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Abstract such as navigation, obstacle-detection etc., and recover-
ing the scene structure helps in enhanced visualization and
We present an iterative algorithm for robustly estimating building 3D models of the scene. Several researches have
the ego-motion and refining and updating a coarse depth worked on the problem of ego-motion estimation and depth
map using surface parallax and a generalized dynamic im- recovery using intensity images. Feature based methods
age (GDI) model. Given a coarse depth map acquired by [9][29][28][27][25][3][26][13][22] use features or tokens
a range-finder or extracted from a Digital Elevation Map to get depth information and motion. Flow based meth-
(DEM), we first estimate the ego-motion by combining a ods [15][1] assume that optical flow is available. Direct
global ego-motion constraint and a local GDI model. Us- methods [2][8][6][19][14][4][12][25][24] do not require in-
ing the estimated camera motion and the available depthtermediate steps such as feature extraction or flow compu-
estimate, motion of the 3D points is compensated. We uti-tation and work directly with spatio-temporal image gra-
lize the fact that the resulting surface parallax field is an dients. These techniques minimize the deviation from the
epipolar field and constrain its direction using the previous brightness change model with respect to structure and mo-
motion estimates. We then estimate the magnitude of thdion parameters.
parallax field and the GDI model parameters locally and
use them to refine the depth map estimates. We use a tensor The algorithm presented here comes under the category
based approach to formulate the depth refinement proce-of direct methods. The commonly used brightness con-
dure as an eigen-value problem and obtain confidence mea=stancy (BC) model to compute optical flow or match cor-
sures for determining the accuracy of the estimated depthre€spondences, or that used in gradient-based direct meth-
values. These confidence measures are used to remove r&ds, is hardly valid in scenes where inter-frame brightness
gions with potentially incorrect depth estimates for robustly variations are not negligible and time-varying illumination
estimating ego-motion in the next iteration. Experimental changes are present. Several researchers have worked on
results using both Synthetic and real data are presented_overcoming the limitations of the BC model for Optical flow
Comparisons with results obtained using a brightness con- cOmputation and structure recovery. Black et. al. [5] build a
stancy (BC) model show that the proposed algorithm works robust statistical framework in which brightness variations

significantly better when time-varying illumination changes are represented as probabilistic mixtures of different causes.
are present in the scene. Negahdal’ipour [18] models the inter-frame brightneSS vari-

ations as a multiplicative and additive field prior to com-

puting the optical flow. In [7], the authors advocated using

. specific physical models of brightness variations for optical

1. Introduction flow computation. In [30], Zhang et. al. proposed a unify-

ing algorithm for estimating optical flow, shape, motion and
3D scene reconstruction and ego-motion estimation hasalbedo using a generalized brightness change model. How-
been an active area of research over the past few decadegver, their analysis assumes orthographic projection which
Dynamic scene analysis requires estimation of the rela-is a serious limitation. Negahdaripour [20] also proposed a
tive motion between the camera, scene and the 3D scendlirect solution for estimating depths and motion in scenes

structure in the form of a depth map. Motion estimation with time-varying illumination. They expressed the dy-
of a camera moving in an environment is useful for tasks namic image model in terms of scene depth and camera



motion, linearize the resulting equation and obtained a leastmodel to illustrate the effectiveness of our algorithm. This

squares solution. Our work, while similar in spirit to that is followed by conclusions in Section 4.

in [20], is motivated by increased use of range scanners and

Digital Elevation Maps (DEM) in 3D modeling. There has 2 Algorithm

been considerable interest in fusing direct depth informa-

tion with the information from image sequences. The avail-  The algorithm uses two intensity images (referred to as

able depth information, however, is often coarse and incom-yey and offset frames) and an initial coarse and incom-

plete (may lack data in certain regions). The algorithm pre- piete depth map (referred to as treference depth map

sented here is a parallax based algorithm that incorporatesg estimate the ego-motion and the depth map in an itera-

a generalized image model and uses the prior depth infor-tjye fashion (we call these iteratiogtobal iterations. Let

mation in an iterative procedure to estimate the ego-motiony — (. ) denote an image pixet,denote the time index,

and depths. I(r,t) denote the key image andr — udt,t — &t) denote
Previously proposed approaches based on parallaxhe offsetimage. Assume a moving camera viewing a rigid

