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Figure 1: (a) We show how errors in Monocular Depth Estimation are corrected when used in tandem with an Adaptive Sensor such as a Triangulating Light
Curtain (Yellow Points and Red lines are Ground Truth). (b) We predict a per-pixel Depth Probability Volume from Monocular RGB and we observe large
per-pixel uncertainties (¢ = 3m) as seen in the Bird’s Eye View / Top-Down Uncertainty Field slice. (¢) We actively drive the Light Curtain sensor’s Laser
to exploit and sense multiple regions along a curve that maximize information gained. (d) We feed these measurements back recursively to get a refined

depth estimate, along with a reduction in uncertainty (o = 1m).

Abstract

Active sensing through the use of Adaptive Depth Sen-
sors is a nascent field, with potential in areas such as Ad-
vanced driver-assistance systems (ADAS). They do however
require dynamically driving a laser / light-source to a spe-
cific location to capture information, with one such class
of sensor being the Triangulation Light Curtains (LC). In
this work, we introduce a novel approach that exploits prior
depth distributions from RGB cameras to drive a Light Cur-
tain’s laser line to regions of uncertainty to get new mea-
surements. These measurements are utilized such that depth
uncertainty is reduced and errors get corrected recursively.
We show real-world experiments that validate our approach
in outdoor and driving settings, and demonstrate qualitative
and quantitative improvements in depth RMSE when RGB
cameras are used in tandem with a Light Curtain.

1. Introduction

Spinning fixed scan LIDARs have been the de-facto sen-
sor of choice in safety critical systems such as Advanced
driver-assistance systems (ADAS), due to their reliability in
depth estimation. However, their reduced spatial-resolution,
multi-path interference and their prohibitive cost has made
en-masse adoption in personal vehicles hard. To counter
these issues, depth estimation from RGB cameras has been
heavily researched. However, issues such as oversaturation,

feature correspondence errors and scale ambiguity has made
relying on these sensors unsafe.

To capture the error and uncertainty in RGB-only depth
estimation, previous work had formulated that task as a
probabilistic regression problem, by predicting per-pixel
depth distributions via a Depth Probability Volume (DPV)
[16] [7] [28]. The DPV provides both a Maximum
Likelihood-Estimate (MLE) of the depth map, as well as
the corresponding per-pixel uncertainty measure. However,
these works do not adaptively or physically correct for this
uncertainty, instead relying purely on multi-view camera
constraints for passive correction.

In this work, we have devised the first known frame-
work that adaptively exploits the depth uncertainty in a per-
pixel DPV from RGB images and refined it via an Adaptive
Depth Sensor called a Triangulating Light Curtain [15]. It
has a steerable Laser Line that can be driven by a Galvom-
irror in tandem with a Rolling Shutter camera to generate a
3D ruled surface to sample the world. We have chosen this
sensor due to its low cost ($1k vs lidar ~$25k), high spatial
angular resolution (0.02° vs lidar 0.4°), and high frame-rate
( 60fps vs lidar 20fps).

We begin by formulating an iterative Bayesian inference
approach to adaptive depth sensing using only the Light
Curtain (LC). This is done by building and adapting the 3D
DPV representation as a collapsible 2D Uncertainty Field
(UF), formulating a probabilistic depth representation of the
sensor model and building planning and sensing policies



within the sensor constraints. We then build a deep learning
architecture that can generate a similar DPV from Monocu-
lar or Stereo RGB inputs, and use that as a prior for adaptive
sensing. We then fuse the LC measurements back into our
network to get a refined depth estimate (see Fig. 1).

We conducted experiments of adaptive depth sensing
from the LC alone by starting with a Gaussian prior, and
showed convergence to true depth with enough iterations.
We then trained a network to predict depth distributions
from RGB images, used that as a prior for sensing, and fed
those new LC measurements back to the network. Through
extensive experiments with a simulated LC (with KITTI
dataset [10]) and sensors in the real-world, we show signif-
icant speedup in depth convergence and increased accuracy
(see Fig. 1). As a result, our method has the potential of be-
ing a higher resolution, lower cost alternative to a LIDAR.

