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Abstract. We present a simple and practical approach for segmenting un-occluded
items in a scene by actively casting shadows. By ’items’, we refer to objects (or
part of objects) enclosed by depth edges. Our approach utilizes the fact that under
varying illumination, un-occluded items will cast shadows on occluded items or
background, but will not be shadowed themselves.

We employ an active illumination approach by taking multiple images under dif-
ferent illumination directions, with illumination source close to the camera. Our
approach ignores the texture edges in the scene and uses only the shadow and
silhouette information to determine the occlusions. We show that such a segmen-
tation does not require the estimation of a depth map or 3D information, which
can be cumbersome, expensive and often fails due to the lack of texture and pres-
ence of specular objects in the scene. Our approach can handle complex scenes
with self-shadows and specularities. Results on several real scenes along with the
analysis of failure cases are presented.

1 Introduction

Human vision system is extremely efficient at scene analysis. Identifying objects in the
scene and grasping them is a mundane task for us. However, designing vision algo-
rithms even for such simple tasks have proven to be notoriously difficult. For example,
random 3D ’bin-picking’, where objects are randomly placed in a bin is still an unsolved
problem. Commercial systems typically address less taxing robot-guidance tasks, such
as picking singulated parts from a moving conveyor belt and employ 2D image process-
ing techniques. Partial occlusion with overlapping parts is a serious problem and it is
important to find un-occluded objects.

In this paper, we address the problem of identifying un-occluded items in a scene.
By ’items’, we refer to objects (or part of them) enclosed by depth edges. Such an
approach could serve as a pre-processing stage for several vision tasks, for example,
robotic manipulations in factory automation, 3D pose estimation and object recogni-
tion. Our motivating application for detecting un-occluded items is to enable a robot-
mounted vision system to better plan the picking sequence.
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Fig. 1. Segmenting un-occluded items. (Left) Implementation of our active illumination approach
using a firewire camera and eight light emitting diodes (LED’s) around it. (Right) A scene with
two objects. B is occluded since it contains a shadow edge (orange). Equivalently, B’s shadow
region does not contain the complete depth edge contour (green) of B as its depth edges are inter-
sected by shadow edges. However, A’s shadow region contains its complete depth edge contour.
Thus, un-occluded items can be obtained by filling in depth edges inside shadow regions.

Although 2D image segmentation approaches can segment an image into seman-
tic regions, in absence of 3D or depth information, these approaches cannot identify
occlusion between objects. It is a general belief that once 3D or depth information is
obtained, several vision tasks can be simplified. Although past decades have witnessed
significant research efforts in this direction, accurate 3D estimation is cumbersome, ex-
pensive and usually have limitations (e.g. stereo on non-textured surfaces). Even if the
depth map of the scene is available, one would have to do an analysis similar to ours
to find un-occluded objects. This is because un-occluded objects may not necessarily
be at a smaller distance from the camera as compared to occluded objects. Range seg-
mentation may segment the depth map into regions, but one still needs to determine
the occlusions to remove occluded objects. More importantly, we show that such an
analysis can be done using depth and shadow edges without obtaining the depth map
of the scene. Thus, our approach inherently overcomes the limitations of shape-from-X
algorithms. Our approach can easily handle textured and non-textured objects as well
as specular objects (to certain extent) as described in Sect. 3.

Contributions: We make the following contributions in this paper

— We propose an approach to segment un-occluded items in a scene using cast shad-
ows. We describe a simple implementation for this approach using depth and shadow
edges.

— We analyze practical configurations where our approach works and fails including
self-occlusions, mutual occlusions, object with holes and specular objects.

— We show how to handle missing depth/shadow edges due to noise and lack of
shadow information.

1.1 Related Work

2D/Range Segmentation: Image & range segmentation [1-6] is a well researched area.
Although 2D segmentation can segment an image into semantic regions, it cannot pro-
vide occlusion information due to the lack of depth information. Even when a depth
map of the scene is available, we need to explicitly find occlusions using depth edges.
In Sect. 2, we show that depth edges can be directly obtained using active illumination
without first computing a depth map.