[14][23][11][12] fall into the category oplane+parallax  scene with no independent motion. The 2D image motion
where the 3D structure is recovered relative to a referencey for a pixel (z, y) is related to scene depttfand camera

plane. Such approaches assume the presence of a dominagiotion by [8]

plane in the scene. However, the assumption of a domi-

nant planar scene is not valid in several scenarios. In this u(z,e) = u } = [ Ah B ] €] (1)
paper, we show how any non-planar (and non-parametric) v

surface can be used to recover dense 3D structure by com- Ty (f+ ﬁ) y
puting general surface parallax, thereby not requiring thewhere B = ! 2 oy ! , A =
assumption that a piecewise planar model or a dominant (f + 7) F -

planar surface be present in the scene. An approach for SD[ -f 0 =z ] © = [1T7,Q7)T (T andQ denotes the
model refinement using surface parallax is presented in[2]| 0 —f v |’ ’

but it requires the presence of a small planar surface in thetranslational and rotational camera velocities) ane %
scene for camera motion estimation, which is a restrictive Based on the linear brightness change model [18], we define
assumption, as well as the use of the BC model, which hasour GDI model as

the problems discussed above. _ _ M(E,DI(r8) = I(r — udt, t — 6t) @
We only assume that camera calibration has been com-
puted. The advantages of using our approach are where M denotes themultiplier field over the image. If

M(r,t) = 1 for all pixels, this reduces to the BC model.
e The approach can work well with general 3D scenes Linearizing (2), we get
and does not require the assumption of a dominant pla-
nar surface to be present in the scene for alignment or mel +VITu+1 =0 ®)
a small planar surface for camera motion estimation. whereVI = [I,,, I,]7 denotes the spatial image derivatives
and/; denotes the temporal image derivative (here we have
o We explicitly make use of the parallax direction con- usedM = (1 + ém), m; = lim,_.g %@ asin [21]).
straint from the ego-motion estimate, and hence the  \We use Gauss-Newton optimization to estimate the ego-
depth refinement step simplifies to solving a linear sys- motion and depths using (3). Let us assume that we have
tem for each pixel. some estimate af, u; = (u;, v;)7 at the start of*" global
iteration (from previous depth and motion estimates). This
e Incorporation of a GDI model enables the algorithm g1 pe written as a-vectord — [u;0t, v;0t, 6t]T in space-
to differentiate between the brightness changes duetime domain. We first derive an equation involving the in-
to time-varying illumination with those due to cam-  cremental motioru given an estimate af and then show

era motion in the depth refinement phase. In addition, how to usesu to estimate ego-motion and depths. The gra-
the information obtained from the GDI model is also gjent of I in the directiond is

utilized in estimating the ego-motion, thus leading to

. . T Iz
better ego-motion estimates. I = ||dd| I | = ﬁ (Lows + Ivi + 1,)5t
In Section 2, we present the algorithm in detail, describing Iy
the ego-motion estimation and depth refinement procedure ~ _ L(I wi + Lyv; — Lo — Lyw — myI)ot 4)
using a generalized image model. In Section 3, resultson ~ ||[d || """ Y 7 v !
both synthetic and real image sequences are presented. We 1

— T
will provide comparisons with results obtained using a BC o d]l (=VI"du —dmlI)



wheredu = [(u—u;)dt, (v—v;)dt]T denotes the incremen-
tal 2D motion. The gradient of in the directiond can also
be written as

Iy = ”TIH(I(r,t) —I(r —u;dt,t —6t)) = —— Al (5)

IIdH

2.2. Depth refinement and estimation of multiplier
field

We now show how to refine the depth map and estimate
the multiplier fieldom for each pixel, given an estimate of
the ego-motion and the available depth information. Tet

whereA T denotes the difference between the key image and{2 denote the current ego-motion estimate afddenote

the warped offset image accordingup Equatingl, in (4)
and (5), we get

VITSu+4 A+ 6mI =0 (6)

In what follows, we show how to estimate the ego-motion,

dm and depths using (6).

