A Theory of Multi-Layer Flat Refractive Geometry

Amit Agrawal
Srikumar Ramalingam
Yuichi Taguchi
Visesh Chari

Mitsubishi Electric Research Labs (MERL)

INRIA

Imaging with Refractions

Source: Shortis et al. SPIE 2007

BP Oil Disaster, 5000 feet under sea level

Deepsea Challenger submersible

Stereo Cameras, LED lights

Imaging through refractions

- Not the same as pinhole imaging
- Pinhole model (central approximation) is not valid

Calibration

Source: Shortis et al. SPIE 2007

Multi-Layer Flat Refractive Systems

Camera

Flat Refracting Layers

Single Planar Checkerboard

- -Unknown Orientation of Layers n
- -Unknown Layer Thickness d₀, d₁, ... d_{k-1}
- -Unknown Refractive Indices $\mu_0, \mu_1, ..., \mu_{k-1}$
- -Unknown Pose of the Checkerboard (R,t)

Related Work

- Treibitz et al. CVPR 2008
 - Singe Refracting Layer
 - Known refractive index
 - Known distance of checkerboard
 - Optimize over one parameter d
 - Known internal camera calibration

- This paper
 - Multiple layers, unknown refractive indices
 - 2K parameters for K layers
 - Unknown Pose of calibrating object (6 parameters)
 - Unknown Orientation of layers (2)
 - 8 + 2K parameters
 - Single layer 10 parameters
 - Two Layers 12 parameters

Flat Refraction Constraint (FRC)

Camera

Flat Refracting Layers

q <-> RP+t (2D-3D correspondence)

Transformed 3D point (RP+t) should lie on the outgoing ray vk

FRC for Single Layer

- Non-Linear Equation in 10 unknowns
- Difficult to solve
- Complexity increases with each additional layer

Modeling Flat Refractions

- Pinhole Model is not good
 - Non-single view point camera
 - Well-known in photogrammetry (Kotowski 1988)
 - Treibitz et al. CVPR 2008
- Flat Refraction corresponds to Axial (non-central) camera
 - All outgoing rays pass through an axis
 - Axis: Camera ray parallel to layer orientation n

Flat Refraction == Axial Camera

Transformed 3D point (RP + t) should also lie on the plane of refraction

$$(R\mathbf{P} + \mathbf{t})^T (\mathbf{A} \times \mathbf{v}_0) = 0$$

Key Idea: Coplanarity Constraint

- Transformed 3D point (RP+t) should lie on plane of refraction
 - Weaker constraint than FRC
- Axis A, Camera ray v₀

$$(R\mathbf{P} + \mathbf{t})^T (\mathbf{A} \times \mathbf{v}_0) = 0$$

Independent of number of layers, layer distances and their refractive indices

Allows estimating axis and pose independently of other calibration parameters

Coplanarity Constraint

$$(R\mathbf{P} + \mathbf{t})^T (\mathbf{A} \times \mathbf{v}_0) = 0$$

$$E = [\mathbf{A}]_{\times} R$$
 and $\mathbf{s} = \mathbf{A} \times \mathbf{t}$.

$$\mathbf{v}_0^T E \mathbf{P} + \mathbf{v}_0^T \mathbf{s} = 0$$

- Translation along axis vanishes in s
- 5 out of 6 pose parameters can be computed

11 Point Linear Algorithm

$$v_0^T E_{3x3} P + v_0^T S_{3x1} = 0$$

Using 11 2D-3D correspondences, we get 11 by 12 matrix B

$$\underbrace{\begin{bmatrix} (\mathbf{P}(1)^T \otimes \mathbf{v}_0(1)^T) & \mathbf{v}_0(1)^T \\ \vdots & \vdots \\ (\mathbf{P}(11)^T \otimes \mathbf{v}_0(11)^T) & \mathbf{v}_0(11)^T \end{bmatrix}}_{\mathbf{B}} \begin{bmatrix} E(:) \\ \mathbf{s} \end{bmatrix} = 0$$

SVD based solution

Similarity with 5-point Relative Pose Problem

- $E = [A]_x R$, where A is the axis and R is unknown rotation
- For relative pose between two cameras
 - Essential matrix $E = [t]_x R$, where t is the translation
 - 5-point algorithm [Nister 2004]

We can map our problem to the5-point Relative Pose problem

8-Point Axis Estimation Algorithm

$$v_0^T E P + v_0^T s = 0$$

- Using 8 correspondences, we get 8 by 12 matrix B
- Solution lies in 4 dimensional sub-space

$$\begin{bmatrix} E(:) \\ \mathbf{s} \end{bmatrix} = \lambda_1 \mathbf{V}_1 + \lambda_2 \mathbf{V}_2 + \lambda_3 \mathbf{V}_3 + \lambda_4 \mathbf{V}_4$$

$$E(:) = \lambda_1 \mathbf{V}_1(1:9) + \lambda_2 \mathbf{V}_2(1:9) + \lambda_3 \mathbf{V}_3(1:9) + \mathbf{V}_4(1:9)$$

