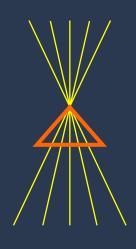
Analytical Forward Projection for Axial Non-Central Dioptric and Catadioptric Cameras

Amit Agrawal Yuichi Taguchi Srikumar Ramalingam

Mitsubishi Electric Research Labs (MERL)

Perspective Cameras (Central)



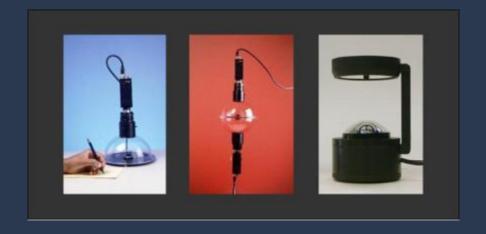
Single Viewpoint (Central)

Perspective Camera

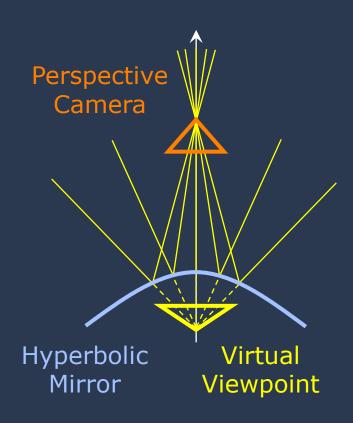
Single Viewpoint

Single-Viewpoint Catadioptric Cameras

- Mirror + Perspective Camera
- Wide Field of View

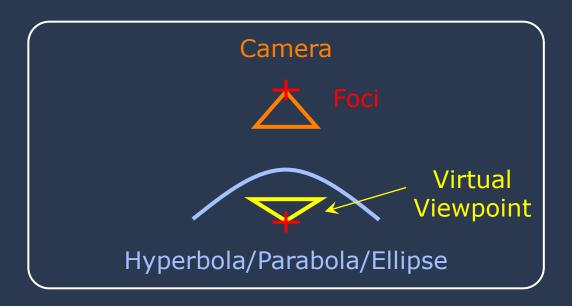


Single Viewpoint (Central)



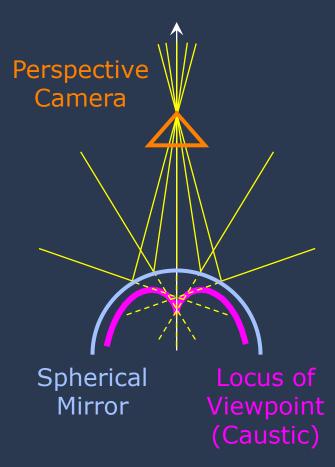
Single-Viewpoint Catadioptric Cameras

[Baker & Nayar 99]



- Only a few single-viewpoint configurations
- Other configurations lead to non-single viewpoint
 - Spherical mirror
 - Camera not on foci
 - Multiple mirrors

Non-Central Catadioptric Cameras



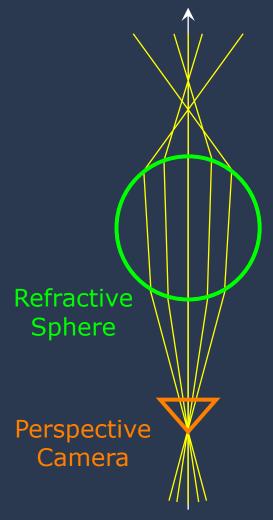
Can we analytically model the projection of 3D points to pixels?

Yuichi

Looking through a refractive glass sphere

Google "Crystal Ball Photography"

Mitsubishi Electric Research Labs (MERL)



Goal

- Exact modeling of non-central cameras
 - Rotationally Symmetric Conic Mirrors & Refractive Sphere
 - Axial configuration: Camera placed on the axis
- Avoid approximations in modeling
 - Central Approximation
 - General linear cameras (GLC) approximation
 - Yu and McMillan, ECCV 2004
- Fast processing
 - Similar computational complexity as perspective camera

Why are non-central cameras difficult to model?

