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Abstract

We present an iterative algorithm for robustly estimating
the ego-motion and refining and updating a coarse depth
map using surface parallax and a generalized dynamic im-
age (GDI) model. Given a coarse depth map acquired by
a range-finder or extracted from a Digital Elevation Map
(DEM), we first estimate the ego-motion by combining a
global ego-motion constraint and a local GDI model. Us-
ing the estimated camera motion and the available depth
estimate, motion of the 3D points is compensated. We uti-
lize the fact that the resulting surface parallax field is an
epipolar field and constrain its direction using the previous
motion estimates. We then estimate the magnitude of the
parallax field and the GDI model parameters locally and
use them to refine the depth map estimates. We use a tensor
based approach to formulate the depth refinement proce-
dure as an eigen-value problem and obtain confidence mea-
sures for determining the accuracy of the estimated depth
values. These confidence measures are used to remove re-
gions with potentially incorrect depth estimates for robustly
estimating ego-motion in the next iteration. Experimental
results using both synthetic and real data are presented.
Comparisons with results obtained using a brightness con-
stancy (BC) model show that the proposed algorithm works
significantly better when time-varying illumination changes
are present in the scene.

1. Introduction

3D scene reconstruction and ego-motion estimation has
been an active area of research over the past few decades.
Dynamic scene analysis requires estimation of the rela-
tive motion between the camera, scene and the 3D scene
structure in the form of a depth map. Motion estimation
of a camera moving in an environment is useful for tasks

such as navigation, obstacle-detection etc., and recover-
ing the scene structure helps in enhanced visualization and
building 3D models of the scene. Several researches have
worked on the problem of ego-motion estimation and depth
recovery using intensity images. Feature based methods
[9][29][28][27][25][3][26][13][22] use features or tokens
to get depth information and motion. Flow based meth-
ods [15][1] assume that optical flow is available. Direct
methods [2][8][6][19][14][4][12][25][24] do not require in-
termediate steps such as feature extraction or flow compu-
tation and work directly with spatio-temporal image gra-
dients. These techniques minimize the deviation from the
brightness change model with respect to structure and mo-
tion parameters.

The algorithm presented here comes under the category
of direct methods. The commonly used brightness con-
stancy (BC) model to compute optical flow or match cor-
respondences, or that used in gradient-based direct meth-
ods, is hardly valid in scenes where inter-frame brightness
variations are not negligible and time-varying illumination
changes are present. Several researchers have worked on
overcoming the limitations of the BC model for optical flow
computation and structure recovery. Black et. al. [5] build a
robust statistical framework in which brightness variations
are represented as probabilistic mixtures of different causes.
Negahdaripour [18] models the inter-frame brightness vari-
ations as a multiplicative and additive field prior to com-
puting the optical flow. In [7], the authors advocated using
specific physical models of brightness variations for optical
flow computation. In [30], Zhang et. al. proposed a unify-
ing algorithm for estimating optical flow, shape, motion and
albedo using a generalized brightness change model. How-
ever, their analysis assumes orthographic projection which
is a serious limitation. Negahdaripour [20] also proposed a
direct solution for estimating depths and motion in scenes
with time-varying illumination. They expressed the dy-
namic image model in terms of scene depth and camera



motion, linearize the resulting equation and obtained a least
squares solution. Our work, while similar in spirit to that
in [20], is motivated by increased use of range scanners and
Digital Elevation Maps (DEM) in 3D modeling. There has
been considerable interest in fusing direct depth informa-
tion with the information from image sequences. The avail-
able depth information, however, is often coarse and incom-
plete (may lack data in certain regions). The algorithm pre-
sented here is a parallax based algorithm that incorporates
a generalized image model and uses the prior depth infor-
mation in an iterative procedure to estimate the ego-motion
and depths.

Previously proposed approaches based on parallax
[14][23][11][12] fall into the category ofplane+parallax
where the 3D structure is recovered relative to a reference
plane. Such approaches assume the presence of a dominant
plane in the scene. However, the assumption of a domi-
nant planar scene is not valid in several scenarios. In this
paper, we show how any non-planar (and non-parametric)
surface can be used to recover dense 3D structure by com-
puting general surface parallax, thereby not requiring the
assumption that a piecewise planar model or a dominant
planar surface be present in the scene. An approach for 3D
model refinement using surface parallax is presented in [2]
but it requires the presence of a small planar surface in the
scene for camera motion estimation, which is a restrictive
assumption, as well as the use of the BC model, which has
the problems discussed above.