Feed subspace vectors to Nister's Solver and obtain λ_i

8-Point Axis Estimation Algorithm

Compute Axis from E as left null-singular vector

$$-A^{T} E = 0$$

- Compute Rotation matrices from E
 - Hartley and Zisserman, Multiview Geometry
 - Twisted pair ambiguity
 - Similar to Relative Pose problem

Obtaining Remaining Calibration Parameters

- Coplanarity Constraint
 - Obtain axis A, rotation R, and $s = A \times t$

- Remaining calibration parameters
 - Translation along axis t_A
 - Layer Thickness $d_{i, i} = 1$ to k
 - Layer Refractive Indices $\mu_{i,j} = 1$ to k

Known Refractive Indices

- Ray directions of $v_1, \dots v_k$ can be computed using Snell's Law
- Layer Thicknesses d_i and t_A can be computed linearly

Linear System

Light Path Triangulation

Steger and Kutulakos, IJCV 2008

- Triangulation is not possible for more than 2 refractions
- General Shapes
- Theoretically possible for multi-layer flat refractions
 - Partial knowledge of shape
 - Flat layers, parallel to each other

Case 1: Single Layer

Case 2: Two Layers

Special Case: Looking through a medium

- Camera and Object are in the same refractive medium
- Example
 - Looking through a thick glass slab
 - (Air Glass Air)
 - Final refracted ray v_2 is parallel to camera ray v_0

Special Case: Two Layers

Special Case: Looking through a medium

- Camera and Object are in the same refractive medium
- Distance to the refractive medium d₀ cannot be estimated
 - Kutulakos and Steger
- Thickness of the medium d₁ can be estimated
- Pose estimation can be done

Multiple Layers

• If two layers i and j have same refractive indices

$$-\mu_i = \mu_j$$

Then only the combined layer thickness d_i + d_j can be estimated

Summary of Calibration

- Step 1: Compute Axis, Rotation and s
 - Using 11 pt or 8 pt algorithm
- Step 2: Compute layer thickness and t_A
 - Solve a linear system
- Unknown Refractive Indices
 - Step 1 remains the same
 - Step 2
 - Solve 6th degree equation for Single Layer
 - Solve 6th degree equation for Air-Medium-Air
 - Too difficult to solve general two layer case

Analytical Forward Projection

- Projection of 3D point onto the image plane?
- Required for minimizing re-projection error
 - bundle-adjustment in SfM
 - Refine calibration parameters

- Perspective projection equations
- $x = P_x/P_z$, $y = P_y/P_z$

Analytical Forward Projection

- Single Layer
 - 4th degree equation
 - Glaeser and H.-P.Schrocker. Reflections on refractions, J.
 Geometry and Graphics, 4(1):1–18, 2000

Analytical Forward Projection

- Two Layers
 - Air Medium Air
 - General Case

4th degree equation

12th degree equation

Real Experiment using fish tank

Calibration

- Unknown Thickness of Tank
- Unknown Orientation of Tank
- Unknown Pose of Checkerboards

Photo without tank

Results

• Thickness of tank measured using ruler = 260 mm

	Estimated Rotation of Checkerboard	Estimated Translation of Checkerboard	Estimated Tank Thickness
Ground truth	131.3, 1.2, 84.0	-237.5,-128.8, 455.8	260
Pinhole Model	130.2, 1.4, 83.8	-217.7,-120.7, <mark>372.1</mark>	
Ours (using all planes)	131.3, 1.2, 84.1	-237.1,-128.1, 453.1	255.69
Using Single Plane	131.4, 1.3, 84.0	-239.7,-129.2, 456.3	272.81

Reprojected 3D Points

Summary

- Multi-Layer Flat Refractions == Axial Camera
 - Pinhole camera model is not a good approximation
 - Calibration algorithm
 - Coplanarity Constraints
- Applicable to
 - Spherical Ball Refraction (Agrawal et al. ECCV 2010)
 - Catadioptric Cameras (quadric mirrors)
 - Radial distortion correction (Hartley-Kang PAMI 2007)

Analytical Forward Projection

A Theory of Multi-Layer Flat Refractive Geometry

Additional Slides

Related Work

- Calibration of Axial Cameras
 - Ramalingam, Sturm and Lodha, ACCV 2006
 - Requires checkerboard in three positions
 - Tardiff et al. PAMI 2009
 - Models each distortion circle separately

- This paper
 - Calibration using single checkerboard
 - Plane based calibration
 - Global Model

Relationship with Hartley-Kang Algorithm

- Parameter-free radial distortion correction
 - PAMI 2007
- Similar formulation as our coplanarity constraint
 - 8 point algorithm can be applied