Following two operations are essential for any camera

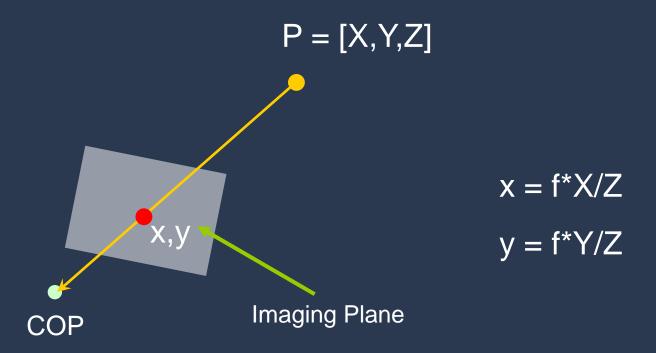
Back Projection

- What is the 3D ray corresponding to a pixel?
- Generic Camera Calibration
 - Grossberg and Nayar, ICCV 2001
 - Sturm & Ramalingam, ECCV 2004
 - Ramalingam et al. CVPR 2005

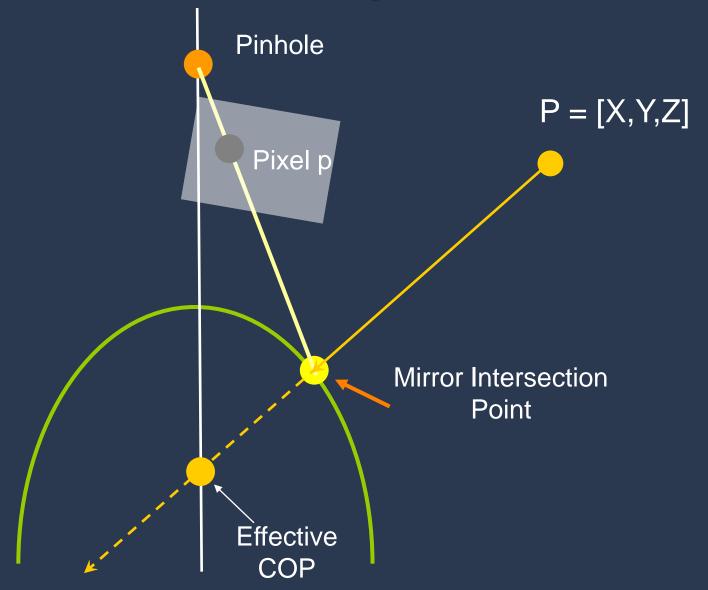
Forward Projection

- What is the projection of a 3D point?
- Inverse Ray Tracing
- Compute the Light-Path

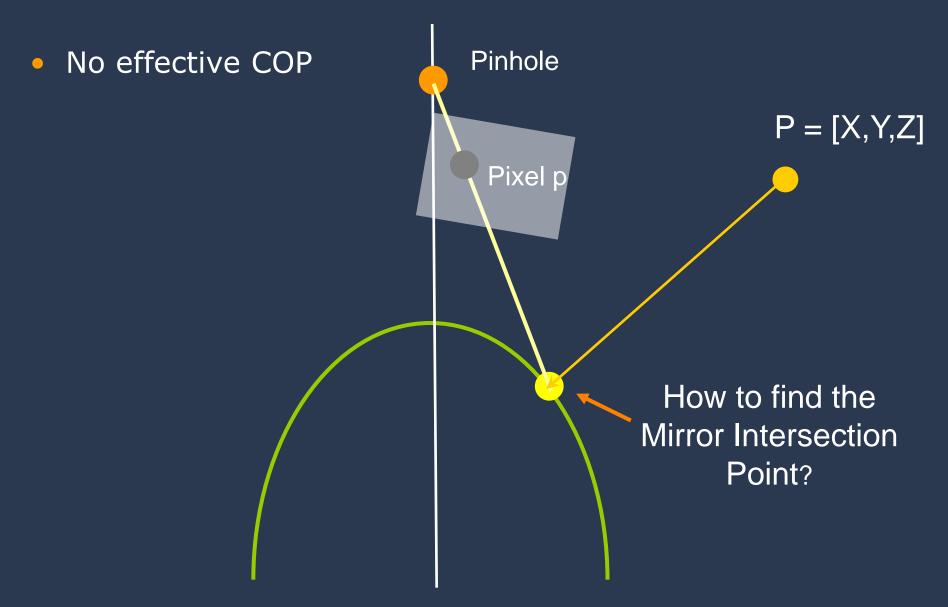
Forward Projection: Easy for Perspective Camera



