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ABSTRACT pure translation, the relative motion between the object and camera

We present an iterative algorithm for seamenting indeoendentl consist of both translation and rotation because of the camera rota-
P 9 9 9 P Y tion. Also this assumption is less restrictive than the usually made

moving objects and reflnlng and updating a coarse depth map Ofassumption of objects moving along a straight line [1] [2] [3] or
the scene under unconstrained camera motion (translation and ro-

tation) with the assumption that the independently moving objects along a conic section [2]. Thus we allow the 3D translation of the
pli . P y g o) object to be different at each frame. In addition, the available depth
undergoes pure translation. Given a coarse depth map acquired b

. o - ¥nap usually may not have any information about moving objects.
a range-flnd_er or extra_lcted from a D|g|_ta_l Elevation Map (DEM)’ Forpe.g. a)I/DEMyof an urban gnvironment may have coagljrsejinfor-
the ego-motion is estimated by combining a global ego-motion '

constraint and a local bri . . {nation about the buildings but not about any moving vehicle.
ghtness constancy constraint using leas
median of squares (LMedS) which treats independently moving Several researchers have worked on moving object segmen-
objects as outliers. Using the estimated camera motion and thetation in images. Classical approaches attempt to segment the
available depth estimate, motion of the 3D points is compensated.scene by segmenting 2D optical flow in different regions using
We utilize the fact that the resulting surface parallax field is an flow discontinuities [4] or fit a mixture of probabilistic models [5].
epipolar field and use a corresponding parametric model to esti-Costeira and Kanade [6] proposed a multi-body factorization al-
mate the parallax vectors for all pixels. We use the previous mo- gorithm for segmenting multiple moving objects under an ortho-
tion estimate to get the epipolar direction and hence pixels wheregraphic camera. The algorithm relies on block diagonal structure
the parallax direction is not aligned towards the epipolar direction of shape interaction matrixo segment the moving objects. But
are segmented out as moving points. The depth map for static pix-the camera model used (orthographic) restricts its applications.
els is refined using the estimated parallax vectors. All segmentedin addition, the shape interaction matrix is block diagonal only
regions are removed for robustly estimating the ego-motion in sub- if the individual motions are independent [7] which is not true
sequent iterations. A parametric flow model is fitted to the seg- here (both the camera and object have same rotation). These al-
mented regions and their 3D motion is estimated using subspacegorithms are multi-frame algorithms and can not be directly ap-
analysis. We present experimental results using both synthetic andplied to two frames. Recently, Vidal et. al. [8] have proposed two
real data to validate the effectiveness of the proposed algorithm. frame algorithms based on purely algebraic constraints to segment
multiple moving objects in images. They formulate the problem
1. INTRODUCTION as of clustering feature points on a mixture of subspaces of lower
dimensions using the Generalized Principle Component Analysis

The classical structure from motion (SfM) problem deals with a (GPCA).
static scene and requires estimation of the relative motion between  The feature based algorithms treats all features equally in the

the camera, scene and the 3D scene structure in the form of a deptengse that static scene points are treated as moving with zero ve-
map. More interesting problem is the analysiighamicscenes oty (for e.g. [1]) or constraints satisfied by all points are used
consisting of a number of objects moving independently. Consider \ynether they are moving or static [9]. However, in practical sce-
a camera moving in an unconstrained manner (both rotation andnayios, the number of pixels on static scene are usually larger than
translation) viewing a dynamic scene consisting of independently those on all the moving objects. Thus, there is the notion of dom-
moving objects and assume that each independently moving 0bnant motion corresponding to camera motion. In this paper, we
ject is undergoing pure translation motion. Given two views of 5i55 yse a dominant motion approach for camera motion estima-
the scene along with a coarse, noisy and partial depth map (fromyjon_ |n [10], we have proposed an algorithm for refining coarse 3D
DEM or range finder) we wish to (a) Estimate the camera mo- qqels and ego-motion estimation fetatic environments. Here
tion between two views (b) Refine _and update the 3D_ struc_ture we show how 3D modeling can be integrated with scene segmen-
of static scene points (c) Segment independently moving ObjectSation and how the information from the 3D structure and camera
and estimate the 3D motion of each moving object. Even though mqtion (for e.g. negative depths and parallax constraints) can be
we assume that each independently moving object is undergoingse to identify moving objects. Thus, we address the problem of
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2. MOTION MODELS with respect tdu; over suitable region®, whereV1 = (I, I,,]"
denotes the spatial image derivatives anfl = I(r,t) — I(r —
We assume a perspective camera with known calibration parame-u;,¢ — 1). We now describe the ego-motion estimation and depth
ters. LetP® = (X°,Y*, Z°) be a static 3D point. LI denotes  refinement and object segmentation steps in detail.
the translational component of camera motion &idlenotes the