We only assume that camera calibration has been com-
puted. The advantages of using our approach are

• The approach can work well with general 3D scenes
and does not require the assumption of a dominant pla-
nar surface to be present in the scene for alignment or
a small planar surface for camera motion estimation.

• We explicitly make use of the parallax direction con-
straint from the ego-motion estimate, and hence the
depth refinement step simplifies to solving a linear sys-
tem for each pixel.

• Incorporation of a GDI model enables the algorithm
to differentiate between the brightness changes due
to time-varying illumination with those due to cam-
era motion in the depth refinement phase. In addition,
the information obtained from the GDI model is also
utilized in estimating the ego-motion, thus leading to
better ego-motion estimates.

In Section 2, we present the algorithm in detail, describing
the ego-motion estimation and depth refinement procedure
using a generalized image model. In Section 3, results on
both synthetic and real image sequences are presented. We
will provide comparisons with results obtained using a BC

model to illustrate the effectiveness of our algorithm. This
is followed by conclusions in Section 4.

2. Algorithm

The algorithm uses two intensity images (referred to as
key and offset frames) and an initial coarse and incom-
plete depth map (referred to as thereference depth map)
to estimate the ego-motion and the depth map in an itera-
tive fashion (we call these iterationsglobal iterations). Let
r = (x, y) denote an image pixel,t denote the time index,
I(r , t) denote the key image andI(r − uδt, t − δt) denote
the offset image. Assume a moving camera viewing a rigid
scene with no independent motion. The 2D image motion
u for a pixel(x, y) is related to scene depthsZ and camera
motion by [8]

u(Z, Θ) =
[

u
v

]
=
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]
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, Θ = [TT ,ΩT ]T (T andΩ denotes the

translational and rotational camera velocities) andh = 1
Z .

Based on the linear brightness change model [18], we define
our GDI model as

M(r , t)I(r , t) = I(r − uδt, t− δt) (2)

whereM denotes themultiplier field over the image. If
M(r , t) = 1 for all pixels, this reduces to the BC model.
Linearizing (2), we get

mtI +∇IT u + It = 0 (3)

where∇I = [Ix, Iy]T denotes the spatial image derivatives
andIt denotes the temporal image derivative (here we have
usedM = (1 + δm), mt = limt→0

δm
δt as in [21]).

We use Gauss-Newton optimization to estimate the ego-
motion and depths using (3). Let us assume that we have
some estimate ofu, ui = (ui, vi)T at the start ofith global
iteration (from previous depth and motion estimates). This
can be written as a3-vectord = [uiδt, viδt, δt]T in space-
time domain. We first derive an equation involving the in-
cremental motionδu given an estimate ofu and then show
how to useδu to estimate ego-motion and depths. The gra-
dient ofI in the directiond is

Id =
dT

‖ d ‖




Ix

Iy

It


 =

1
‖ d ‖ (Ixui + Iyvi + It)δt

=
1

‖ d ‖ (Ixui + Iyvi − Ixu− Iyv −mtI)δt

=
1

‖ d ‖ (−∇IT δu− δmI)

(4)



whereδu = [(u−ui)δt, (v−vi)δt]T denotes the incremen-
tal 2D motion. The gradient ofI in the directiond can also
be written as

Id =
1

‖ d ‖ (I(r , t)− I(r − uiδt, t− δt)) =
1

‖ d ‖∆I (5)

where∆I denotes the difference between the key image and
the warped offset image according toui. EquatingId in (4)
and (5), we get

∇IT δu + ∆I + δmI = 0 (6)

In what follows, we show how to estimate the ego-motion,
δm and depths using (6).

