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Abstract

We propose a new technique for edge-suppressing op-

erations on images. We introduce cross projection tensors

to achieve affine transformations of gradient fields. We use

these tensors, for example, to remove edges in one image

based on the edge-information in a second image. Tradi-

tionally, edge suppression is achieved by setting image gra-

dients to zero based on thresholds. A common application

is in the Retinex problem, where the illumination map is re-

covered by suppressing the reflectance edges, assuming it is

slowly varying.

We present a class of problems where edge-suppression

can be a useful tool. These problems involve analyzing im-

ages of the same scene under variable illumination. Instead

of resetting gradients, the key idea in our approach is to

derive local tensors using one image and to transform the

gradient field of another image using them. Reconstructed

image from the modified gradient field shows suppressed

edges or textures at the corresponding locations. All op-

erations are local and our approach does not require any

global analysis.

We demonstrate the algorithm in the context of several

applications such as (a) recovering the foreground layer un-

der varying illumination, (b) estimating intrinsic images in

non-Lambertian scenes, (c) removing shadows from color

images and obtaining the illumination map, and (d) remov-

ing glass reflections.

1. Introduction

Our goal in this paper is to design edge-suppressing op-

erations on images. Image formation depends on shape and

reflectance of the objects in the scene and the scene illu-

mination. Scene analysis involves, for example, factoring

the image to recover the reflectance or illumination map. In

techniques that use local per-pixel operations, a common

approach is to preserve (or suppress) image gradients at

known locations so that in the recovered map, correspond-

Figure 1. Edge suppression under varying illumination using affine

transformation of gradient fields. (Left Column) Two images of a

scene captured under different illumination, but with one having a

foreground object. By removing edges in ∇A which are present in

∇B, we recover the foreground layer A′. Notice that A′ is free of

all scene texture edges apart from those due to the box (even inside

the box shadow). (Right Column) Ambient and flash images of a

book on a table. We remove the edges from ∇A using ∇B to get

∇A′, which is integrated to obtain the illumination map A′. Even

though the face of the book is highly textured, A′ does not have

effects of scene texture. Reconstruction from ∇A−∇A′ gives the

shadow free image A′′.

ing edges and textures are preserved (or suppressed). For
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instance, the Retinex algorithm by Land and McCann [11]

assumes reflectance to be piece-wise constant (Mondrian

scenes) and illumination to be smooth. Horn [9] proposed

to manipulate the image gradient field under these assump-

tions, by setting large derivatives corresponding to the re-

flectance edges to zero using thresholds. By integrating

the modified gradient field, one can recover the illumina-

tion map.

However, a single threshold for the entire image cannot

account for illumination and reflectance variations across

the image. In this paper, we propose a new method for ma-

nipulating image gradient fields based on affine transforma-

tion using projection tensors. Our approach provides a prin-

cipled way of removing scene texture edges from images

as compared to thresholding (or zeroing the corresponding

gradients). We make no assumptions on ambient lighting,

smoothness of the reflectance or the illumination map and

do not use explicit shadow masks.

Scene analysis from a single image is a challenging task.

We use more than one image under variable illumination for

recovering the maps. We show how to remove edges to han-

dle foreground objects, shadows, and glass reflections in an

image, using a second image of the same scene taken un-

der different illumination condition. Our approach is based

on obtaining the projection tensor from one image and us-

ing it to transform the gradient field of the other image. We

present techniques that work under natural as well as active

illumination variations. For natural illumination, we use an

approach proposed by Weiss [26], which uses multiple im-

ages for estimating intrinsic images and improve on the es-

timation of illumination maps. For active illumination, we

use the attached flash unit in digital cameras to introduce ad-

ditional illumination in the scene. These additional images

are used to extract reliable information about the scene tex-

ture edges, thus avoiding hard thresholds and assumptions

on smoothness of reflectance or illumination images.

1.1. Contributions

• We propose a new technique which use cross projec-

tion tensors derived from local edge structures in one

image to suppress edges in a second image.

• We present a class of problems where edge-

suppression can be a useful tool. We show applica-

tions in traditional problems such as recovering the re-

flectance or the illumination map and demonstrate use-

fulness in other problems such as recovering reflection

or foreground layers.