rotational part. Thus for static points, the relative motion can be 3.1. Robust ego-motion estimation given a depth map

written as [11)U° = —T° — Q¢ x P*. The image of a scene point
P is the pointp given byp = fZ. Thus the motion field for static ~ There is a need for robust ego-motion estimation because of the
points is given by presence of independently moving objects. Also, the reference
orrs s s depth map usually does not have information about the depths of
s Z°U° =U;P Srmc c : : B o
U’ = f=———"— = Ah°T" + BQ 1) moving objects. As in [10], one could do a least square optimiza-
(Z°) tion for estimating the ego-motion given a depth map. However, a
- 22 least square solution would assume all points as static and hence
R VR O N ve i i :
where B = o, f ,h® = L and would give incorrect estimate. As the number of pixels on the
(f+ %) - —z Z static background is usually larger than those on all the moving

—f 0 =z ) . o o oo objects combined together, we consider all the pixels on the mov-
A= { 0 —f y } Now considerP® = (X°, Y, 2°), a ing objects as outliers in ego-motion estimation. Thus a LMedS
3D point on any moving object_ Each moving objem assumed Solutioﬁl is obtained which is found to giVe Satisfactory results.
to be translating with velocity?. Then the relative motion for ~ Also, the regionz is decided on the basis of following two inputs.

moving points can be written d&° = —T°° — Q° x (P° +t¢) + Firstly, only pixels with high confidence value are chosen (the con-
2 = —T° — Q° x P°, whereT® = T° + Q° x t2 — t2. Thus the fidence measures are provided by the depth refinement phase as
motion field for moving points is given by described in section 3.2) and secondly, segmented regions using
parallax constraint are not included. Thus, even in the presence
u® = Ah°T° + BQ° 2 of moving objects, the dominant motion corresponding to camera

motion can be obtained.
whereh® = % denotes the inverse depth for the moving point.

Notice that there are two scale ambiguities: one in determining

T? andZ° and other in determinin@® andZ°. Even if the scale 3.2. Depth refinement and moving object detection

betweerll™ andZ* is fixed, it does not uniquely determingdue Let T¢, Q5 denote the current ego-motion estimate ahdienote
to the scale factor betwe€efi° and Z°. Thus in the rest of the  the available depth map estimate. &% be the incremental depth
paper, we focus on estimating thetal translational motiori™, map estimate for th&” global iteration andZ; 11 = Z; + 6 Z; be
instead of the independent (camera subtracted) motion of objectihe refined depth map. Using (1), the incremental 2D motion for
£ static scene points can be written@s = A(hi+1 — hi)T7 =
¢ Tr—Tf
3. ALGORITHM (TE)s (hia = he) { - ]Wherehi“ “za ks
(T¥)- denotes theZ component of camera motion afidy, ys)
The algorithm uses two intensity images (referred tkeysand denotes the focus of expansion. Thus, the incremental motion due

offsetframes) and an initial coarse, and incomplete depth map (re-to depth refinements@rface parallax fielilis in the epipolar di-
ferred to ageference depth mapo estimate the ego-motion and  rection. However, for moving points, the incremental motion is
the depth map along with segmenting the image into regions cor-§u; = A(h; 1 — h;)T?. Thus moving points do not have parallax
responding to independently moving objects in an iterative fash- vectors aligned along the epipolar direciofthis fact can be used

ion (we call these iterationglobal iterationg. We start with esti-  to estimate independent moving objects. We estimate the parallax
mating the ego-motion using the available depth map and LMedS. vectors (both magnitude and direction) as described below for all
Using the estimated camera motion, the available depth map is rethe pixels. Pixels where parallax vectors are not aligned along the
fined and the image is segmented using parallax constraints. Thisepipolar direction are classified as belonging to moving objects.

is done iteratively until the ego-motion estimates converge or a The form of §u; from above allows us to use the following

specified number of iterations have been reached. . T a
Letr = (z,y) denote an image pixel anddenote the time ~ Parametric modelju; = ao { Y } e } whereao, a; and
index. Assuming brightness constancy, we have a2 denote the parameters. Substituting in (4), we get
I(r,t)=1I(r —u,t—1) 3)

E(6u) = Y (L + Ly)ao + Lear + Iyas + AI)?  (5)
whereI(r,t) andI(r,t — 1) denote the key and offset frames NxN

respectively andi denotes the flow for the corresponding pixel. . . . ) .