Easy for Central Catadioptric Camera



But, difficult for Non-Central Camera



Forward Projection for Non-Central Camera

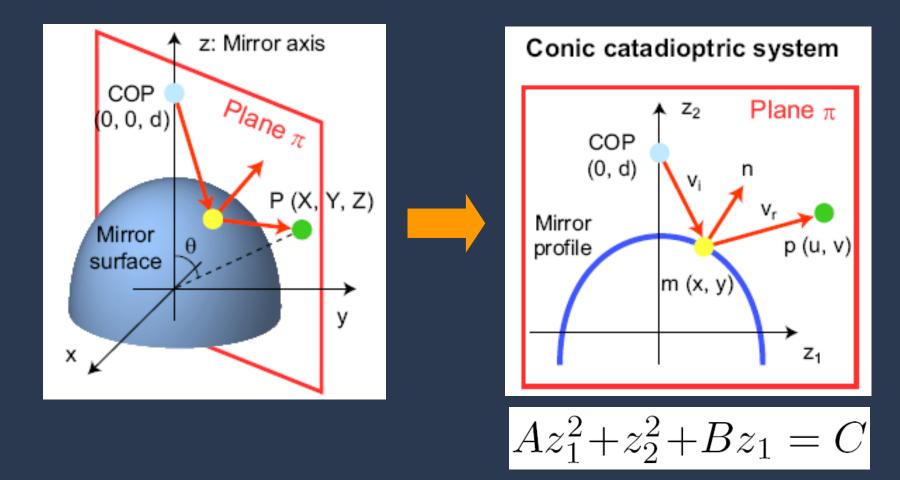
- Given a 3D point P
 - What is the corresponding image pixel p?
- Difficult, no closed form solution
- Can do optimization (Micusik and Pajdla, CVPR 2004)
 - Iterative Forward Projection
 - Slow

Can we obtain analytical solution for forward projection for non-central cameras?

Analytical Forward Projection for Non-Central Cameras

- Axial Configuration
 - Camera lies on the axis of rotationally symmetric mirror
- For conic mirrors
 - Solve 6th degree equation in one unknown
 - Reduces to 4th degree equation for spherical mirror
 - Closed Form Solution
- For refractive sphere
 - Solve 10th degree equation in one unknown
- 100 times speed up
 - 3D reconstruction using bundle adjustment