Shape from Silhouettes: These approaches [7—10] attempt to infer 3D shape from
silhouettes obtained under different view-points. The computed silhouettes for every
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Fig. 2. (Left) Different types of edges [22]. It is well-known that occluding contours alone cannot
provide a unique interpretation of the objects in the scene [24, 23]. We therefore find un-occluded
items, which are objects or part of objects enclosed within depth edges. (Right) In this scene, A
and B could be parts of the same physical object or two different physical objects. Since A cast
shadows on B, our approach will identify only A as the un-occluded item.

image along with the camera center of the corresponding camera is used to define a
volume assumed to bound the object. The intersection of these volumes known as the
visual hull [11] yields a reasonable approximation of the real object. In contrast, we
capture images from a single view-point under varying illumination and use the infor-
mation in cast shadows to segment un-occluded objects.

Active Illumination: Several vision approaches use active illumination to simplify
the underlying problem. Nayar ez al. [12] recover shape of textured and textureless sur-
faces by projecting an illumination pattern on the scene. Shape from structured light [13,
14] has been an active area of research for 3D capture. Raskar et al. [15] proposed the
multi-flash camera (MFC) by attaching four flashes to a conventional digital camera
to capture depth edges in a scene. Crispell et al. [16] exploited the depth discontinuity
information captured by the MFC for a 3D scanning system which can reconstruct the
position and orientation of points located deep inside concavities. The depth disconti-
nuities obtained by the MFC have also been utilized for robust stereo matching [17]
and recognition of finger-spelling gestures [18]. Koh et al. [19] use the depth edges
obtained using multi-flash imaging [15] for automated particle size analysis with ap-
plications in mining and quarrying industry. Our approach also uses a variant of MFC
(with 8 flashes, Fig. 1) to extract depth discontinuities, which are then used to segment
un-occluded objects.

Interpretation of Line Drawings: Our visual system is surprisingly good at per-
ceptual analysis of line drawings and occluding contours into 3D shapes [20]. Label-
ing line drawing into different types of edges has been proposed by Huffman [21].
Waltz [22] describe a system to provide a precise description of a plausible scene which
could give rise to a particular line drawing for polyhedral scenes. Malik [23] proposed
schemes for labeling line drawing of scenes containing curved objects under ortho-
graphic projection. Marr [24] argued that a given silhouette could be generated by an
infinite variety of shapes and analyzed the importance of assumptions about viewed
surfaces in our perception of 3D from occluding contours. Our goal is not to interpret
occluding contours into 3D shapes, but to label occluding contours corresponding to
un-occluded objects in the scene.

2 Segmentation using Information in Cast Shadows

In this section, we describe the basic idea of segmenting un-occluded items in a scene.
We first assume that complete depth and shadow edges are available, i.e., there are no
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Fig. 3. Depth and shadow edges can be obtained using active illumination. (Top Row) The eight
input images captured using our setup. (Middle Row) Ratio images obtained by dividing the
input images with I,,,45. Note that the ratio images are texture-free and have shadows according
to the corresponding LED direction. (Bottom row) Depth & shadow edges are obtained using
ratio images. Note that only the shadow region corresponding to the red crayon contains closed
depth edge contours. Thus, filling depth edges inside shadow regions will correctly output the
red crayon as the un-occluded item. Matlab source code and input images for this example are
included in the supplementary materials.

missing edges. We do a thorough analysis of this ideal case for several practical scenes
in Sect. 3. In Sect. 4, we will extend our approach to handle missing edges. As men-
tioned earlier, depth edges alone cannot provide a unique interpretation for objects in
the scene. Thus, our goal is not to interpret depth edges into 3D shapes, but to identify or
label those depth edges that possibly correspond to un-occluded objects in the scene. In
particular, our approach outputs items enclosed by depth edges (See Fig. 2). In Sect. 3,
we show how this is affected by self-shadows, self-occlusions and mutual occlusions.
We assume that the scene consists of objects lying on a flat surface and on top of each
other, and the view direction is along the vertical direction.