As in [10], leti denote the global iteration index;, denote the  Here for each pixe(z, y), the regionR is defined to be neighbor-
current estimate of the flow field during thi& global iteration hood of N' x NV pixels and the parameters are assumed to be con-
(obtained from current depth and ego-motion estimates using (1)) Stant over the neighborhood. Thus for each pixel, a least squares
anddu? deno_te the incremental Zl-:) motion for & local ite_ration dl-Je 1See http://www-sop.inria.fr/robotvis/personnel/zzhang/Publis/Tutorial-
to motion refinement or depth refinement. The appropriate motion g 4e5E himi for LMedS algorithm

(or depth) refinement can be estimated by minimizing 2Unless camera rotation is zero and both object and camera move in
the same or opposite directions. In such a case, certain circumstances such
E(du;) = Z(VIT(SUi + A])2 4) as object moving faster than the camera can be identified using negative
depths.

R



(LS) solution can be obtained for the parameters and the paral-
lax vectordu; can be obtained using estimateg a; andaz. We ——
then estimate the angle between the estimated parallax vector and ;- =y
the epipolar directioe (after normalizing both to unit magnitude) .
asf = cos~*(6ule). If the angle is greater than a pre-specified
threshold, the pixel is segmented as belonging to the independently ‘ _ .
moving object. : e oS & ]

After segmenting the image, depths can be refined for the (a) Camera Translation (b) Camera Rotation
static pixels using the magnitude of parallax vectors estimated pre-
viously as in [10]. Fig. 1. Ego-Motion for Synthetic Example

3.3. Motion estimation of moving regions

velocity Q¢ = [0.1,0.003, 0.1]”. The independent motion consist

The segmented image (after few iterations of ego-motion refine- of a sphere on the left moving along the axis (towards right).

ment and depth refinement) is divided into different regions corre- Th | lation direction for th herii 11 T
sponding to different moving objects as follows. First a connected € true total transiation direction for the spheri$06, 0.119, 0.698] .

component analysis of the segmentation map is performed to gechigS_' _2_(b|) and 2(c) SCI;OV‘; the trueddep;h maps f°”he. k?y i_rpﬁgg an?]
the connected regions. This will give potential candidate regions. the initial coarse and reference depth map respectively. The dept

Regions with sizes less than some threshold (typica!h of map is color coded (darker regions are fqrther from the camera).
image size) are discarded. Finally morphological operations (hole Note that the reference depth map contains only the information

filling) are done to obtain blobs where each blob correspond to about Fhe ground p_Ia_ne in the scene and duﬁs;ont_ain any in-_
a different moving object. Each blob is processed separately for formation about buildings or the spheres (both static and moving).
estimating its relative 3D translation motidi? The reference depth map as shown is made coarse by smoothing

Consider (2). Leti® = ug, + u,,. The rotational flow?,, with a constant window of siz5 x 25 pixels. In addition, the

does not depend on object depth and the rotational velocity for themOVing_ sphere overlaps with the ground plane and hence all pixe!s
object is equal to that of the camera. The rotational flow can be belonging to the reference depth map do not belong to the static

obtained using the pixel coordinates of the object blob and esti- Sscene. . . .
mated2. Thus we need to estimate only the translational flow A total of ten global iterations were performed. Figs. 1(a) and

ug,. for the object which is much easier. In practical scenarios, 1(b) shows the convergence of ego-motion parameters with global

the object can be assumed to have smooth depths and it is reai_terations which converge to their trlue values.. Fig. .Z(d) shows
sonable to assume that thepth variationson any particular ob- the segmented regions corresponding to moving object (sphere)

ject are much smaller than timean deptlof the object from the which is ql.me accurate. Fig. 2(e) shows the estimated depth map
scene even though the entire scene may have large depth Variaf_orthe static scene points. The root mean square error (RMSE) be-

tions. Thus we can assume constant depth for the object for esween the estimated depth map.. and the true depth magrv.

