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ABSTRACT

We present an approach for registering an aerial Digital El-
evation Model (DEM) with a color intensity image obtained
using a camera mounted on a mobile robot. An approximate
measurement of the camera pose is obtained using auxiliary
sensors on-board the robot. The DEM is transformed into
a depth map in the camera’s coordinate system using this
initial pose. The problem is now simplified to the align-
ment of two images, one containing intensity information,
and the other, depth. Region boundaries in the intensity
image are matched with discontinuities in the depth map
using a robust directed Hausdorff distance. This cost func-
tion is minimized with respect to the six parameters defin-
ing the camera pose. Due to the highly non-linear nature of
cost function with multiple local minima, a stochastic algo-
rithm based on the downhill simplex principle is employed
for minimization. Results on real data are presented.

Index Terms: Digital Elevation Map, Mobile Robot,
Video, Registration, Depth Map, Simulated Annealing, Sim-
plex algorithm, Hausdorff Distance, Color Segmentation

INTRODUCTION

There has been considerable interest recently on us-
ing autonomous mobile robots in surveillance. The
ability to send mobile, sensor-equipped robots into en-
vironments that are potentially hazardous to humans
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is of vital importance in a number of scenarios (e.g.
nuclear/biological/chemical contamination). There is
an urgent need for robust, real-time algorithms for ex-
ploiting the data collected by the sensors mounted on
the robots in order to improve the operators awareness
of the scene. The operator’s control station often has
access to high-resolution (e.g., 1 meter) elevation data
of the environment in which the robots are operating.
In such a situation, it would be very useful to be able
to integrate video from the robots with elevation data
to provide the operator with a more accurate picture of
the environment.
This is essentially a registration problem, posing the
following challenges: (a) Since the DEM and the video
are obtained from completely different viewpoints,
and have different dimensionalities, it is not possible
to use simple techniques such as image correlation. (b)
Typically, the pose of the robots video sensor is known
only approximately, which means that the search space
for video-DEM alignment is very large.
Although there is very little published literature on
video-DEM registration, a number of researchers have
worked on related problems such as 3D modeling and
multisensor registration. Zisserman et al. [Fitzgibbon
and Zisserman, 98] have worked on the automatic con-
struction of 3D models of a scene from a sequence of
closely spaced 2D images. Pollefeys et al. [Koch,
Pollefeys and Gool, 2000] reconstruct realistic sur-
face of 3D scenes from uncalibrated image sequences.
Both these methods obtain depth estimates that depend
on image texture and camera geometry, and do not
use range data. Fruh and Zakhor [Fruh and Zakhor,
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2002] generate textured 3D buildings facade meshes
from laser scans and camera images. Stamos and Allen
[Stamos and Allen, 2000] build 3D model from range
data using a volumetric set intersection method and
then identify planar regions. Line features from planar
intersections are used for registration with 2D image
lines. Elstrom uses a stereo-based method for regis-
tration of color and LADAR (Light Amplitude Detec-
tion and Ranging) images by extracting corresponding
points and estimating the rotation and translation from
them. Li and Manjunath [Besl and Manjunath, 1995]
use an elastic contour matching scheme for registering
multi-sensor images assuming a 2-D affine transfor-
mation between corresponding points in two images.
In our approach, an approximate measurement of the
camera pose is obtained using auxiliary sensors on-
board the robot. The DEM is transformed into a depth
map in the camera’s coordinate system using this ini-
tial pose. The problem is now simplified to the align-
ment of two images, one containing intensity informa-
tion, and the other, depth or in other words obtaining
the relative translation and rotation between the two
views. The alignment step involves feature extraction,
matching and camera pose correction. Based on the
corrected camera pose, it is then possible to map the
video texture to the depth map. Figure 1 shows the
block diagram for the entire registration process. The
rest of this paper is organized as follows. We first
discuss the geometry of the problem and then outline
the various steps in the registration procedure. Experi-
mental results on real data are then presented followed
by conclusions in the end.