Finding the Mirror Intersection Point



Mirror Equation

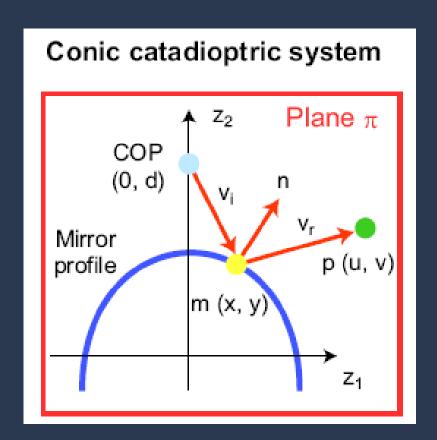
Constraints

[x,y] lies on the mirror

$$Az_1^2 + z_2^2 + Bz_1 = C$$

Mirror Equation

$$x = \pm \sqrt{C - By - Ay^2}$$



Constraints

- Planarity
 - Incoming ray (v_i), normal (n) and reflected ray (v_r) lie on

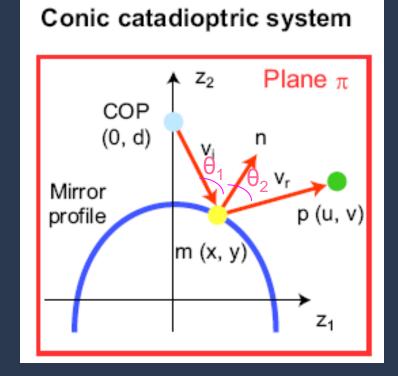
same plane

Angle constraint

$$-\theta_1=\theta_2$$

Use vector form of law of reflection

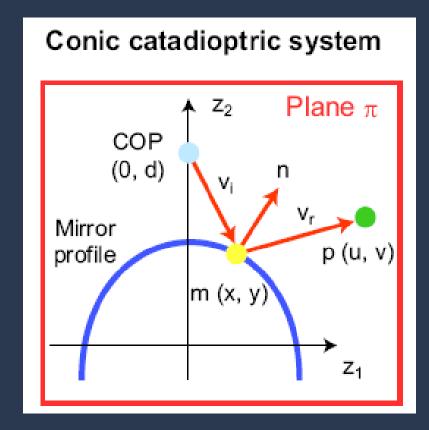
$$\mathbf{v}_r = \mathbf{v}_i - 2\mathbf{n}(\mathbf{n}^T\mathbf{v}_i)/(\mathbf{n}^T\mathbf{n}).$$



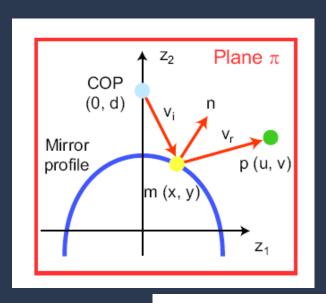
Constraint

The reflected ray should pass through the given point

 $\underline{\quad \text{Cross}(v_r, p - m) = 0}$



Solution



$$Az_1^2 + z_2^2 + Bz_1 = C$$

Mirror Equation

$$x = \pm \sqrt{C - By - Ay^2}$$

$$\mathbf{n} = \begin{bmatrix} x \\ B/2 + Ay \end{bmatrix}, \quad \mathbf{v}_i = \begin{bmatrix} x \\ y - d \end{bmatrix}$$

$$|\mathbf{v}_r = \mathbf{v}_i - 2\mathbf{n}(\mathbf{n}^T\mathbf{v}_i)/(\mathbf{n}^T\mathbf{n}).|$$

$$\mathbf{v}_r \times (\mathbf{p} - \mathbf{m}) = 0$$

Solution

$$u^{2}K_{1}^{2}(y) + K_{2}^{2}(y)(Ay^{2} + By - C) = 0,$$

$$K_1(y) = K_{11}y^3 + K_{12}y^2 + K_{13}y + K_{14}$$

$$K_2(y) = K_{21}y^2 + K_{22}y + K_{23}$$

- 6th degree equation in y
 - 6 solutions
 - Get the correct solution by checking law of reflection
- Obtain x using