defined asRM SE = 190 S~V (Ztrue—Zest )2 where N denotes

timating the translational flow. Lei§, = [u¢r, ver]. Using (2), ) Zirue /. -
_FTO 4w —fTO+yT? the total number of pixels wak79% for static scene points. The
we haveu;, = Ltz 4, = Z1 v 7= Thys we usell, = : . o -
tr — Z Htr = Z tr — translation optical floifor the segmented object is shown in Fig.
{ ay + asx } as the parametric model over thatire object re- 2(f). The total 3D translation direction (including cameraTmotion)
az + asy for the moving object was estimated[as701, 0.127,0.701]

gion, wheren; . .. a3 are the parameters. These parameters can beyhich gives an error df.55 degrees.
obtained by an iterative approach as in [12]. Using the estimated

: ) L
parametersy?,. can be obtained. Eliminating betweenu., and 4.2. Real Example

17
ver, We get] fuir  —fuir  yuew —ave | | Ty | =0.Stack- A video sequence of toy objects was taken in a lab. The cam-
T7 era was moved on a planar surface in fiairection. Figs. 3(a)

ing flow values from all the points on the object, an over-constrainedshows the key image from the sequence. The independent motion
systemAz = 0 can be build withz corresponding to translational ~ consist of the hand holding an object (labelgréen tej moving
direction. This can be solved using SVD. Notice that this is sim- vertically. The motion of hand is sufficiently larger than the cam-
ilar to subspace analysis [13] but here the problem is much sim- era translation. For this sequence, we did not have any prior depth
pler since we know the rotational flow. Also only the translation information for the entire image. Also, since this is an indoor lab
direction can be estimated, thus reflecting the scale ambiguity in sequence, the variation in the scene depth is small. Therefore, the

estimating translation and depth. reference depth map was chosen to be a constant all over the im-
age. A total of five global iterations were performed. Figs. 3(e)

4. EXPERIMENTS and 3(f) shows the convergence of ego-motion parameters with
global iterations. Notice that there are sufficient number of pix-

4.1. Synthetic Example els on the moving object. Hence the initial estimate of the camera

translation had a predominalit component due to independent

A semi-synthetic 3D model (with real textures) of an urban en- motion of hand. However, the algorithm was able to estimate the
vironment was rendered in OpenGL. We simulate a sequence of ) S aligo o .
correct camera translational direction (aloRgaxis) in few iter-

images by moving a virtual camera in the scene. The depth maps_ . . 4 .
were obtained from the OpenGE buffer. Figs. 2(a) shows the ations. Fig. 3(b) shows the segmented regions corresponding to

key image. The dominant camera motion consists of translation  3jn 4| experiments, the flow field has been down samplecyor
along theZ direction & 1 unit per frame) with rotational camera  proper viewing.




(3) Intensity Image (b) True depth map

(c) Reference depth map

(e) Depth Map (Static Scendf) Translational flow (moving
object)

Fig. 2. Synthetic Example

Depth Map for Static Scer(el) Translational flow for mov-
ing object

— ]

(e) Camera Translation (0] Camera Rotation

Fig. 3. Real Example

the moving object which is quite accurate. Fig. 3(c) shows the
estimated depth map for the static scene points. Notice the finely
extracted boundaries for the tiger in the scene. The translation
optical flow for the hand is shown in Fig. 3(d). The total 3D trans-
lation direction (including camera motion) for the moving object
was estimated ap-0.40,0.92,0.02]" which shows correctly a
predominant motion iY” direction along with a component along

X direction corresponding to camera translation.

5. CONCLUSIONS

A two-frame approach has been presented for segmentation of in-
dependent moving objects in video along with estimation of ego-
motion, independent object motion and reconstruction of the dy-
namic scene using intensity images. The proposed method uti-
lizes LMedsS in estimating ego-motion and parallax constraints for
segmenting independently moving objects. 3D structure for static
scene is also estimated using surface parallax. The motion of mov-
ing objects is estimated by first fitting a parametric flow model
followed by subspace analysis. The algorithm works well for un-
constrained translational motion of moving objects.
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