2. Prior Work

Depth from Active Sensors: Active sensors use a
fixed scan light source / receiver to perceive depth. Long
range outdoor depth from these such as commercially avail-
able Time-Of-Flight cameras [ 1] or LIDARs [3] [2] provide
dense metric depth with confidence values with wide usage
inresearch [10] [6] [8]. However, apart from low resolution,
these sensors are difficult to procure and expensive, making
everyday personal vehicle adoption challenging.

Depth from Adaptive Sensors: Adaptive sensors use
a dynamically controllable light source / receiver instead.
These have been making headway in the Long Range Out-
door space. Adaptive Sensing via focal length/baseline
variation through the use of servos/motors [17] [O] [18]
[21], directionally controlled Time-of-Flight Ranging using
a MEMS mirror / laser [22] [23] [27], Gated Depth Imag-
ing [24] [13] [12] and finally, sampling specific depth pro-
files using Triangulation Light Curtains [15] [25] [4] are just
some examples. However, these methods do not seem to ex-
ploit or fuse data from RGB modalities yet. Various work
by Bergman, Nishimura et. al. [5] [19] and Pittaluga et.
al. [20] present sensors and algorithms for adaptive sensing
via 2D angular sampling, providing precise depth at limited
number of pixels. However, our light curtain approach does
depth sampling via adaptive depth gating, giving useful in-
formation at every pixel at a higher resolution. Nishimura’s
sensor uses a SPAD where light is spread out over the entire
FOV limiting it’s range and operation outdoors due to am-
bient light. The light curtain however, maximizes the light
energy on the region of interest via triangulation.

Depth from RGB: Depth from Monocular and Multi-
Camera RGB has been extensively studied. We focus on a
class of Probabilistic Depth estimation approaches that have
reformulated the problem as a prediction of per-pixel depth
distribution [16] [28] [7] [30] [14] [26]. Some of this work
has actually passively exploited and refined [16] [26] the

uncertainty in the depth values via Moving Cameras and
Multi-View-Camera constraints, but have not used the ca-
pabilities of the slew of Adaptive Sensors available.

We hope to fill this gap by investigating if a Probabilistic
Depth representation from RGB sensors can be exploited by
an Adaptive Sensor such as a Light Curtain to potentially
match the precision of LIDARs but in a low cost manner.

3. Sensor Setup

The Light Curtain device (Fig 2) consists of a rolling
shutter Near-Infrared (NIR) camera rotated 90° (that im-
ages planes in the world per pixel column), a Line Laser
module and a Galvomirror (that generates planes of light
depending on the angle). The exact sensing location is ob-
tained by intersecting (triangulating) the imaging and laser
planes. Sweeping this laser line creates a 3D ruled surface
called a curtain. We can place a curtain along any surface by
controlling the galvo and rolling shutter speed subject to it’s
physical constraints, making the sensor adaptive in nature.
Note that the image and laser planes have some divergence,
so their intersection results in a volume in space (bounded
by purple points in Fig. 2) with some thickness, where any
objects that intersect it result in higher intensities in the NIR
image. This means that as the sensing location approaches
the true surface, pixel intensities on NIR image increases.

Real-world experiments are conducted using our array of
sensors consisting of an RGB Stereo Camera Pair, the Light
Curtain device, and a 128-beam Lidar for accuracy vali-
dation and RGB depth estimation network training. Sim-
ulated experiments are also conducted with KITTI dataset
[10], through a Light Curtain Simulator that uses the ground
truth depth map along with the ability to vary NIR instrin-
sics, laser extrinsincs, Galvomirror speed and laser diver-
gence/thickness and angle.

4. Depth from Light Curtains only

Before considering RGB + Light Curtain fusion (sec. 6),
we begin by focusing on the problem of adaptively discov-
ering the depth of a scene using only the light curtain.