$$x = \pm \sqrt{C - By - Ay^2}$$

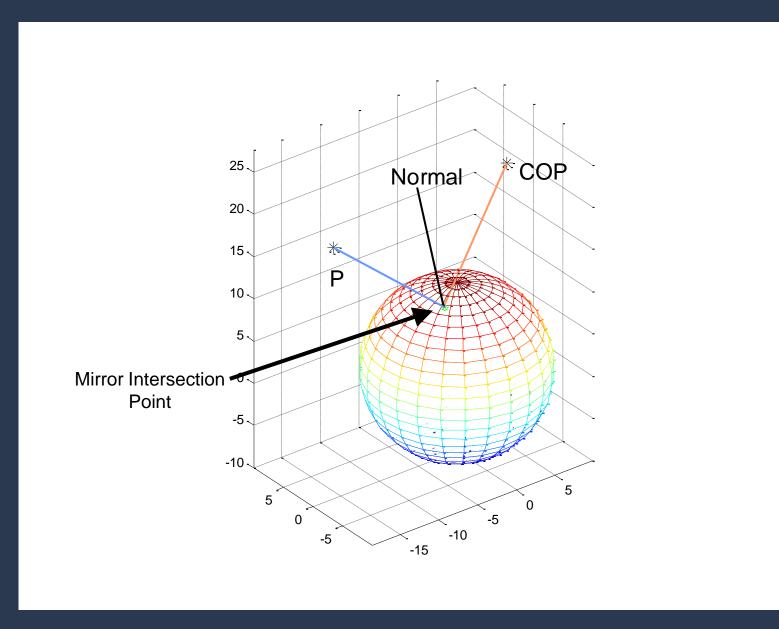
20 lines of Matlab Code

$$Az_1^2 + z_2^2 + Bz_1 = C$$

Mirror Shape	Pinhole Placement	Parameters	Central System	Degree
General	On axis	$_{ m A,B,C}$	No	6
Sphere	Any	A=1, B=0, C>0	No	4
$\operatorname{Elliptic}$	On axis, At Foci	B = 0	Yes	2
$\operatorname{Elliptic}$	On axis, Not at Foci	B = 0	No	6
Hyperbolic	On axis, At Foci	A < 0, C < 0	Yes	2
Hyperbolic	On axis, Not at Foci	A < 0, C < 0	No	6
Parabolic	On axis, $d = \infty$	A = 0, C = 0	Yes	2
<u>Parabolic</u>	On axis, Finite d	A = 0, C = 0	No	5

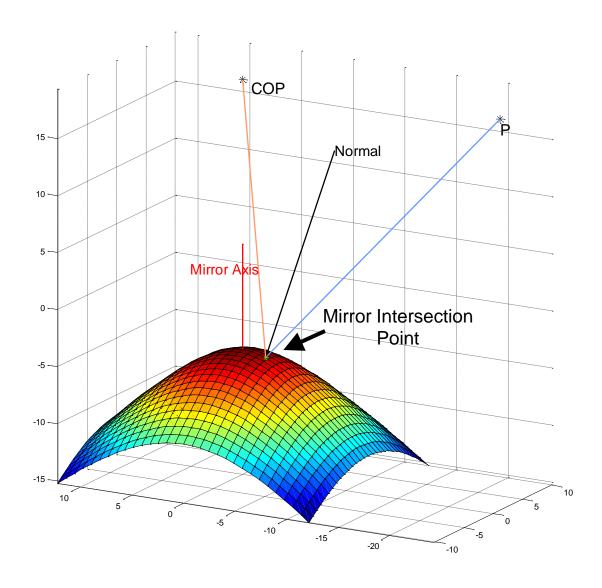
Degree of Forward Projection Equation for Various Configurations

Mitsubishi Electric Research Labs (MERL)



Visualization for Spherical Mirror

Mitsubishi Electric Research Labs (MERL)



Visualization for Hyperbolic Mirror

Forward Projection for Spherical Mirror

- Also known as Alhazen problem or Circular Billiard Problem
 - One of the classical problem in geometry
 - Can be traced back to Ptolemy Optics (AD 150)
 - Described in Book of Optics (~1000 A.D) by Alhazen
- References
 - Marcus Baker, "Alhazen problem", American Journal of Mathematics, Vol. 4, No. 1, 1881, pp. 327-331
 - Heinrich Dorrie, 100 Great Problems of Elementary Mathematics
- Four solutions
 - Intersection of circle and hyperbola

- Forward projection for general mirrors
 - Extension of Alhazen problem

Related Work

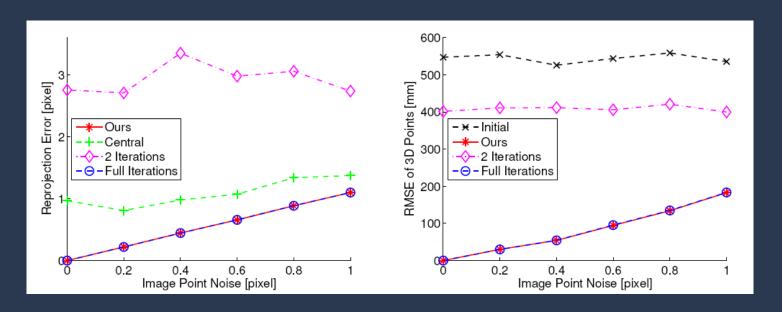
- Optimization for Forward Projection
 - Micusik and Pajdla, CVPR 2004
 - Iterative Forward Projection (IFP)
- Local perturbation method
 - Chen and Arvo, SIGGRAPH 2000
 - Approximation for fast rendering
- GLC Approximation
 - Ding et al. ICCV 2009
- Bertrand Vandeportaele Thesis, 2006 (in French)
 - Analysis in 3D
 - Higher degree (8th degree) equation for ellipsoid

