− η3ζ η2

2 + (1− η2
2)τ η2η3(1− τ) + η1ζ

η1η3(1− τ) + η2ζ η2η3(1− τ)− η1ζ η2
3 + (1− η2

3)τ


 (1)

where η = (η1, η2, η3)T = Ψ t/|Ψ t| is the direction cosine vector, ζ = sin |Ψ t| and
τ = cos |Ψ t|. Let P = [X,Y, Z]T denote a 3D point on the rigid scene in the
world coordinate system. The projection of P on to the image plane at time 0
is given by

p =
[

u
v

]
=

[
X/Z
Y/Z

]
(2)

where we assume that the focal length of the camera equals one (or the image
pixels have been normalized w.r.t. focal length). Thus given the projection p at
time 0, we can parameterize the 3D coordinates1 as X = uZ, Y = vZ. At each
time instant t, the 3D point P t is given by the following motion model

P t = RtP + T t (3)

Let Rt =




r11 r12 r13

r21 r22 r23

r31 r32 r33


. Using (2) and (3), the projection of P t, pt =

[
ut

vt

]
is

ut =
Za + Tx

Zc + Tz
, vt =

Zb + Ty

Zc + Tz
(4)

where for simplicity a = r11u + r12v + r13, b = r21u + r22v + r23 and c = r31u +
r32v+r33. The prior depth information (also referred to as reference depths) gives
us some estimate Ẑ of the 3D point P which essentially correspond to a different
point Q along the 3D ray. Let qt = h(mt, Ẑ) denotes the projection of Qt at

time t. Thus, from (4) qt =
[

ut
q

vt
q

]
=

[
(Ẑa + Tx)/(Ẑc + Tz)
(Ẑb + Ty)/(Ẑc + Tz)

]
. It is well known

that qt−pt lies along the epipolar direction qt−et where et denotes the epipole
[14] [15]. It is also the parallax due to Ẑ. The parallax can be parameterized as
a scalar (parallax magnitude βt) times the vector along the epipolar direction,
i.e. (qt − pt) = βt(qt − et) The exact form of βt is then given by

βt =
Ẑ − Z

Ẑ

Tz

Zc + Tz
(5)

1 We assume the bias in feature points for the first image to be zero for simplicity.



Thus we have pt = qt − (qt − pt) = qt − βt(qt − et)
The above equation gives a linear relationship between the observed pro-

jection pt and the parallax magnitude βt. However, from (5), we observe that
βt depends on Tz or current motion mt. Thus expressing βt in terms of βt−1

and mt−1 becomes cumbersome due to the dependence of βt on mt. We can
get a much simpler formulation if we use a different parametrization based on
the projection of the vanishing point of the 3D ray corresponding to point P .
Although the vanishing point is generally used in context of parallel set of lines,
here by vanishing point (vp) we mean the intersection of the 3D ray correspond-
ing to feature point p (in first frame) with the plane at infinity. Let pvpt denote
the projection of the vanishing point at time t. As Z → ∞, using (4), we have

pvpt =
[

a/c
b/c

]
. Thus, if we write pt = qt − (qt − pt) = qt − βt(qt − pvpt)

one can solve for βt as βt = − Ẑ−Z
Z

c
c+Tz/Z Thus when Tz ¿ Z, i.e. motion in Z

direction is small compared to the depths, we have

βt ≈ −(Ẑ − Z)/Z (6)

which is constant and independent of camera motion across all the frames.
Thus by formulating the parallax with respect to the projection of the vanishing
point, the parallax magnitude becomes independent of camera motion and is lin-
ear with the observations p, given (or conditioned on) the motion and reference
depths.

2.1 State Space Model

Suppose we track N feature points i = 1 . . . N across K time instants t = 1 . . . K.
To capture the motion dynamics, we use a 1-step predictive model for motion.
Let ṁt = (ω̇x, ω̇y, ω̇z, α̇, γ̇, ṡ). The state vector at time t is xt = (xt

nl,x
t
l) =

(mt, ṁt, βt
1, β

t
2, . . . , β

t
N ) consisting of two parts: the non-linear states xt

nl =
(mt, ṁt) and the linear states xt

l = (βt
1, β

t
2, . . . , β

t
N ) consisting of the parallax

magnitudes for all the feature points. The state equations can then be written
as

mt+1 = mt + ṁt + nm ṁt+1 = ṁt + nṁ

βt+1
i = βt

i + wi for i=1. . . N
(7)