2.1. Ego-Motion estimation given a depth map and
multiplier field

Let Z; denote the current depth map estimatg, the
current ego-motion estimate, adgh; the current estimate

of the multiplier field, where each is obtained from the pre-

vious global iteration (for the first global iteration we use
T = [0,0,0]7,Q = [0,0,0]T, §mq zero all over the im-

age andz; as the reference depth map). Within each gIobaI
iteration, we refine the ego-motion estimate by performing

n local iterations as follows. Lei®; be the incremental
ego-motion update. Using (1), we have
ou = Ah;0T + BéQ) =

[ An;, B s, ()

whereh; = Zi Substituting the above equation in (6), we

get

VIT[ Ah; B ]60;+AI+6mI =0  (8)

whereA[ is calculated usingl; obtained fromO; and Z;.
This is a linear system id©; for each pixel and a least

square (LS) solution can be obtained by formulating the

above equation foA/ > 6 pixels. Although we can use

the pixels from the entire image for obtaining the LS so-

lution, we choose only those pixels (denoted as redipn
for which the confidence measu€é as obtained from the

the available depth map estimate (initial reference depth
map or estimated from the previous global iteration). Let
07 be the incremental depth map estimate 2nd Z;+6 7
be the refined depth map. Using (1), the incremefial
motion for an incremental change in depth can be written as

©)

whereh = - h; Zi Thus, the incremental 2D mo-
tion (surface parallax fieljfis in the direction of the focus
of expansion (FOE), i.e, it is an epipolar field. Since we
have an estimate of the camera motiBnfrom the previ-
ous ego-motion estimate, we can constrain the direction of
the parallax field. In what follows, lef denote the focal
length of the camera which we assume is known. First,
let T, # 0. Defining the focus of expansion (FOE) as

= fT JYp = fT”, we constrain the direction of the
parallax field to lie along the epipolar direction. Thus for
each pixel(z, y) we write

ou(z,y) = pdu(z,y)
wheredu(z,y) = [x — x5,y — ys]T denotes the parallax
direction ands denotes the parallax magnitude. Thus the
parallax magnitude is related to the refined depths as

(10)

_ 7. o I*l’f .
pou= A= 1)T =T 07 [ ) )
Thus

B=T.(h—h;) (12)

Now consider the case whéh, = 0. The epipolar field
in this case is oriented along the 2D directith,, 7,
Hence we definélu(z,y) = [Ty, T,]T. Thus, the parallax
magnitude is related to the refined depths as

depth refinement step (Section 2.2) is greater than a pre-
defined threshold. Thus, we can remove pixels which can
have erroneous depth and multiplier field estimates. Note
that information from both the current depth map estimate
and the estimate of the multiplier field is utilized to estimate
the ego-motion.

The updatéd®; is added to the current motion estimate
O, to get arefined estimate. Thus, at each local iteraéign,  two cases corresponding i@ = 0 and7, # 0 by param-
is refined, a new value A7 is obtained using refine®; eterizing the parallax direction @i(z,y) = [x — 2,y —
andZ; and (8) is solved to obtain further refinement. The y,]7 where[z,,,]T denotes the projection of the vanish-
local iterations are performed until the error in least squaresing point of the 3D ray corresponding to the pixXal, y)
fit stops decreasing. Usually,~ 20 suffices. (intersection of the 3D ray corresponding(ta y) with the

pu = A= 1T = —f | ¥ | n-n) @9

Thus
B=—f(h—h;) (14)

A different formulation can be used to avoid the above



plane at infinity). Since the projection of the vanishing point ~ Confidence measures based on eigen-values and/or con-
does not depend on camera translation, the two cases comition number have been proposed in [16][17]. We use
responding tdl. = 0 andT. # 0 can be dealt simultane- C = (3:3432)? as the confidence measure for the depth

ously. However, for results shown in section 3, the former refinem?antAerocedure. The regidn for estimating ego-
formulation based on epipole was used. motion in Section 2.1 is composed of those pixels where