Results: Fast Projection of 3D Points

- Project randomly generated 100,000 points (spherical mirror)
- Matlab on standard PC
- 1120 seconds for IFP
- 13.8 seconds for AFP
- Speed up ~80
- Similar speed up for hyperbolic, elliptical and parabolic mirrors

Sparse 3D Reconstruction: Simulation

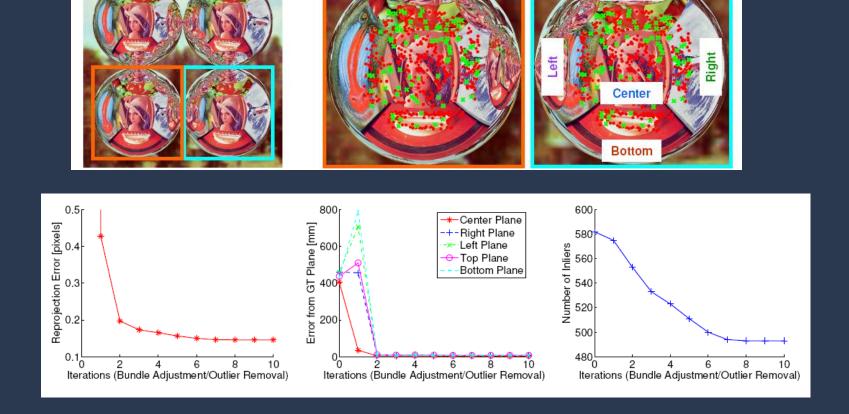
- Single perspective camera looking at 4 spherical mirrors
- Perturb sphere centers and add image noise
- Bundle Adjustment of sphere centers and 3D points



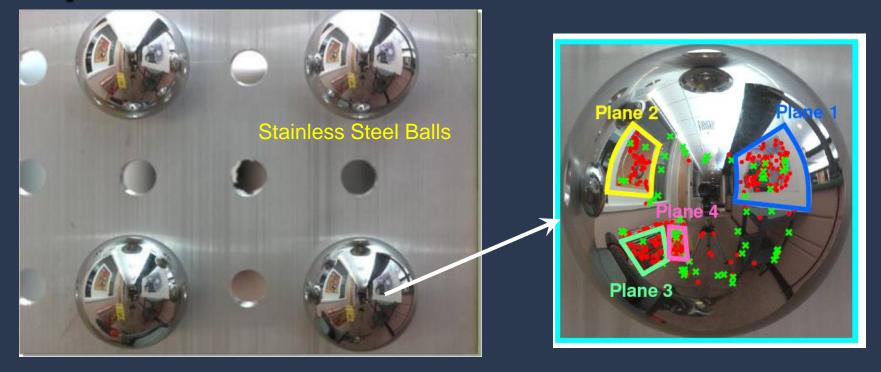
Run Time	Iterative FP	AFP (Without Jacobian)	AFP (With Jacobian)
N = 100	470	6.6	4.0
N = 1000	4200	68	48

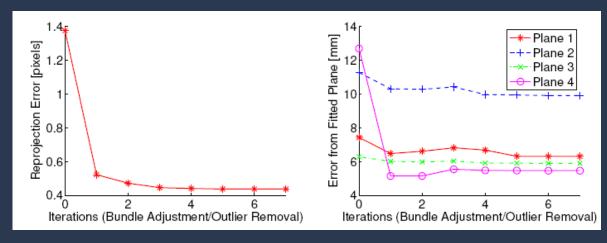
Sparse 3D Reconstruction: PovRay Simulation