4.1. Representation

We wish to estimate the depth map D = {d,, ., } of the
scene, which specifies the depth value d,, ., for every cam-
era pixel (u,v) at spatial resolution [H,W]. Since there is
inherent uncertainty in the depth value at every pixel, we
represent a probability distribution over depths for every
pixel. Let us define d,, , to be a random variable for depth
predictions at the pixel (u,v). We quantize depth values
into a set D = {dp,...,dy_1} of N discrete, uniformly
spaced depth values lying in (dmin, dmax ). All the predic-
tions d,,,, € D belong to this set. The output of our depth
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Figure 2: Left: Our adaptive sensor of choice, the Triangulation Light Curtain (LC) [
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The light curtain senses a ruled 3D surface extruding from a given top-down 2D curve we call a curtain. Surfaces within the thickness of the curtain, result
in higher intensity in the NIR image. Right: A planar curtain swept across various depths. As the curtain plane approaches the true surface, the measured
intensity increases, due to the sensing location and curtain thickness. Above that we show our real-world sensor setup.

estimation method for each pixel is a probability distribu-
tion P(d,, ,), modeled as a categorical distribution over D.
In this work, we use N = 64, resulting in a Depth Proba-
bility Volume (DPV) tensor of size [64, W, H]:

-adel}qu = dmin + (dmax - dmin) -q (1)

N-1
> P(duy=d
q=0

D = {dy, ..
4) = 1 (qis the quantization index) (2)
N-1

> P(du

q=0

Depth estimate = E[d,, ,] = =d,)-dy (3)

This DPV can be initialized using another sensor such as
an RGB camera, or can be initialized with a Uniform or
Gaussian distribution with a large o for each pixel.

While an ideal sensor could choose to plan a path to sam-
ple the full 3D volume, our light curtain device only has
control over a top-down 2D profile. Hence, we compress
our DPV into a top-down an “Uncertainty Field” (UF) [28],
by averaging the probabilities of the DPV across a subset
of each column (Fig. 3). This subset considers those pixels
(u, v) whose corresponding 3D heights h(u,v) are between
(Pmins hmax). The UF is defined for the camera column
and quantized depth location q as:

1
UF(u,q) = 577 Z P(du,v = dq)
veV(u)

V(u)|
where V(u) = {v | hmin < h(4,v) < hmax} (4

We denote the categorical distribution of the uncertainty
field on the u-th camera ray as:
UF (u) = Categorical(d, € D | P(d,) = UF(u, q)).

4.2. Curtain Planning

We can use the extracted Uncertainty Field (UF) to plan
where to place light curtains. We adapt prior work solv-
ing light curtain placement as a constraint optimization /
Dynamic Programming problem [4]. A single light curtain
placement is defined by a set of control points {q(u)}"_,,
where u indexes columns of the camera image of width W,

and 0 < ¢(u) < N — 1. This denotes that the curtain
intersects the camera rays of the u-th column at the dis-
cretized depth dy(,) € D. We wish to maximize the ob-

jective J({q(u)}V.)) = SV UF(u,q(u)). Let X,, be
the 2D point in the top-down view that corresponds to the
depth ¢(u) on camera rays of column u. The control points
{q(u)}}Y_, must be chosen to satisfy the physical con-
straints of the light curtain device: |6(X,+1) — 0(X,)| <

Abpmax With 0, being the max angular velocity of Galvo:

w
arg max ZUF(u,q(u))

{a(w)}V, =

subj to |0(Xyt1) — 0(Xp)| € Abpax, VI <u < W (5)

4.3. Curtain Placement

The uncertainty field UF contains the current uncer-
tainty about pixel-wise object depths d,, ., in the scene. Let
us denote by w(d°* | UF') the placement policy of the k-th
light curtain, where d°* = {d¥, | Yu,v}. Our goal is to
sample light curtain placements d°* ~ w(d°* | UF') from
this policy, and obtain intensities ¢,, ,, for every pixel.

To do this, we propose two policies: my and 71. In Fig.

Figure 3: Our state space consists of a Depth Probability Volume (DPV)
(left) storing per-pixel uncertainty distributions. It can be collapsed to a
Bird’s Eye Uncertainty Field (UF) (right) by averaging those rays in each
row (blue pixels) of the DPV that correspond to a slice on the road parallel
to the ground plane (right) (cyan pixels). Red pixels on UF represent the
low resolution LIDAR ground truth.
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Figure 4: Given an Uncertainty Field (UF), our planner solves for an opti-
mal galvomirror trajectory subject to it’s constraints (eg. &mqaz). We show
a 3D ruled surface / curtain placed on the highest probability region of UF.
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Figure 5: Sampling the world at the highest probability region is not
enough. To converge to the true depth, we show policies that place ad-
ditional curtains given UF. Let’s look at a ray (in yellow) from the UF
to see how each policy works. Left: 7wy given a unimodal gaussian with
small o. Middle: 7o given a multimodal gaussian with larger o. Right:

71 given a multimodal gaussian with larger o. Observe that 7y results in
curtains being placed on the second mode.