1.2. Related work

Intrinsic images were proposed as a useful mid-level

scene description by Barrow and Tenenbaum [3]. The ob-

served image is considered to be the product of a reflectance

image and an illumination image [9, 26]. Decomposing a

given image into intrinsic images is an ill-posed problem.

Funt et al. [8] extended the Retinex problem to color im-

ages, again using thresholds but correcting for the non-zero

curl of the modified gradient field. Impressive results were

shown by Finlayson et al. [7] for removing shadows from a

single color image, by projecting the 2D log-chromaticities

along an invariant direction. However, their approach re-

quires imaging under Planckian lights (daylight is a close

approximation). In addition, they have an explicit shadow

mask for zeroing the edges corresponding to shadows. Re-

cently, Weiss [26] proposed to use multiple images of a

scene under changing illumination for estimating intrinsic

images. A probabilistic approach, based on maximum-

likelihood (ML) estimation was proposed in [26], assuming

the scene to be Lambertian. However, for non-Lambertian

scenes, the estimated reflectance image does not accurately

represent the scene reflectance and some portion of the

scene reflectance will be included in the illumination im-

ages [13]. Matsushita et al. [13] proposed to remove the

scene texture edges from the illumination images using a

manually specified threshold. Our approach provides a nat-

ural way of removing such effects of scene texture by re-

moving the scene texture edges present in the reflectance

image from the intensity images, thus avoiding the thresh-

olding altogether.

Our approach can also be used to remove complex scene

structures such as reflection layers due to glass. While pho-

tographing through glass, flash images (images under flash

illumination) usually have undesirable reflections of objects

in front of the glass. We show how to recover such reflection

layers. Agrawal et al. [1] proposed a gradient projection

technique to remove reflections by taking the projection of

the flash image intensity gradient onto the ambient image

intensity gradient. We show that the gradient projection al-

gorithm is a special case of our approach, and introduces

color artifacts which can be removed by our method. Other

methods for reflection removal include changing polariza-

tion or focus [14, 19] and Independent Component Analysis

(ICA) [6].

Background subtraction is used to segment moving re-

gions in image sequences taken from a static camera [5, 20].

There exists vast literature on background modeling us-

ing adaptive/non-adaptive Gaussian mixture models and its

variants. See review by Piccardi [16] and references therein.

Layer separation in presence of motion has been discussed

in [18, 21]. We show how mutual edge-suppression can be

effectively used for foreground extraction of opaque lay-

ers. Our gradient-based approach relies on local structure

rather than absolute intensities and can handle significant

illumination variations across images.

Local structure tensors and diffusion tensors derived

from them have been used for spatio-temporal image

processing and optical flow [10], and PDE based image reg-
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Figure 2. Suppressing edges in image A using image B by affine transformation of gradient field using cross projection tensors. The cross

projection tensor DB is obtained using images. The gradient field ∇A is transformed using DB to give ∇A′, removing those edges from

A which are present in B. Reconstruction from ∇A′ gives image A′, with corresponding edges suppressed. Reconstruction from the

difference gradient field (∇A −∇A′) gives image A′′, which preserves those edges in A which are also present in B.

ularization [2, 22, 23, 25]. These approaches are based on

modifying the image intensities using the non-linear diffu-

sion equation

It = div(D∇I), (1)

where div denotes the divergence operator, ∇I is the im-

age gradient and D denotes the diffusion tensor. In com-

parison, our approach is a gradient domain approach based

on transforming the gradient field ∇I using D. Recently,

gradient domain algorithms have been used for Poisson

image editing [15], day night image fusion [17], and seam-

less image stitching [12]. Our approach is inspired by these

algorithms.