2.1. Ego-Motion estimation given a depth map and
multiplier field

Let Zi denote the current depth map estimate,Θi the
current ego-motion estimate, andδmi the current estimate
of the multiplier field, where each is obtained from the pre-
vious global iteration (for the first global iteration we use
T = [0, 0, 0]T , Ω = [0, 0, 0]T , δm0 zero all over the im-
age andZ0 as the reference depth map). Within each global
iteration, we refine the ego-motion estimate by performing
n local iterations as follows. LetδΘi be the incremental
ego-motion update. Using (1), we have

δu = AhiδT + BδΩ =
[

Ahi B
]
δΘi (7)

wherehi = 1
Zi

. Substituting the above equation in (6), we
get

∇IT
[

Ahi B
]
δΘi + ∆I + δmiI = 0 (8)

where∆I is calculated usingui obtained fromΘi andZi.
This is a linear system inδΘi for each pixel and a least
square (LS) solution can be obtained by formulating the
above equation forM > 6 pixels. Although we can use
the pixels from the entire image for obtaining the LS so-
lution, we choose only those pixels (denoted as regionR)
for which the confidence measureC as obtained from the
depth refinement step (Section 2.2) is greater than a pre-
defined threshold. Thus, we can remove pixels which can
have erroneous depth and multiplier field estimates. Note
that information from both the current depth map estimate
and the estimate of the multiplier field is utilized to estimate
the ego-motion.

The updateδΘi is added to the current motion estimate
Θi to get a refined estimate. Thus, at each local iteration,Θi

is refined, a new value of∆I is obtained using refinedΘi

andZi and (8) is solved to obtain further refinement. The
local iterations are performed until the error in least squares
fit stops decreasing. Usually,n ≈ 20 suffices.

2.2. Depth refinement and estimation of multiplier
field

We now show how to refine the depth map and estimate
the multiplier fieldδm for each pixel, given an estimate of
the ego-motion and the available depth information. LetTi,
Ωi denote the current ego-motion estimate andZi denote
the available depth map estimate (initial reference depth
map or estimated from the previous global iteration). Let
δZ be the incremental depth map estimate andZ = Zi+δZ
be the refined depth map. Using (1), the incremental2D
motion for an incremental change in depth can be written as

δu = A(h− hi)Ti (9)

whereh = 1
Z , hi = 1

Zi
. Thus, the incremental 2D mo-

tion (surface parallax field) is in the direction of the focus
of expansion (FOE), i.e, it is an epipolar field. Since we
have an estimate of the camera motionTi from the previ-
ous ego-motion estimate, we can constrain the direction of
the parallax field. In what follows, letf denote the focal
length of the camera which we assume is known. First,
let Tz 6= 0. Defining the focus of expansion (FOE) as
xf = f Tx

Tz
, yf = f

Ty

Tz
, we constrain the direction of the

parallax field to lie along the epipolar direction. Thus for
each pixel(x, y) we write

δu(x, y) = βdu(x, y) (10)

wheredu(x, y) = [x − xf , y − yf ]T denotes the parallax
direction andβ denotes the parallax magnitude. Thus the
parallax magnitude is related to the refined depths as

βdu = A(h− hi)Ti = Tz

[
x− xf

y − yf

]
(h− hi) (11)

Thus
β = Tz(h− hi) (12)

Now consider the case whenTz = 0. The epipolar field
in this case is oriented along the 2D direction[Tx, Ty]T .
Hence we definedu(x, y) = [Tx, Ty]T . Thus, the parallax
magnitude is related to the refined depths as

βdu = A(h− hi)Ti = −f

[
Tx

Ty

]
(h− hi) (13)

Thus
β = −f(h− hi) (14)

A different formulation can be used to avoid the above
two cases corresponding toTz = 0 andTz 6= 0 by param-
eterizing the parallax direction asdu(x, y) = [x − xv, y −
yv]T where[xv, yv]T denotes the projection of the vanish-
ing point of the 3D ray corresponding to the pixel(x, y)
(intersection of the 3D ray corresponding to(x, y) with the



plane at infinity). Since the projection of the vanishing point
does not depend on camera translation, the two cases cor-
responding toTz = 0 andTz 6= 0 can be dealt simultane-
ously. However, for results shown in section 3, the former
formulation based on epipole was used.