GEOMETRY

We work in projective 2- and 3- space, representing
points in homogeneous coordinates. A 3D pointX
is represented as(x, y, z, 1)T and a 2-D pointx is
represented as(x, y, 1)T . Mobile robots used for au-
tonomous navigation and video surveillance are usu-
ally equipped with a variety of secondary sensors that
providemetadatain the form of measurements of the
position and orientation of the imaging sensor.
With the geometry shown in Figure 2, a 3D pointXwc

in world coordinate system can be represented in the
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Figure 1:Block diagram of the registration process
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Figure 2: Geometric relationship between the world
(Xw, Yw, Zw) and camera(Xc, Yc, Zc) coordinate systems.
O denotes the center of the world coordinate system and
C, the location of camera center denoted(Tx, Ty, Tz) in
the world coordinate system specifies the translation of the
camera. Thepanangle or the heading direction,φ, is mea-
sured counter-clockwise with respect to north. Thetilt angle
γ is measured with respect to the vertical Y axis. Theroll
angleθ is measured clockwise with respect to the optic axis
of the camera.

2



camera coordinate system asXcc, given by

Xwc = R ∗Xcc + T (1)

whereT = (Tx, Ty, Tz)T andR denotes the 3*3 rota-
tion matrix.

R =




cφ.cθ + sγ .sφ.sθ −cφ.sθ + sγ .sφ.cθ cγ .sφ

cγ .sθ cγ .cθ −sγ

−sφ.cθ + sγ .cφ.sθ sφ.sθ + sγ .cφ.cθ cγ .cφ




(2)
where sθ = sin(θ), cθ = cos(θ), sφ = sin(φ),
cφ = cos(φ), sγ = sin(γ) andcγ = cos(γ).
Based on these measurements, it is possible to com-
pute a 3*4 projection matrix mapping (in homoge-
neous coordinates) points in the 3D world to points
in the image. The camera mapping from 3D to 2D is
given by perspective projection equation

x = PX (3)

where P is the 3*4 projection matrix. Given P and the
depth Z at each pixelx in the image, the corresponding
3D point X can be obtained using equation 3. The
projection matrix P can be decomposed as

P = K[R|T ] (4)

where K is a 3*3 upper triangular matrix specifying
the internal camera calibration parameters.

K =




fx α px

0 fy py

0 0 1


 (5)

wherefx, fy are the focal lengths in the x and y di-
rections,α is the skew parameter, and(px, py) is the
principal point location. In most cameras, it is not un-
reasonable to assumefx = fy = f andα = px =
py = 0. Since the camera is known a priori, it may be
calibrated off-line to findf and the other components
of K.
The registration process can be viewed as determining
the relative rotation and translation between the depth
map and intensity image, or determining the absolute
pose of the camera in the world coordinate frame. Let
the camera pose for one of the views beR1, T1 in
world coordinate frame and the relative rotation and
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Figure 3:Sample DEM

translation for registration be (Rc ,Tc), then the cam-
era calibration parameters for the second view in the
world coordinate system are

R2 = R1 ∗Rc (6)

T2 = R1 ∗ Tc + T1 (7)

Note that the rotation and translation for 3D points be-
tween the two views will be given by

R3D = R−1
c (8)

t3D = −R−1
c ∗ Tc (9)

CREATING A DEPTH MAP FROM DEM

The input data to our system consists of a 1m-
resolution DEM of downtown Baltimore and ground
video captured using an uncalibrated tripod-mounted
digital camcorder. The metadata in our current set-
up consists of hand-held GPS and compass measure-
ments, which are not synchronized with the video. Our
future experiments will use video data and synchro-
nized metadata from an actual mobile robot. The DEM
gives the height (Y coordinate) of 3D points at each
grid point of a rectangular grid, whose dimensions de-
fine the X and Z axes. Figure 3 shows a portion of
the DEM. The DEM, which is a rectangular grid of
height values, is mapped to the camera coordinate sys-
tem to create the depth map. Each point in the rect-
angular grid can be considered to be connected to its
four nearest neighbors (to the north, south, east, and
west). A ”quad mesh” is built from this underlying
four-connected grid by joining each 3D point with its
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Ground Camera View
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Figure 4: Top: Depth map rendered from DEM and its
extracted edges, Bottom: Video frame and its Color seg-
mented region boundaries

neighbors so as to form four triangular patches. Points
on the edge of the surface have fewer than four neigh-
bors, giving rise to fewer triangular patches.
The quad-mesh can be rendered from any viewpoint
to get a depth map, in which each pixel represents the
depth of the corresponding 3D point in the camera co-
ordinate system. Figure 4 (top left) shows the depth
map as a color image. Each pixel value represents the
distance (Z) along the camera’s principal axis.