where the state noise, nm and nṁ is assumed to be Gaussian for the rotational
velocities and uniform for the translational directional angles and scale. We
also assume a IID gaussian state noise wi ∼ N(0, Ql

i) with very low variance
(Ql

i ≈ 10−3) in βi. The observation equation for i = 1 . . . N can be written as

pt
i = qt

i − (qt
i − pt

i) + np
i = h(mt, Ẑi)− βt

iC(mt, Ẑi) + np
i (8)

where we assume the observation noise for each feature point to be distributed
as np

i ∼ N(0, σ2
p). For each feature point i, qt

i is a non-linear function h of current
motion mt and reference depths Ẑi. Similarly, (qt

i−pvpt
i) is a non-linear function



C of current motion and reference depths. Thus our state space model is of the
form of diagonal model as in [11] and the marginalized particle filter described
in [11] can be used to compute the posterior distributions of motion and parallax
magnitudes. The filtering procedure then follows Algorithm 1 in [11] and we refer
the reader to [11] for further details. In next, we show how to get the prior for
parallax values.

Use of prior depth information In general, the range sensor will provide
some estimate of depth values along with their uncertainties (mean and covari-
ances). For each feature point i, let Ẑi be distributed as Ẑi ∼ N(Zi + mi, σ

2
i ),

where Zi is the true depth value. Thus the reference depth is assumed to fol-
low a Gaussian density around the true depth with mean mi and variance σ2

i .
Using (6), the prior distribution on the parallax magnitude βi will be βi ∼
N(−mi/Zi, σ

2
i /Z2

i ). In practical scenarios, since Zi is not known, we can use the
given reference depth value. Thus we can assume βi ∼ N(−mi/Ẑi, σ

2
i /Ẑ2

i ). For
scenes where depth variability is low, one can use the above formulation starting
with a flat depth map as the reference depths As before, the initial variance of
the parallax magnitude can be set to few pixels.

3 Experiments

In all experiments, we use a particle filter with 2500 particles and estimates
refer to Maximum A-Posteriori (MAP) estimates. Kanade-Lucas-Tomasi (KLT)
feature tracker was used to track features.

Synthetic Data A random cloud of 50 feature points was generated and
their 2D projections were taken in 30 frames. Gaussian random noise of variance
1 pixel was added to feature trajectories. The camera was translated along the
X axis with rotation about the Y axis. Fig. 1(a) shows the trajectories of the X
and Y coordinates of all the noisy feature points with frames. For each feature
point, the reference depth was chosen to be randomly distributed around the
true depth with σ = 0.2 times the depth value. Thus the initial mean and
variance of parallax magnitude for all feature points was set as µi

0|−1 = 0, P i
0|−1 =

σ2. Figs. 1(b), 1(c) and 1(d) shows the estimates of the translation direction,
rotational velocities and scale with frames respectively along with ground truth.
Fig. 1(e) shows the plot of initial reference depths, true depths and estimated
depths for all feature points in the last frame using the estimated parallax. The
estimated depths are close to ground truth.

Face Sequence The face texture images and range data were downloaded
from http://sampl.eng.ohio-state.edu/ sampl/data/3DDB/RID/minolta/faces-
hands.1299. 20 frames of the face sequence were generated from a virtual camera
with the ground truth focal length. Fig. 2(a) shows the tracked features overlayed
on the first frame. The initial (reference) depths were chosen to be equal for all
feature points as shown in Fig. 2(e). Figs. 2(b) and 2(c) show the estimates
of translation direction and rotational velocities. Figs. 2(d) and 2(e) show the
comparison of estimated β and depths with ground truth for all feature points
for the last frame. The estimates are very close to the true values. Figs. 2(f), 2(g)
and 2(h) shows novel views of texture mapped 3D model.
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Fig. 2. Face Sequence

Indoor Sequence A video sequence of several toy objects was taken in
a lab. The dominant camera motion was in the X direction. We choose the
reference depths to be equal (500 units) for all feature points. The initial mean
and variance for the parallax magnitudes were set to 0 and 1 pixel respectively.
A total of 200 feature points were tracked for 30 frames with trajectories shown
overlayed on first frame in Fig. 3(a). The estimates of translation direction and
rotational velocities are shown in Fig. 3(b) and Fig. 3(c) respectively. The final
depth map is obtained by interpolating the estimated depths. Fig. 3(d) to 3(g)
shows novel views of texture mapped 3D model.
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