4, we have placed a single curtain along the highest prob-
ability region per column of rays, but our goal is to maxi-
mize the information gained. For this, we generate corre-
sponding entropy fields H (u, q); to be input to the planner
computed from U F(u,q). We use two approaches to gen-
erate H(u,q): mo finds the mean in each ray’s distribution
UF(u) and selects a o, that determines the neighbouring
span selected. 71 samples a point on the ray given U F'(u).

As seen in Fig. 5, strategy 7 is able to generate fields
that adaptively place additional curtains around a consistent
span around the mean with some o, but is unable to do so
in cases of multimodal distributions. 71 on the other hand
is able to place a curtain around the second modality, albeit
with a lower probability. We will show the effects of both
strategies in our experiments.

4.4. Observation Model

A curtain placement corresponds to specifying the depth
for each camera ray indexed by u from the top-down view.
After placing the light curtain, intensities ¢, , are imaged
by the light curtain’s camera at every pixel (u,v). The
measured intensity at each pixel is a function of the cur-
tain placement depth dy, ,, on that camera ray, the unknown
ground truth depth d,, ,, of that pixel, the thickness of the
light curtain o (u, v, d;, ,,) for a particular pixel and curtain
placement, and the maximum intensity possible if a cur-

Intensity

Figure 6: We sweep a planar light curtain across a scene at 0.1m intervals,
and observe that the changes in intensity over various pixels follow an
exponential falloff model. Blue / Orange: Car door has a higher response
than the tire. Green: Object further away has a lower response with a
larger sigma due to curtain thickness. Red: Retroreflective objects cause
the signal to saturate.

tain is placed perfectly on the surface p, , (varies from 0
to 1). From real world data Fig. 6, we find the intensity
decays exponentially as the distance between the curtain
placement d, , and ground truth depth d,, ,, increases, with
the scaling factor p,,, parameterizing the surface proper-
ties. We also simulate sensor noise as a Gaussian distribu-
tion with standard deviation o,. The overall sensor model
P(iu, | duw,dy, ,) can be described as:

P(iu,v | du,va di,v)
2

di.u - du,'v 2
- ) 'pu,U7 Unse) (6)

J(Ua v, di,v)

N(iuﬂ, | exp ( —

Note that when dj, , = dy and py, = 1, the mean
intensity is 1 (the value), and it reduces exponentially as the
light curtain is placed farther from the true surface. p,, ,, can
be extracted from the ambient NIR image.

4.5. Recursive Bayesian Update

How do we incorporate the newly acquired information
about the scene from the light curtain to update our current
beliefs of object depths? Since we have a probabilistic sen-
sor model, we use the Bayes’ rule to infer the posterior dis-
tribution of the ground truth depths given the observations.
Let Pprey(u, v, q) denote the probability of the depth at pixel
(u,v) being equal to d, before sensing, and Pex(u, v, q)
the updated probability after sensing. Then by Bayes’ rule:

Prexi(u, v, q)
= P(du,v = dq | iu,zza dfﬁv)
P(dy,p = dg) - Plivw | duw = dg, dif,)
- Plin, | d5)
P(du,v = dq) ’ P(iu,v | du,v = dqufffv)
Zf]\'];é P(du,v = dq’) : P(iu,v | du,v = dq', Zlfv)
Prrey(u,0,q) - Pl | dupw = dg, dSF,)

_ — . U, - (7)
Eq’:O Pprév(ua v, C]/) ' P('Lu,v | du,v = dq’a du’jv)