Using (10), (6) can be written as C exceeds a pre-defined threshold. The complete algorithm

can be described as follows
LB+AI+dmI=0 (15) o
1. Get the initial reference depth m&fy, key and offset

wherel, = VI7du denotes the projection of the intensity frames. Set initial multiplier fieldm, to be zero all
gradient along the parallax direction. We estimatand over the image, initial ego-motion to be zero and the
om using the above equation and then st obtain re- global iteration index = 1.

fined depths: using (14) or (12), depending on whettiér
is zero or not. Thus, for each pixel we need to estimate two
parameters (parallax magnitudeandém) and the general-

ized aperture problem is encountered here. The solution is 3. Obtain multiplier fieldm; and refined depthg; using

regularized by assuming andém to be constant within a O, and Z, as described in Section 2.2. Obtain confi-
local neighborhood. We now derive the tensor based solu- dence measures for depth estimates.iSeti -+ 1.

tion for estimating3 anddm. The tensor formulation results _ o .
in a total least square (TLS) [10] solution for the problem, 4. Repeat stef (by settingR to those regions in the im-

2. Estimate the camera motid», usingZ;_, anddm,;_,
(as described in Section 2.1).

considering errors in all variables. age where the obtained confidence measure is greater
Letg = [I,, I, AIlT and~y = [B1, (2, 353]T. The tensor than a pre-defined threshold) and st&until ego-
analysis minimizes the cost function motion parameters converge or a pre-specified number

of iterations has been reached.
J={lg"*) (16)

with respect toy where<> defines the mean operator 3. Experiments

_ o _ _ We present results on both semi-synthetic (i.e. with real
<f@7)>= /_oo w(@ =7,y = §)f (@, y)dedy  (17) textures) and real sequences. All depth maps are color-
coded with brighter regions closer to camera. In all depth
wherew is a windowing function. The size of the win-  maps; the region in black corresponds to pixels where es-
dow is related to the neighborhood where the assumptiontimated depths are either negative or are extremely large
of constants anddém is valid. The parallax magnitude is (C = 0). Also, the shown depth maps are as obtained
then given byj = % and the multiplier field is given by  py the algorithm without any post processing (e.g. for low
dm = 22, The tensor based solution is given by minimizing confidence regions, depths can be interpolated from nearby

(16) with respect tey. To avoid the trivial solutiony = 0, regions to providdetter lookingestimates). In both exper-
the constrainty”~ = 1 is imposed. Using Lagrange multi- iments, the maximum number of global iterations was set
pliers, the error function can be written as to 10 and the confidence threshold for choosiRdor ego-
o T - T motion estimation was set 3.
J=(1"99" )+ A1-"y) =" Gr+A(1-7") (18)
where 3.1. Semi-synthetic images
< Ig > <II> <IL,AI> A semi-synthetic (with real textures) 3D model of an ur-
G={(99")=| <L, I> <I*> <IAI> ban environment was rendered in OpenGL. The synthetic
<L,AI > <IAI> <AI*> 3D model consists of buildings and objects in front of the

(29) buildings. We simulate a sequence of images by moving
Differentiating with respect te, we getGy = A\y. This is a virtual camera in the scene. The camera motion was in
a simple eigenvalue system. SinGeis a3 x 3 real sym- the horizontal direction1( unit per frame) with no rota-
metric matrix, there will be three valid eigen-value/eigen- tion. A directional spotlight {5 degrees spot-cutoff angle)
vector pairs. Let\; > Xy > A3 be the valid eigen-values. was moved along with the camera. Thus there was signifi-
The eigen-vector corresponding kg will be the solution cant illumination variation between successive frames. The
for v from which the parallax magnitud@ andém can be depth maps were obtained from the Open&buffer. Fig-
obtained. Thus, for each pixel, tllex 3 matrix G is con- ures 1(a) and 1(b) show the key and offset frame respec-
structed and is analyzed to obtairandom for that pixel. tively. Notice the significant illumination change on the
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Figure 1. (a) Key frame (b) offset frame (c) true depth map for the key frame (d) reference depth map
(e,f) estimated depth maps using BC and GDI models (g) estimated multiplier field (h) ego-motion
estimates with iterations

lower part of first building from the left (region behind the §m = 2225 — 1 = —0.4180 (we assume that the induced
sphere) and on the left portions of the the second buildingimage motion is small enough for this calculation). The av-
from the left. Figures 1(c) and 1(d) show the true depth map eragedm estimated in that region was0.4246 which is
and the reference depth map for the scene. Notice that forclose to the true value.

certain regions (spheres and the building in center), there is

no prior depth information in the reference depth map. A 3 5 Real images

constant depth valdavas chosen for such regions.