Consider a simple scene show in Fig. 1, where A casts shadow on B and B casts
shadow on the background. We depict depth edges in green and shadow edges in orange
color. Suppose we could segment the boundaries of A and B from the captured intensity
images. Then we could easily infer that since region B has a shadow edge, it must be
occluded. Thus, all regions that do not have any shadow edges are potential candidates
for un-occluded objects. The important question is how to obtain such a segmentation so
that the segmentation boundaries correspond to object boundaries or shape edges? Note
that any 2D segmentation approach relies on image intensities and thus will respond
to texture/reflectance edges. A depth edge may not correspond to a texture edge at the
same location in the image (e.g. all objects with same reflectance, Fig. 4) and intensity
edges on object surfaces will result in false depth edges. Thus, we need a robust method
to find depth edges which can ignore texture edges.

Computing Depth Edges: The active illumination method proposed in [15] is
an easy way to find depth edges in the scene. In this approach, four flashes are at-
tached close to the main lens of the camera along left, right, top and bottom directions.



Four images, 14, I, I3, and I, are captured, each under a different flash illumination.
Since shadows will be cast due to object boundaries and not due to reflectance bound-
aries, depth edges can be extracted using the shadows. To compute depth edges, first
a max composite image (/,,,4;) is obtained by taking the maximum of intensity value
at every pixel. I,,4, Will be a shadow-free image. Then, ratio images are calculated
as r; = I;/I 4. Depth edges are obtained by estimating the foreground to shadow
transition in each ratio image and combining all the estimates. In our implementation,
we capture eight images with different illumination directions using the setup shown
in Fig. 1. Fig. 3 shows an example on a scene containing three overlapping crayons.
Note that the shadow edges can be similarly obtained by estimating the shadow to fore-
ground/background transition in each ratio image.

Segmenting Un-occluded Items: The basic idea in segmenting un-occluded items
is to utilize the cast shadows information. If we trace the depth edges in clockwise
direction, the cast shadows should always be on the /eft of the depth edge. In other
words, if an object is un-occluded, then cast shadows cannot fall inside the object, or
to the right of the depth edge. T-junctions at the intersection of two objects (Fig. 1)
can also be handled with this tracing method by always tracing along the rightmost
boundary at junctions. In Fig. 1, at the intersection of A and B, the above condition will
be satisfied for A but not for B, identifying A as an un-occluded item.

Instead of tracing depth edges which might be cumbersome, we propose a simple
equivalent implementation using shadow edges. The shadow edges segment the image
into regions. For any un-occluded object, the shadow region should contain the entire
depth edge contour for that object. For example, in Fig. 1, shadow region 1 contains the
entire depth edge contour of object A. However, for occluded objects such as B, the
shadow edge cuts through the depth edge. For shadow region 2, the depth edges inside
that region do not form a closed contour.

Thus, to find un-occluded items, we simply region fill the depth edges inside each
shadow region. For occluded objects, since the depth edges inside the shadow regions
will not be complete, they will not get filled. In Fig. 3, the shadow edges form five
regions as shown in the last row. Only the depth edges in the shadow region corre-
sponding to the red crayon form a closed contour. Thus, the red crayon will be correctly
identified as un-occluded item. Supplementary materials include Matlab source code
and input images for this example.

3 Practical Configurations

In this section, we analyze common scenes which give rise to more complex shadow
configurations such as objects with self-shadows, objects with holes and specular ob-
jects. We also analyze two failure cases involving self-occlusions and mutual occlu-
sions.