Note that P(iy | duw = dg,dgF,) is the sensor model
whose form is given in Equation 6.
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Figure 7: Visualization of the recursive Bayesian update method to refine
depth probabilities after observing light curtain intensities. The curtain is
placed at 10m. The red curves denote the expected intensity (Y-axis) as a
function of ground truth depth (X-axis); this is the sensor model given in
Eqn. 6. After an intensity is observed by the light curtain, we can update
the probability distribution of what the ground truth depth might be using
our sensor model and the Bayes’ rule. The updated probability is shown
by the blue curves, computed using the Bayesian update of Eqn. 7 (here,
the prior distribution Pprey is assumed to be uniform, and di’j‘v = 10m).
Left: Low ¢ return leads to an inverted Gaussian distribution at the light
curtain’s placement location, with other regions getting a uniform proba-
bility. Middle: Medium 7 means that the curtain isn’t placed exactly on
the object and the true depth could be on either side of the light curtain.
Right: High ¢ leads to an increased belief that the true depth is at 10m.

If we place K light curtains at a given time-step, we can
incorporate the information received from all of them into
our Bayesian update simultaneously. Since the sensor noise
is independent of curtain placement, the likelihoods of the
observed intensities can be multiplied across the curtains.
Hence, the overall update becomes:

Pnexl(ua v, q)
Pprev(”v v, Q) : Hf:l P(iu,v | du,v = dqa dZ’jv)

Figure 8: We demonstrate corroboration between simulated and real light
curtain device by sweeping several planes across this scene. Colored point
cloud is the estimated depth, and lidar ground truth in yellow. Left: LC
simulated from the lidar depth. Right: Using the real device.

Policy 50LC @ 0.25m | 25LC @ 0.5m || 50LC @ 0.25m | 25LC @ 0.5m | 12LC @ 1.0m
RMS/m 1.156 1.374 1.284 1.574 1.927
Runtime /s - 2 1 0.5

Table 1: Policy depicts different numbers of light curtains (LC) placed at
regular intervals. The first two columns are simulations and the rest are
real experiments. Sampling the scene by placing more curtains results in
better depth accuracy (lower RMS) at the cost of higher runtime.

5 Real Light Curtain in Scenario (c1)

Real Light Curtain in Scenario (c2)
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The behavior of this model as the placement depth d, ,,
curtain thickness o (u, v, dg, ) and intensity i change is seen
in Fig. 7. We observe that low intensities lead to an invert-
ing gaussian like weight updates, with a low weight at the
light curtain’s placement location while other regions get
uniform weights. This indicates that the method is certain
that an object doesn’t exist at the light curtain’s location,
but is uniformly uncertain about the other un-measured re-
gions. A medium intensity leads due a bimodal gaussian,
indicating that the curtain may not be placed exactly on the
surface and could be on either side of the curtain. Finally,
as the intensity rises, so does weight assigned to the light
curtain’s placement location.

S. Experiments with Light Curtain only

We first demonstrate depth estimation using just the
Light Curtain as described in Sec. 4. In this initial baseline,
we track the Uncertainty Field (UF) depth error by com-

f: (E(UF (u,q)) —dge (u))>
=1 "

puting the RMSE error metric
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Figure 9: Curtain placement as a function of the Uncertainty Field (UF)
converges within a lower number of iterations as opposed to a uniform
planar sweep which took 25 iterations

against ground truth. We evaluate our method against sev-
eral outdoor scenarios consisting of vehicles in a scene.

Planar Sweep Curtain Placement: We are able to sim-
ulate the light curtain response using depth from LIDAR. A
simple fixed policy not adapted to the UF helps validate our
sensor model and provides corroboration between the sim-
ulated and real light curtains. We perform a uniform sweep
across the scene above (at 0.25 to 1.0m intervals) (Fig. 8),
incorporating intensity measurements at each pixel for each
curtain using our process described earlier. Our simulated
device is able to reasonably match the real device, and we
also show how sweeping more curtains increases accuracy
at the cost of increased runtime (Table. 1).