Figure 1(h) shows the convergence of ego-motion pa- Avid f taini | obiect
rameters with global iterations using the GDI and BC mod- Video sequence of a scene containing several objects
was taken in a lab. The only camera motion was in Xhe

els. Observe that the ego-motion parameters were recov-d_ " ith tation. A spotliaht tated al th
ered properly using the GDI model but not by using the BC Irection with no rotation. A spotiight was rotated along the

model. Figures 1(e) and 1(f) show the estimated depth mapX SXiS indeﬂenden;of .canjliera -mot_ion (svyegping from tr?p
using our algorithm with BC and GDI models respectively. to bottom), thus producing illumination variation across the

The depth map estimated using the GDI model is better thanimage' Figures 2(a) and 2(b) shqw the key and_ the offsetim-
that obtained by the BC model, especially in regions with ages from the sequence respectively. For the images shown,
large illumination changes Als,o notice the depths at the most of the illumination variation is in the middle one-third

rightmost building which are closer to true depths for GDI region (top to bottom) of the image. For this sequence, we

model due to better ego-motion estimates. The assumption§“d not -ha\(e any pric_)r depth informgtion or ground truth for
of a constant parallax and multiplier field over the neighbor- the_er_mre. |mr?ge. Slnc((je th'; IS an |r|1|do_(r)r2 Iabfsequcra]nce,fthe
hood will not hold at regions where significant intensity and variation in the scene depth is small. Therefore, the refer-

depth discontinuities are present in the scene, thus introduc SN depth map was chosen to be a constant all over the

ing slight artifacts. The estimated multiplier field using the image. Figure 2(f) shows the convergence of ego-motion

GDI model is shown in Figure 1(g) (darker values are more parameters V_Vith global iterations for .GDl and BC mode_ls.
negative) which is in accordance with the illumination vari- The ego-motion parameters were estimated correctly (since

ation in the key and the offset images. The average intensityTy andT: are zero, erths arifi, can be obtained only_ up
values in the key and the offset frames for the lower part to a scale factpr). Figures 2(c) and 2(d) show _the estimated
of first building from the left (region above the sphere) are depth map using BC and GDI models respectively. We see

. . : T that by using the BC model, depths can not be obtained reli-
131.04 and76.26 respectively which gives a multiplier field . X
P y g P ably, whereas the depth map obtained using the GDI model

1we assume depths in scene to lie betweemd Zy.q, and choose ~ aPpears plausible. Notice the finely extracted depth bound-
Zmaz /2 for all such regions. aries for different objects. Figure 2(e) show the estimated
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Figure 2. Real example (a) key frame (b) offset frame (c,d) estimated depth maps using BC and GDI
models (e) estimated multiplier field (f) ego-motion estimates with iterations

multiplier field (darker values are more negative). Choos-

(2]

ing the image region on the tiger between the statue and the

cup, the average intensity values in key and offset images in
that region werg'3.67 and75.26 respectively which gives

a multiplier fielddm = 0.0216. The averagém value esti-
mated in that region is equal €00245.

4. Conclusions

We have proposed a direct iterative algorithm for esti-
mating ego-motion and depths in scenes with varying illu-

mination starting from a coarse and partial depth map us-

(3]

(4]

(5]

ing a generalized brightness change model. Using the GDI [6]

model and the epipolar constraint from the ego-motion esti-
mate, the depth refinement procedure is formulated as a lin-

ear problem which is solved using a tensor based approach. [7]
The refined depths, GDI model parameters and confidence
measures obtained from depth refinement are used to re-

fine ego-motion. When the depth variations in the scene are
small, an initial flat depth can be used without the need for
any prior depth information. Results on both real and semi-
synthetic images shows the effectiveness of our algorithm.

(8]
(9]

Comparisons with results obtained using a BC model shows (0]

that the GDI model performs significantly better.
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