Self-shadows: We consider self-shadows as those shadows of an object which fall
on the object itself. Fig. 4 shows an example where the part 'R’ of the rabbit shaped
object A casts shadow on itself *. The self-shadows lead to extra depth and shadow

* The part R’ is a slanted piece whose one side is attached to the object A.
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Fig. 4. Self-shadows. The scene consists of a rabbit shaped object A on top of another object
B. Part 'R’ of object A casts shadow on itself as evident from the ratio image corresponding to
the right flash. This leads to extra depth and shadow edges as shown in the third image. If these
extra edges do not form closed contours, erroneous shadow regions are not obtained. Note that
the shadow region corresponding to the rabbit still contains the closed contour corresponding to
the outer boundary of object A.

edges. These extra edges can be ignored by our algorithm if they do not form closed
contours, or do not cut through the outer boundary of the object. Note that the shadow
edges lead to five shadow regions which would also have been obtained if the self-
shadows were not present. By filling in the depth edges inside shadow region 1, we
can identify object A as an un-occluded item. In Sect. 3.1, we show that when the extra
depth edges due to self-shadows form closed contours with other depth edges, the entire
object is not identified as an un-occluded item.

Object with Holes: Our algorithm can handle challenging cases of objects with
holes. A common scenario is shown in Fig. 5. Although the depth edges are the same
in two cases, the cast shadows are different. For two spheres case, the upper sphere will
cast shadows on the lower sphere and thus only the upper sphere will be considered as
the un-occluded item. For the doughnut case, note that the shadows cast by the inner
region does not contain any depth edges, and hence will be ignored. The shadows cast
by the outer region contains both depth edge contours. If the un-occluded item is ob-
tained by filling the depth edges inside the outer shadow region as before, the doughnut
hole will also get filled. We can remove the holes by ignoring those filled regions that
contain a complete shadow edge contour. The inner filled region (in green) contains the
complete shadow edge contour (in orange) due to the inner doughnut boundary, and can
be removed.

Specularities and Specular Objects: Specular highlights on objects are a common
problem for vision algorithms as they tend to saturate and are view dependent. In the
case of specular highlights, the active illumination approach for finding depth edges
results in spurious depth edges [15,25]. We show that similar to the self-shadowing
case above, our approach can ignore the effect of specular highlights if the spurious
depth edges due to specularities do not form closed contours. For example, in Fig. 3,
the specularities on the green and the red crayon result in spurious depth edges inside
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Fig. 5. Object with holes. Our approach can recover a doughnut shaped object using cast shadows
information.

the crayons. But since these edges do not intersect the true depth edges and do not form
closed regions, they can be ignored while filling in the true depth edges inside shadow
regions.
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Fig. 6. Handling specular objects. Using our method, depth edges for specular objects can also
be obtained. If spurious depth edges due to specularities do not form closed contours, specular
objects can be handled.

A more general case of a scene having a specular object is shown in Fig. 6. An
important point to note is that while specularities may result in spurious depth edges,
the true depth edges even for a specular object are obtained by our technique. This is
different from other techniques such as stereo/photometric stereo where the estimation
is completely incorrect for specular objects. Note that in Fig. 6, the outer depth edges for
the specular object are obtained. The shadow edges results in four regions. Once again,
by filling in the depth edges in shadow regions, the un-occluded specular object can
be recovered. Only the shadow region corresponding to the specular object has closed
depth edges, as other objects are shadowed by the specular object.

3.1 Failure Cases

Two important failure cases are described below.

Self-Occlusions: The first case correspond to self-occlusions such that the depth
edges due to self-occlusion form closed regions with outer depth edges of the object.
Fig. 7 shows an example. Note that the part of the object which is occluded by the object
itself cannot be recovered.

Mutual Occlusions: The second failure case correspond to mutual occlusions, where
object A occludes object B but is also occluded by the object B at the same time. Fig. 7
shows such a scenario for a scene containing two pipes. For this scene, neither of the
two pipes or any part of them will be segmented as an un-occluded item.
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Fig. 7. Failure Cases. (Top row) Self-Occlusions. The scene consist of a single pipe which oc-
cludes itself. The shadow edges results in three shadow regions. Only region 3 has closed depth
edge contours. However, filling in the depth edges inside region 3 followed by hole removal only
recovers the un-occluded part of the object as the un-occluded item, instead of the entire ob-
ject. (Bottom Row) Mutual Occlusions. The scene consist of two mutually occluding pipes. The
shadow edges give rise to five regions. However, none of the shadow regions contain complete
depth edge contours as each depth edge is intersected by some shadow edge. Thus, the output
will be zero un-occluded items.
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Fig. 8. Handling missing edges. In a complex scene with several objects, depth and shadow edges
may be missing (pointed by white arrows). We first compute the pseudo-depth map of the scene.
We then complete the depth edges by segmenting the pseudo-depth map. Each segmented region

is then checked for occlusions using shadow information. All regions intersecting with shadow
edges are removed to obtain un-occluded items.