REGISTRATION

The registration procedure determines the camera pose
that brings the two edge maps into maximal alignment.
It is based on matching discontinuities in the depth
map and in the intensity image.

EDGE EXTRACTION

The DEM is pre-processed to remove low altitude
points due to bushes, vehicles etc. The heights of all
3D points below a threshold (5m in our experiments)
are set to zero. The data are then median filtered to
remove speckle noise. Edges in the depth map cor-
respond to large depth discontinuities. They are ex-
tracted from depth map using Canny’s edge detector.
Figure 4 (top right) shows the extracted edges from the
depth map. The 3D locations in the camera coordinate

system corresponding to the ”edgels” can be obtained
using perspective projection equations, assuming cam-
era calibration is available. In outdoor environments, it
is reasonable to assume that depth discontinuities will
be associated with color discontinuities. The intensity
image is color segmented using the method described
in [Deng, Manjunath and Shin, 1999], extracting only
coarse region boundaries which are likely to corre-
spond to depth changes. Figure 4 also shows a frame
from the ground video and segmented region bound-
aries for the same.

COST FUNCTION

After feature extraction, the registration problem can
be posed as the determination of the six-parameter
rigid 3D transformation that best aligns the projected
feature points from the depth map with the color re-
gion boundaries in the intensity image. For any cam-
era translation and rotation (Rc ,Tc), the 3D points are
transformed according to equations (8,9). Their pro-
jections in the image plane taken are then matched
with the color image boundaries, using a robust ver-
sion of the Hausdorff distance (HD) [Huttenlocher,
Klanderman and Rucklidge, 1993], which measures
the extent to which each point of a ”model” set lies
near some point of an image set. The Hausdorff dis-
tance can be efficiently computed from the distance
transform of the segmented intensity image. LetS3D
denote the set which contains the projection of 3D fea-
ture points andS2Ddenotes the set containing the pix-
els lying on the segmented color image boundaries.
Then the cost function is defined as [Sim, Kwon, and
Park, 1999]

E(S3D, S2D) =
∑H

i=1 dS2d(a)i

H
(10)

wheredS2d(a) represents the minimum distance value
at a projected 3D point to any pixel inS2D, H =
h ∗ NS3D, NS3D represents the number of 3D points
obtained from feature extraction, anddS2d(a)i rep-
resents theith distance value in the sorted sequence
dS2d(x)1 <= dS2d(x)1... <= dS2d(x)NS3D

. The cost
function is minimized based on the distance values that
are left after outliers have been filtered out. The pa-
rameterh was set to be 0.6 in our experiments.
Note that here we do not use the symmetric Haus-
dorff measure as it will involve computing the distance
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transform at each iteration for the projected 3D points,
and hence will be highly computationally intensive.
However, this measure can be used to assess the ac-
curacy of the final solution obtained.

OPTIMIZATION

The cost function as defined in previous section is
highly nonlinear with multiple local minima. Since the
Hausdorff distance does not have an analytical form,
iterative techniques based on gradient descent would
require numerical derivatives. Instead, we use the
downhill simplex method [Nelder and Mead] which
requires only function evaluations, not derivatives. To
avoid being trapped in local minima, simulated anneal-
ing [Geman and Geman, 1984] principles are incorpo-
rated.

EXPERIMENTS AND RESULTS

A 3D mesh is generated form the DEM data in
OpenGL. Depth maps are rendered using thez buffer
of OpenGL which gives the depth at each image pixel
in the camera coordinate system. Since we currently
do not have access to ground truth, we ininitially es-
tablish the validity of the approach by registering two
depth maps with each other, treating the first as a reg-
ular depth map and the second as an intensity image.
Figure 5 (top) shows an overlay of projected 3D fea-
ture points and intensity edge points) of two depth
maps before and after registration. As seen from the
image, in spite of a large inintial displacement of about
50 percent of the image size (corresponding to an er-
ror in the pan angle of 15 degrees), the two depth
maps could be successfully registered using the pro-
posed technique. Figure 6 shows the evolution of the
transformation parameters and the cost function as a
function of the annealing iterations. The approach is
then applied to the problem of registering a depth map
with an intensity image. Figure 5 (bottom) shows the
overlay of feature points before and after registration
for a typical example. Notice that the many pixels
in color image boundaries do not have corresponding
edge points in the depth map, emphasizing the need
for robust measures.