Using (10), (6) can be written as

Ipβ + ∆I + δmI = 0 (15)

whereIp = ∇IT du denotes the projection of the intensity
gradient along the parallax direction. We estimateβ and
δm using the above equation and then useβ to obtain re-
fined depthsh using (14) or (12), depending on whetherTz

is zero or not. Thus, for each pixel we need to estimate two
parameters (parallax magnitudeβ andδm) and the general-
ized aperture problem is encountered here. The solution is
regularized by assumingβ andδm to be constant within a
local neighborhood. We now derive the tensor based solu-
tion for estimatingβ andδm. The tensor formulation results
in a total least square (TLS) [10] solution for the problem,
considering errors in all variables.

Let g = [Ip, I, ∆I]T andγ = [β1, β2, β3]T . The tensor
analysis minimizes the cost function

J =
〈
[gT γ]2

〉
(16)

with respect toγ where<> defines the mean operator

< f(x, y) >=
∫ ∞

−∞
w(x− x, y − y)f(x, y)dxdy (17)

wherew is a windowing function. The size of the win-
dow is related to the neighborhood where the assumption
of constantβ andδm is valid. The parallax magnitude is
then given byβ = β1

β3
and the multiplier field is given by

δm = β2
β3

. The tensor based solution is given by minimizing
(16) with respect toγ. To avoid the trivial solutionγ = 0,
the constraintγT γ = 1 is imposed. Using Lagrange multi-
pliers, the error function can be written as

J =
〈
γT ggT γ

〉
+λ(1−γT γ) = γT Gγ+λ(1−γT γ) (18)

where

G =
〈
ggT

〉
=




< I2
p > < IpI > < Ip∆I >

< IpI > < I2 > < I∆I >
< Ip∆I > < I∆I > < ∆I2 >




(19)
Differentiating with respect toγ, we getGγ = λγ. This is
a simple eigenvalue system. SinceG is a 3 × 3 real sym-
metric matrix, there will be three valid eigen-value/eigen-
vector pairs. Letλ1 ≥ λ2 ≥ λ3 be the valid eigen-values.
The eigen-vector corresponding toλ3 will be the solution
for γ from which the parallax magnitudeβ andδm can be
obtained. Thus, for each pixel, the3 × 3 matrix G is con-
structed and is analyzed to obtainβ andδm for that pixel.

Confidence measures based on eigen-values and/or con-
dition number have been proposed in [16][17]. We use
C = (λ1−λ3

λ1+λ3
)2 as the confidence measure for the depth

refinement procedure. The regionR for estimating ego-
motion in Section 2.1 is composed of those pixels where
C exceeds a pre-defined threshold. The complete algorithm
can be described as follows

1. Get the initial reference depth mapZ0, key and offset
frames. Set initial multiplier fieldδm0 to be zero all
over the image, initial ego-motion to be zero and the
global iteration indexi = 1.

2. Estimate the camera motionΘi usingZi−1 andδmi−1

(as described in Section 2.1).

3. Obtain multiplier fieldδmi and refined depthsZi using
Θi andZ0 as described in Section 2.2. Obtain confi-
dence measures for depth estimates. Seti → i + 1.

4. Repeat step2 (by settingR to those regions in the im-
age where the obtained confidence measure is greater
than a pre-defined threshold) and step3 until ego-
motion parameters converge or a pre-specified number
of iterations has been reached.

3. Experiments

We present results on both semi-synthetic (i.e. with real
textures) and real sequences. All depth maps are color-
coded with brighter regions closer to camera. In all depth
maps, the region in black corresponds to pixels where es-
timated depths are either negative or are extremely large
(C = 0). Also, the shown depth maps are as obtained
by the algorithm without any post processing (e.g. for low
confidence regions, depths can be interpolated from nearby
regions to providebetter lookingestimates). In both exper-
iments, the maximum number of global iterations was set
to 10 and the confidence threshold for choosingR for ego-
motion estimation was set to0.3.

3.1. Semi-synthetic images

A semi-synthetic (with real textures) 3D model of an ur-
ban environment was rendered in OpenGL. The synthetic
3D model consists of buildings and objects in front of the
buildings. We simulate a sequence of images by moving
a virtual camera in the scene. The camera motion was in
the horizontal direction (1 unit per frame) with no rota-
tion. A directional spotlight (15 degrees spot-cutoff angle)
was moved along with the camera. Thus there was signifi-
cant illumination variation between successive frames. The
depth maps were obtained from the OpenGLZ buffer. Fig-
ures 1(a) and 1(b) show the key and offset frame respec-
tively. Notice the significant illumination change on the
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Figure 1. (a) Key frame (b) offset frame (c) true depth map for the key frame (d) reference depth map
(e,f) estimated depth maps using BC and GDI models (g) estimated multiplier field (h) ego-motion
estimates with iterations

lower part of first building from the left (region behind the
sphere) and on the left portions of the the second building
from the left. Figures 1(c) and 1(d) show the true depth map
and the reference depth map for the scene. Notice that for
certain regions (spheres and the building in center), there is
no prior depth information in the reference depth map. A
constant depth value1 was chosen for such regions.