4 Handling Missing Depth and Shadow Edges

In the previous section, we showed that if we have complete depth and shadow edge
information, we can reliably segment un-occluded items in the scene. However, in some
cases complete depth/shadow edges are not obtained due to noise, or dark surfaces. If
shadow edges are missing, correct shadow regions will not be obtained and we cannot
use the previous approach of filling depth edges within the shadow regions. Now we
describe an extension to handle such cases. Our approach first tries to complete the
depth edges by segmenting the pseudo-depth map [17,15] of the scene. We find an
over-segmentation in this step so that all missing depth edges are accounted for, but
this may result in extra regions. We then verify each segmented region for occlusion by
checking if any shadow falls in that region.

Fig. 8 shows a complex scene with several objects. The extracted depth edges have
gaps as shown. A pseudo-depth map of the scene is computed by assigning horizon-
tal/vertical gradients to each depth edge pixel, according to the direction of the light
source. The magnitude of the gradient is set proportional to the width of the shadow at
that pixel [17]. The gradients at all other pixels are set to zero. The pseudo-depth map
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is obtained by integrating the resulting 2D gradient field by solving a Poisson equation.
We segment the pseudo-depth map using EDISON [3]. The resulting pseudo-depth map
and its segmentation is also shown in Fig. 8. Note that all the missing depth edges are
completed but the segmented pseudo-depth map have extra regions.

The final step consists of checking each region for occlusions. If we draw a line
from any point inside an un-occluded object to a point outside the object, it should
intersect a depth edge before intersecting a shadow edge. For an occluded object, since
the shadow falls inside the object, such a line may intersect a shadow edge first. For
example, in Fig. 1, any line drawn from inside of object A to outside will intersect a
depth edge (green) first. However, certain lines drawn from the inside of object B to
outside will intersect a shadow edge (red) first. Thus, for each segmented region, we
draw lines from inside the region at several different angles. We count the number of
intersections with a shadow edge before intersection with a depth edge. If this count is
greater than some threshold, the region is declared to be occluded. Fig. 8 shows that all
occluded regions were successfully eliminated. The starting point of these lines is taken
to be the medial axis of each region to handle general regions with concavities.

5 Discussions

Several improvements to our approach are possible. Better region filling approaches
could handle cases where only a few pixels are missing in depth or shadow edges. A
gradient based analysis could be used to remove spurious depth edges due to specu-
larities [25]. Since depth edges are view dependent, the labeling of scene parts as un-
occluded items is also view dependent. Higher level information can be combined for
object-based interpretation.

Limitations: Our approach share the limitations described in [15] for finding depth
edges. This includes dark surfaces/background and detached shadows from the objects
due to large baseline between the LED and the camera or thin objects. Our scheme
works better on curved objects compared to polyhedral objects. The depth edge at the
intersection of polyhedral objects may convert into a concave/convex edge depending
on the viewpoint, and thus may not be obtained.

Conclusions: We have proposed a simple and practical approach to segment un-
occluded items in a scene using cast shadows by analyzing the resulting depth and
shadow edges. A depth map of the scene is not required and our approach can han-
dle complex scenes with specularities, specular objects, self-shadows and objects with
holes. We showed several real examples using our approach and analyzed the failure
cases including self-occlusions and mutual occlusions. To handle missing depth and
shadow edges, we propose an extension based on segmenting the scene using pseudo-
depth map and analyzing each region for occlusions. We believe that our approach could
serve as a pre-processing stage for several vision tasks including bin-picking, 3D pose
estimation and object recognition.
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