Overlay of feature points before registration Overlay of feature points after registration

Overlay of feature points before registration Overlay of feature points after registration

Figure 5:Overlay of feature points before and after regis-
tration. Top: Depth map with Depth map, Bottom: Depth
map with Intensity image
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CONCLUSIONS

As a first step towards video-DEM registration for mo-
bile robots, we have presented an approach for reg-
istering a DEM to an intensity image. The problem
is challenging due to the disparate nature of the two
types of data, and the large search space for transfor-
mation parameters. The task is made manageable by
determining an initial camera pose from the metadata
provided by auxiliary sensors. The complex nonlinear
nature of the resulting optimization problem is tackled
using a stochastic minimization strategy. Preliminary
results of the approach are promising; however some
problems remain and will be addressed in future work.
The approach will also be extended to deal efficiently
with a video sequence rather than a single image.

ACKNOWLEDGEMENTS

We are grateful to Larry Tokarcik of ARL for provid-
ing us with data and participating in technical discus-
sions. We are also grateful to Prof. Rama Chellappa
for his valuable feedbacks and suggestions.

DISCLAIMER

The views and conclusions contained in this document
are those of the authors and should not be interpreted
as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U. S.
Government.

REFERENCES

Fitzgibbon, W. A. and Zisserman, A., ”Automatic
3D model acquisition and generation of new images
from video sequences”,Proc. of European Signal Pro-
cessing Conf. (EUSIPCO ’98), Rhodes, Greece, pp.
1261-1269, 1998.

Koch, R., Pollefeys, M. and Gool, L.V., ”Realis-
tic Surface Reconstruction of 3D Scenes from Uncal-
ibrated Image Sequences”,Journal Visualization and
Computer Animation, Vol. 11, pp. 115-127, 2000.

Fruh, C. and Zakhor, A., ”Data Processing Algo-
rithms for Generating Textured 3D Building Faade
Meshes From Laser Scans and Camera Images”,Proc.

3D Data Processing, Visualization and Transmission
2002, Padua, Italy, pp. 834 - 847, June 2002.

Stamos, I and Allen, P.K. , “3-D Model Construc-
tion Using Range and Image Data”,CVPR, June 13-
15, 2000.

Elstrom, M.D , “A Stereo-Based Technique for the
Registration of COLOR and LADAR Images”,M.S.
thesis, University of Tennessee, Knoxville

Besl, Li, H. and Manjunath, B.S. , “A Contour based
Approach to Multisensor Image registration”,IEEE
Transactions on Image Processing, Vol. 4, No. 3,
March 1995.

Besl, P.K. and McKay, N.D. , “A Method for Regis-
tration of 3-D Shapes”,IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14, pp. 239-256,
February 1992

Deng, Y., Manjunath, B.S., and Shin, H., ”Color im-
age segmentation”,Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 1999.

Huttenlocher, D.P., Klanderman, G.A., Rucklidge
W.J., ”Comparing Images using the Hausdorff Dis-
tance”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 15, pp. 850-863, Sept.
1993.

Sim, D.G., Kwon, O.K., and Park, R.H., ”Object
Matching Algorithms Using Robuts Hausdorff Dis-
tance Measures”,IEEE Transactions on Image Pro-
cessing, Vol. 8, NO. 3, March 1999.

Nelder, J.A. and Mead, R., ”A Simplex Method for
Function Minimization”,Computer Journal, Vol. 7,
pp. 308-313.

Geman, S. and Geman, D., ”Stochastic relaxation,
Gibbs distribution, and Bayesian Restoration of Im-
ages”,IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol. 6, No. 6, pp. 721-741, 1984.

6