2. Affine transformation on gradient fields

Let I(x, y) be an intensity image and ∇I =

[
gx

gy

]
de-

note the gradient vector of I at each pixel. The smoothed

structure tensor Gσ is defined as [22]

Gσ = (∇I∇IT ) ∗ Kσ =

[
g2

x gxgy

gxgy g2

y

]
∗ Kσ, (2)

where ∗ denotes convolution and Kσ is a normalized 2D

Gaussian kernel of variance σ. The matrix Gσ can be de-

composed as

Gσ = V ΣV T =
[

v1 v2

] [
λ1 0
0 λ2

] [
vT
1

vT
2

]
, (3)

where v1, v2 denote the eigen-vectors corresponding to the

eigen-values λ1, λ2 respectively and λ2 ≤ λ1. The eigen-

values and eigen-vectors of Gσ give information about the

local intensity structures in the image [2]. For homogeneous

regions, λ1 = λ2 = 0. If λ2 = 0 and λ1 > 0, it signifies

the presence of an intensity edge. The eigen-vector v1 (cor-

responding to the higher eigen-value λ1) corresponds to the

direction of the edge.

For the problem of image restoration based on diffusion

process, Weickert [24, 25] proposed a generalization of the

divergence based equation given by (1), where D is a field

of diffusion tensors. At each pixel, D(x, y) is a 2 × 2 sym-

metric, positive definite matrix. Weickert proposed to de-

sign the diffusion tensors D by selecting its eigen-vectors

u1, u2 and eigen-values µ1, µ2 based on the eigen-values

and eigen-vectors of Gσ . D is then obtained as

D =

[
D11 D12

D12 D22

]
=

[
u1 u2

] [
µ1 0
0 µ2

] [
uT

1

uT
2

]
.

Several designs for obtaining D have been proposed for co-

herence enhancing diffusion [2, 25], edge enhancing diffu-

sion [2], color image restoration, in-painting, and magnifi-

cation [23]. Usually, D is obtained from the given image

I . All these approaches modify the image intensities using

the diffusion equation (1). In this paper, we show how to

obtain projection tensors and discuss the properties and ap-

plications of affine transformation of the gradient field ∇I

of an image using them.

2.1. Self­Projection Tensors

We first discuss how to remove edges from a single im-

age by estimating projection tensors from the image itself.

The idea is to project the image gradient vector onto its own

orthogonal direction and hence the name self-projection

tensors. This analysis will lead us to our main idea of cross-

projection tensors: to estimate these tensors from a second

image and apply them to the given image to suppress edges.



Figure 3. Affine transformation on image gradient field using

Dself for different σ. (Top row) Lena image and the correspond-

ing gx and gy . (Second row) Components D11, D12 and D22 of

Dself with σ = 0. (Third row) Transformed gradients g′

x, g′

y , and

the image I ′ reconstructed from them. g′

x, g′

y and I ′ are zero all

over. (Last two rows) Components of the projection tensor, mod-

ified gradient field and the reconstructed image corresponding to

Dself using σ = 0.5. Even if σ > 0, all dominant edges are

removed. A non-zero σ incorporates spatial information over the

neighborhood for better estimation of cross projection tensors in

presence of noise. D11 and D22 are shown between [0, 1]. D12 is

shown between [−1, 1].

v
1

Dv1=0

Affine 
Transformation

Image

v
1

v
1

θθ

Figure 4. Visualizing affine transformation on gradient vectors. At

each pixel in an image, v1 corresponds to the direction of the dom-

inant edge. After affine transformation using Dself , any vector

gets projected to the direction orthogonal to the local gradient vec-

tor v1.

2.1.1 Gradient Projection

In [1], Agrawal et al. proposed the technique of gradient

projection (GP) to remove artifacts from flash image using

a no-flash ambient image. They project the flash image gra-

dient onto the direction of the ambient image gradient to

remove spurious edges from flash image due to glass re-

flections. They use the idea that the direction of the image

gradient remains stable under illumination changes [4]. We

first show that taking a projection can also be defined by an

affine transformation of the gradient field.

As discussed in previous section, the eigen-vector v1 of

the structure tensor matrix Gσ correspond to the direction

of the edge. Suppose we define the self-projection tensor

Dself as

u1 = v1 u2 = v2, µ1 = 0 µ2 = 1,

Dself =
[

v1 v2

] [
0 0
0 1

] [
vT
1

vT
2

]
(4)

It is easy to see that an affine transformation of the image

gradient using Dself will remove the local edge.

Dself v1 =
[

v1 v2

] [
0 0
0 1

] [
vT
1

vT
2

]
v1

=
[

v1 v2

] [
0 0
0 1

] [
1
0

]
=

[
0
0

]
.