- Feature extraction using SIFT
- Iterate bundle adjustment and outlier removal



Sparse 3D Reconstruction: Real Data

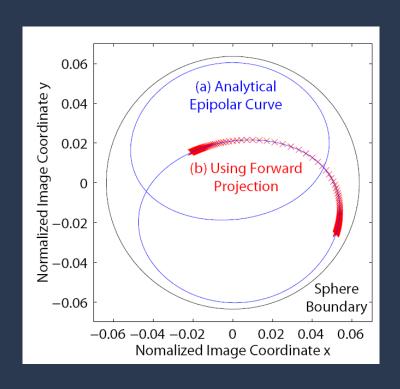




Epipolar Curves (Spherical Mirror)

- Perspective Cameras
 - Epipolar geometry
 - Epipolar lines

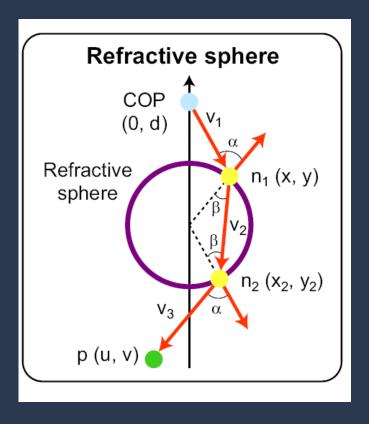
- Central Catadioptric Cameras
 - Epipolar curves (2nd order)
 - Svoboda & Pajdla, IJCV 2002



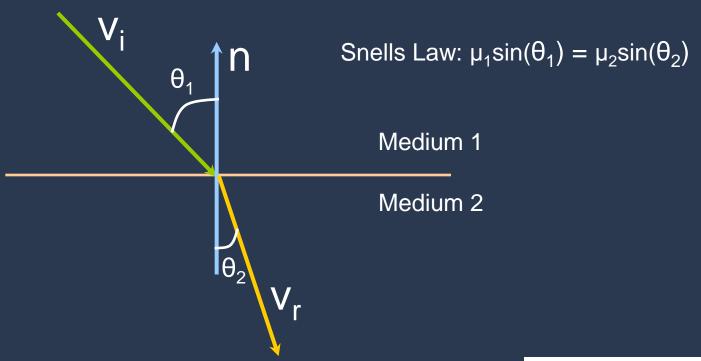
- Non-central Catadioptric Camera (Spherical Mirror)
 - Projection of a line == 4th order curve (Quartic curves)
 - Derivation similar to Strum & Barreto, ECCV 2008
 - Back-projection matrix using lifted image coordinates

Forward Projection for Refractive Sphere

- Refractive index μ
- Key idea 1: Analysis can be done in a plane



Key idea 2



Use vector form of the refraction equation $\mathbf{v}_r = a\mathbf{v}_i + b\mathbf{n}$

$$a = \frac{\mu_1}{\mu_2}, \quad b = \frac{-\mu_1 \mathbf{v}_i^T \mathbf{n} \pm \sqrt{\mu_1^2 (\mathbf{v}_i^T \mathbf{n})^2 - (\mu_1^2 - \mu_2^2) (\mathbf{v}_i^T \mathbf{v}_i) (\mathbf{n}^T \mathbf{n})}}{\mu_2 (\mathbf{n}^T \mathbf{n})}$$

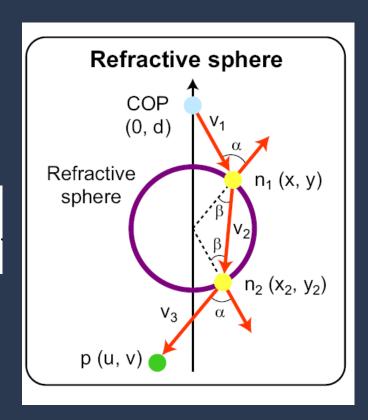
Solution

$$\mathbf{v}_1 = \left[x, y - d \right]^T$$

$$\mathbf{n}_1 = \left[x, y \right]^T$$

$$\mathbf{v}_2 = \frac{1}{\mu} \mathbf{v}_1 + \mathbf{n}_1 \frac{-\mathbf{v}_1^T \mathbf{n}_1 - \sqrt{(\mathbf{v}_1^T \mathbf{n}_1)^2 - r^2(1 - \mu^2)(\mathbf{v}_1^T \mathbf{v}_1)}}{\mu r^2}$$