Figure 1(h) shows the convergence of ego-motion pa-
rameters with global iterations using the GDI and BC mod-
els. Observe that the ego-motion parameters were recov-
ered properly using the GDI model but not by using the BC
model. Figures 1(e) and 1(f) show the estimated depth map
using our algorithm with BC and GDI models respectively.
The depth map estimated using the GDI model is better than
that obtained by the BC model, especially in regions with
large illumination changes. Also notice the depths at the
rightmost building which are closer to true depths for GDI
model due to better ego-motion estimates. The assumptions
of a constant parallax and multiplier field over the neighbor-
hood will not hold at regions where significant intensity and
depth discontinuities are present in the scene, thus introduc-
ing slight artifacts. The estimated multiplier field using the
GDI model is shown in Figure 1(g) (darker values are more
negative) which is in accordance with the illumination vari-
ation in the key and the offset images. The average intensity
values in the key and the offset frames for the lower part
of first building from the left (region above the sphere) are
131.04 and76.26 respectively which gives a multiplier field

1We assume depths in scene to lie between0 andZmax and choose
Zmax/2 for all such regions.

δm = 76.26
131.04 − 1 = −0.4180 (we assume that the induced

image motion is small enough for this calculation). The av-
erageδm estimated in that region was−0.4246 which is
close to the true value.

3.2. Real images

A video sequence of a scene containing several objects
was taken in a lab. The only camera motion was in theX
direction with no rotation. A spotlight was rotated along the
X axis independent of camera motion (sweeping from top
to bottom), thus producing illumination variation across the
image. Figures 2(a) and 2(b) show the key and the offset im-
ages from the sequence respectively. For the images shown,
most of the illumination variation is in the middle one-third
region (top to bottom) of the image. For this sequence, we
did not have any prior depth information or ground truth for
the entire image. Since this is an indoor lab sequence, the
variation in the scene depth is small. Therefore, the refer-
ence depth map was chosen to be a constant all over the
image. Figure 2(f) shows the convergence of ego-motion
parameters with global iterations for GDI and BC models.
The ego-motion parameters were estimated correctly (since
Ty andTz are zero, depths andTx can be obtained only up
to a scale factor). Figures 2(c) and 2(d) show the estimated
depth map using BC and GDI models respectively. We see
that by using the BC model, depths can not be obtained reli-
ably, whereas the depth map obtained using the GDI model
appears plausible. Notice the finely extracted depth bound-
aries for different objects. Figure 2(e) show the estimated
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Figure 2. Real example (a) key frame (b) offset frame (c,d) estimated depth maps using BC and GDI
models (e) estimated multiplier field (f) ego-motion estimates with iterations

multiplier field (darker values are more negative). Choos-
ing the image region on the tiger between the statue and the
cup, the average intensity values in key and offset images in
that region were73.67 and75.26 respectively which gives
a multiplier fieldδm = 0.0216. The averageδm value esti-
mated in that region is equal to0.0245.

4. Conclusions

We have proposed a direct iterative algorithm for esti-
mating ego-motion and depths in scenes with varying illu-
mination starting from a coarse and partial depth map us-
ing a generalized brightness change model. Using the GDI
model and the epipolar constraint from the ego-motion esti-
mate, the depth refinement procedure is formulated as a lin-
ear problem which is solved using a tensor based approach.
The refined depths, GDI model parameters and confidence
measures obtained from depth refinement are used to re-
fine ego-motion. When the depth variations in the scene are
small, an initial flat depth can be used without the need for
any prior depth information. Results on both real and semi-
synthetic images shows the effectiveness of our algorithm.
Comparisons with results obtained using a BC model shows
that the GDI model performs significantly better.
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