(5)

Figure 4 shows the effect of transforming gradient vectors

using Dself . All vectors are projected to the direction or-

thogonal to the local gradient vector v1. Thus, we can es-

tablish the following relationship.

Transforming a vector using Dself is equivalent to pro-

jecting on the orthogonal direction of the local gradient vec-

tor.

Figure 3 shows the reconstructed images obtained by in-

tegrating the transformed gradient field of the Lena image

using Dself . To handle noise, it is useful to have a larger

spatial support by using σ > 0 for reliable estimation of the

direction of the local edge. In that case, although the esti-

mated v1 may not lie in the null space of Dself , the affine

transformation can still remove the dominant edges from

the gradient field ∇I . Figure 3 shows that with σ = 0, the

reconstructed image I ′ is zero everywhere. With σ = 0.5,

I ′ has most of its edges removed.

The gradient projection approach as described in [1]

cannot handle homogeneous regions and introduces color

artifacts (see Figure 6). This is because it does not in-

clude neighborhood support for gradient direction estima-

tion, which is unstable in presence of noise and low fre-

quency regions. In addition, the projection is done for each

channel separately which leads to color artifacts. In the next

section, we show how to estimate cross-projection tensors.

Our approach combines information spatially (using σ > 0)



and across channels to handle noise and have no color arti-

facts.

3. Cross-Projection Tensors

We now show how to remove the scene texture edges

from an image by transforming its gradient field using cross

projection tensors obtained from a second image of the

same scene (see Figure 2). The final image is obtained by a

2D integration of the modified gradient field.

Let A and B denote the two images. Let GA
σ and GB

σ

denote the smoothed structure tensors for image A and B

respectively. The eigen-values and eigen-vectors of GA
σ and

GB
σ will be denoted by superscripts A and B respectively.

The technique for obtaining the cross projection tensor DB

is explained now. Note that by transforming ∇A with DB ,

we wish to (a) remove all edges from A which are present

in B, and (b) retain all edges in A which are not in B. To

obtain DB , we propose the following rules:

• u1 = vB
1

, u2 = vB
2

.

• If B is homogeneous (λB
1

= 0)

– If A is also homogeneous (λA
1

= 0), set µ1 =

µ2 = 0. This results in D(x, y) =

[
0 0
0 0

]
for

that pixel.

– If A is not homogeneous (λA
1

> 0), set µ1 =

µ2 = 1. This results in D(x, y) =

[
1 0
0 1

]

and edges which are in A but not in B can be

retained.

• Else, if there is an edge in B (λB
1

> 0), remove that

edge by setting µ1 = 0, µ2 = 1.

In practice, due to noise and gradient estimation using

finite differences, a small non-zero value (e.g., 1) is used

as a threshold to decide for homogeneity. One might think

that the above homogeneity threshold needs to vary across

the image, if the image has spatially varying illumination.

Since we take into account the direction of the edge, we do

not need spatially adaptive thresholds. Figure 1 shows such

an example. Also note that there are no other thresholds in

our scheme.

3.1. Combining information across color channels

The above formulation can be used for gray scale im-

ages. A naive way of handling color images would be to ob-

tain the cross projection tensor for each channel and trans-

form the gradient field in each channel separately. How-

ever, this scheme introduces color artifacts in the final re-

constructed image as the projection tensor does not utilize

information across channels. To this end, we obtain a com-

mon cross projection tensor for all channels by estimating a

common Gσ matrix as [22]

Gσ = (
3∑

i=1

(∇Ii∇IT
i )) ∗ Kσ, (6)

where i denote the color channel.

4. Applications

We show applications on recovering the foreground layer

under varying illumination, estimating intrinsic images for

non-Lambertian scenes, removing shadows from color im-

ages, recovering the illumination map, and removing glass

reflections from images1. We use σ = 0.4 in all the experi-

ments.

4.1. Recovering the foreground layer under varying
illumination

Background subtraction and foreground layer recovery

is a challenging problem in the presence of significant il-

lumination variations. Consider the pair of images in the

first column of Figure 1. Image A was captured with a fore-

ground object (raisin box) illuminated from a table lamp on

the right. Image B was captured with the table lamp on

the left, but without the object. Notice the spatially non-

uniform illumination in the images. Intensity based mea-

sures such as frame differencing cannot discount such illu-

mination variations across images. Using normalized cross-

correlation can handle varying illumination, but only in tex-

tured regions.