$$\mathbf{v}_3 = \mu \mathbf{v}_2 + b_3 \mathbf{n}_2$$



Solution

$$0 = K_1(x, y) + K_2(x, y)\sqrt{A} + K_3(x, y)A^{3/2}$$

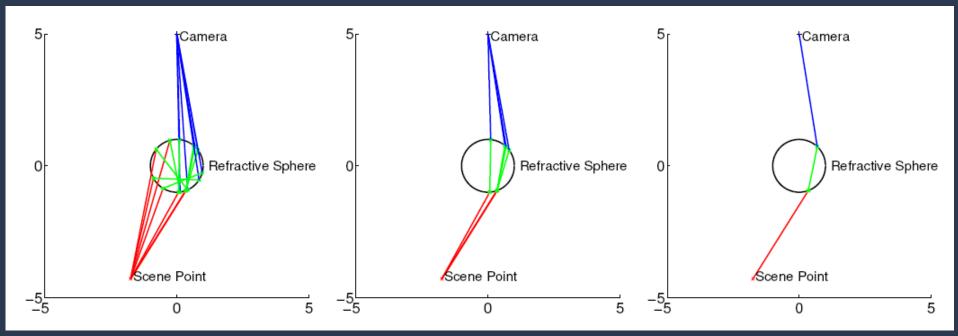
$$A = d^2\mu^2r^2 - d^2x^2 - 2d\mu^2r^2y + \mu^2r^4$$

$$x^2 = r^2 - y^2$$

10th degree equation in y

Visualizing Solutions

- Radius r=1
- Refractive Index $\mu = 1.5$
- D = 5 (distance of camera from refractive sphere)

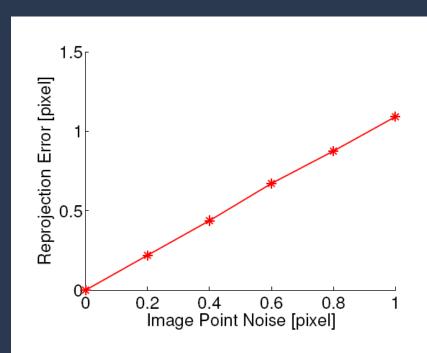


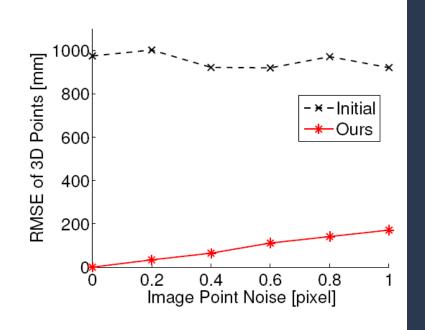
Removing invalid refraction points

Checking Snell's Law

3D Reconstruction using Refractive Sphere

- •Single camera looking through 4 refractive spheres
- Perturb sphere centers and add image noise
- Jointly optimize sphere centers and 3D points





Summary

- Analytical Forward Projection
 - Axial Non-Central Catadioptric cameras
 - Hyperbolic, Elliptical, Spherical and Parabolic Mirrors
 - Refractive Sphere
 - Poor man's fish-eye lens
- Avoid central and GLC approximation
 - Can use exact non-central model
- 100 times speed up over iterative approach
 - Sparse 3D reconstruction using bundle adjustment
- Epipolar curves
 - Quartic curves for Spherical Mirror

Acknowledgments

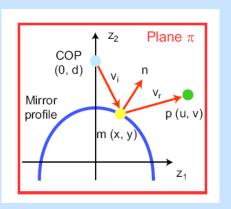
Peter Sturm, INRIA

- MERL
 - Jay Thornton, Keisuke Kojima, John Barnwell

- Mitsubishi Electric, Japan
 - Haruhisa Okuda, Kazuhiko Sumi

Analytical Forward Projection for Non-Central Cameras

Axial Catadioptric CameraSolve 6th degree Equation



Refractive Sphere
Solve 10th degree Equation