We compute the cross projection tensor DB at each pixel

using the background image B and transform the gradient

field ∇A using DB to obtain ∇A′. This suppresses all

the texture edges corresponding to the background. The

foreground layer is obtained by integrating ∇A′. The re-

covered foreground layer is free of the background texture,

even inside the shadow of the box. Notice that a part of the

foreground (red box) is similar in color to the background

(red book). A color based differencing approach will fail at

such regions. In addition, homogeneous regions on the fore-

ground objects will leave holes for any local pixel intensity

based approach. Our method is able to ”fill-in” such regions

by propagating information from edges during the integra-

tion of the modified gradient field. However, edges of the

foreground object which align with the background edges

(i.e., share the same gradient vector direction) are treated

as part of the background and suppressed. Fortunately, as

is well known, the likelihood of alignment of 1D features,

such as edges, on two different objects is low. Neverthe-

less, in overlapping high frequency regions the likelihood

is increased and some foreground edges may be lost. No-

tice how the top of the text ”SUN-MAID” on the red box is

smeared in A′, as it overlaps with the red book binding in

the image B.

1Matlab code and images are available at http://www.umiacs.

umd.edu/∼aagrawal/



Figure 5. Recovering intrinsic images for an outdoor non-Lambertian scene. (Top row) Input images of an outdoor scene taken at different

times of the day and the ML reflectance image. (Bottom row) Estimated illumination images using ML estimation and our approach.

The scene texture edges (white stripes on the road) are visible in the ML illumination images. These are removed in our result while all

the shadows are maintained. However, we make the usual assumption that illumination and reflectance edges do not coincide. All such

illumination edges cannot be recovered. All illumination images have been shown with logarithmic non-linearity following [26].

4.2. Recovering illumination images in non­
Lambertian scenes

Weiss [26] proposed to decompose a set of N inten-

sity images I(x, y, t)N−1

t=0
obtained from a fixed view-point

under changing illumination into a single reflectance im-

age R(x, y) and the corresponding illumination images

L(x, y, t) as:

I(x, y, t) = R(x, y)L(x, y, t) t = 0 . . . N − 1. (7)

Taking the logarithm of both sides, we get

i(x, y, t) = r(x, y) + l(x, y, t) t = 0 . . . N − 1. (8)

The method in [26] uses a prior that when derivatives filters

fn are applied to l, the output tends to be sparse. Assuming

the filter outputs to be Laplacian distributed, the maximum-

likelihood (ML) estimate of the filtered reflectance image

r̂n = r ∗ fn is given by the median of the filtered images

in = i∗fn along the temporal axis. The filtered illumination

images ln can then be obtained as

ln(x, y, t) = in(x, y, t) − r̂n(x, y) t = 0 . . . N − 1. (9)

However, if the scene is not Lambertian, ln will have some

effect of scene texture edges. Matsushita et al. [13] pro-

posed to remove the scene texture edges from ln using a

threshold T by setting

ln(x, y, t) =

{
0 if |r̂n(x, y)| > T,

ln(x, y, t) otherwise.
(10)

However, the threshold was manually specified in [13] and

is difficult to generalize to different scenes. Our approach

provides an elegant way of estimating the illumination im-

ages l by avoiding the two-step process which involves

thresholding. We first estimate r using Weiss’s method. For

each image i, we then find the cross projection tensor Dr

using r and i, and transform the gradient field ∇i using Dr.

This will remove all the edges from i which are present in

r. Thus,

∇l(x, y, t) = Dr · ∇i(x, y, t). (11)

The illumination images l(x, y, t) are obtained by integrat-

ing the resulting gradient field ∇l(x, y, t) for each t.

Figure 5 shows results on images of an outdoor scene

taken under different times of the day. Notice that the ML il-

lumination images contains the effect of scene texture, espe-

cially white lines on the road surface. Using our approach,

all such scene texture edges can be successfully removed

from the illumination images while preserving shadows.

4.3. Removing shadows from color images

We use a flash image F of the scene to remove shadows

from the ambient (no-flash) image A. The flash and the am-

bient images were captured in quick succession using the

remote capture utility with the camera mounted on a tripod.

We obtain the cross projection tensor DF using F and trans-

form the gradient field ∇A using it. Figure 1 shows an ex-

ample on a highly textured book. Notice that the recovered

shadow free image A′′ has no color artifacts and the recov-

ered illumination map A′ is free of strong texture edges on

the face of the book. Figure 6 shows a challenging scenario

where the hat on the mannequin casts shadows on the man-

nequin’s face and neck. Usually, the ambient and flash im-

ages have different color tone due to ambient lighting being

yellow-reddish and flash illumination being bluish. Our al-

gorithm requires no pre-processing or color calibration and



Figure 6. Removing cast shadows. (Top row) Ambient and flash

images of a mannequin. The hat casts shadows on the mannequin’s

face and neck in the ambient image A. The flash image F is taken

with a short exposure time. (Second row) Recovered shadow free

image A′′ and the illumination map A′. (Last row) Result using

gradient projection has visible color artifacts. One cannot obtain

the illumination map by taking the ratio A/F (shown on right)

which is confounded by shadows due to flash and uneven lighting

on the hat. Notice that the white balance in the flash and ambient

images are different. Our result does not have any color artifacts.

has no color artifacts as compared to the result using gra-

dient projection. One might think that the ratio image A
F

could give the illumination map of the scene. However, the

ratio image (shown in Figure 6) does not represent the illu-

mination map due to the effects of flash shadows (at depth

discontinuities) and lighting variations (on top of the hat)

due to the flash. The illumination map obtained by our ap-

proach better represents the diffuse ambient illumination.

Figure 7. Removing glass reflections from a flash image using

an ambient image. (Top row) Flash image F of an office scene

through a glass window. The checkerboard outside the office re-

sults in reflections on the glass window. (Second row) Zoomed in

flash and ambient images. (Third row) Recovered reflection layer

F ′ and the reflection free image F ′′. (Last row) Result using gra-

dient projection has a slight tinge of the reflection layer remaining

along with a brownish hue (on top of books in the lower shelf).

4.4. Removing glass reflections

While photographing through glass in low light environ-

ments, an ambient image is usually of low quality and has

low contrast. Using a flash improves the contrast, but it may

result in reflections of objects in front of the glass. Figure 7

shows such an example, where the camera is looking into

an office scene through a glass window. The flash image

has undesirable reflections of the checkerboard outside the

glass window. We use the ambient image A to obtain the

cross projection tensor DA and transform the gradient field

∇F of the flash image F using it. The reflection layer is ob-

tained by integrating ∇F ′ and the reflection free flash im-

age is obtained by integrating ∇F −∇F ′. For this example,



we repeat the affine transformation 5 times as the reflection

layer has strong edges. In comparison, one can see a slight

tinge of reflection remaining in the gradient projection re-

sult.

5. Conclusions

We have presented an approach for edge-suppressing op-

erations on an image, based on affine transformation of gra-

dient fields using cross projection tensor derived from an-

other image. Our approach is local and requires no global

analysis. In recovering the illumination map, we make the

usual assumption that the scene texture edges do not coin-

cide with the illumination edges. Hence, all such illumina-

tion edges cannot be recovered. Similarly, while extracting

foreground layer, edges of the foreground object which ex-

actly align with the background edges cannot be recovered.

This may be handled by incorporating additional global in-

formation in designing the cross projection tensors, which

remains an area of future work. In addition, image satura-

tion, specular objects, and black objects will create prob-

lems due to the lack of reliable information. We used a

fixed variance σ for estimating the structure tensor Gσ , but

an adaptive neighborhood scheme might improve results.

We showed applications on extracting foreground layer,

removing shadows and glass reflections from images, re-

covering the illumination map, and estimating intrinsic im-

ages in non-Lambertian scenes. Our approach is concep-

tually simple and can easily handle color images without

the need for any color calibration or white balancing. We

are optimistic that this framework can be used for edge ma-

nipulations that go beyond edge suppression and preserva-

tion and for applications in image understanding, editing

and special effects.
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