Policy based Curtain Placement: Sweeping a planar
LC can be time consuming ( 25 iterations), so we want our
curtains to be a function of our UF. We evaluated two dif-
ferent scenarios (c1, c2) for each placement policy (g, 71),
and we observed that planning and placing curtains as a
function of UF results in much faster convergence (Fig. 9).
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Figure 10: Looking at the top-down Uncertainty Field (UF), we see per
pixel distributions in Cyan and the GT in Red. We start with a gaussian
prior with a large o, take measurements and apply the bayesian update,
trying both policies g and 7r1. Note how measurements taken close to the
true surface split into a bimodal distribution (Yellow Box)

6. Depth from Light Curtain + RGB Fusion

While starting from a uniform or Gaussian prior with a
large uncertainty is a valid option, it is slow to converge.
Furthermore, a light curtain’s only means of depth esti-
mation is extracted primarily along the ruled placement of
the curtain, at least based on our above placement policies.
We would ideally like to use information from a Monocu-
lar RGB camera or Stereo Pair to initialize our prior, with
a similar DPV representation. For this, a Deep Learning
based architecture is ideal, and we also reason that such an
architecture could potentially learn to fuse/incorporate in-
formation from both modalities better.

6.1. Structure of Network

The first step is to build a network (Fig. 11) that can
generate DPV’s from RGB images. We extend the Neural-
RGBD [16] architecture to incorporate light curtain mea-
surements. Anywhere from 1 to N images, usually two
Iy, I1), are fed into shared encoders, and the features
are then warped into different fronto-parallel planes of the
reference image [y using pre-computed camera extrinsics
Rﬁ, tﬁ Further convolutions are run to generate a low res-
olution DPV dpv{® [H/4, W/4] where the log softmax opera-
tor is applied and regressed on. The transformation between
the cameras acts as a constraint, forcing the feature maps to
respect depth to channel correspondence. The add operator
into a common feature map is similar to adding probabilities
in log-space.

dpvl is then fed into the DPV Fusion Network (a set of
3D Convolutions) that incorporate a downsampled version
of dpv_; along with the the light curtain DPV that we had
applied recursive Bayesian updates on dpvi€ ;, and a resid-
ual is computed and added back to dpv!® to generate dpuv;!
to be regressed upon similarly. With a 30% probability, we
train without dpvi® ; feedback by inputting a uniform distri-

bution. Finally, dpv}! is then passed into a decoder with skip
connections to generate a high resolution DPV dpvl. This
is then used to plan and place light curtains, from which we
generate a new dpvi° to be fed into the next stage.

6.2. Loss Functions

Soft Cross Entropy Loss: We build upon the ideas in [29]
and use a soft cross entropy loss function, with the ground
truth LIDAR depthmap becoming a Gaussian DPV with o,
instead of a one hot vector. This way, when estimating
E (dpv9t) we get the exact depth value instead of an ap-
proximations limited by the depth quantization D. We also
make the quantization slightly non-linear to have more steps
between objects that are closer to the camera:

-3 (dpv{lo’“’L} * log (dpvgt))

lsce -

D = {do, ..

®)
n
i dN71}§ dq = dmin + (dmax - dmin) . qpow (9)

L/R Consistency Loss: We train on both the Left and Right
Images of the stereo pair whose Projection matrices P, P,
are known [ | 1]. We enforce predicted Depth and RGB con-
sistency by warping the Left Depthmap into the Right Cam-
era and vice-versa, and minimize the following metric:

D, =E (dpvlL) D, =E (dpvf) (10

_ 1 |Dgry = w (Dgray, Py |
it = > ( (an

Dy +w (Dry, Prary)

1
bret = > (Hary —w (Iray, Dy, Pusy) 1) (12)

3

Edge aware Smoothness Loss: We ensure that neighbour-
ing pixels have consistent surface normals, except on the
edges/boundaries of objects with the Sobel operator S, S
via the term:

ls=%2(

i

o1

ox

e*|5m1| +‘g‘6*|syl|> (13)
dy

7. Light Curtain + RGB Fusion Experiments

We train and validate our algorithms on the KITTI
dataset. We then trained the same network by initializing
on those weights, but using our custom dataset to evaluate
our algorithms with the real sensors on the Jeep.

For evaluation, we consider the RMSE metric against the
entire depthmap as opposed to just the Uncertainty Field

(UF) as Xn: (E(d’“’)*:gt(“’”)i)z against our ground truth.
i=1
DPYV Prior from RGB: Our first goal is to ensure that
our network is capable of generating a reasonable DPV with
monocular RGB input, given the above loss functions. We
do some simple experiments that explore these effects.
Table 2 shows successively improving performance as
we increase o4, with poorer performance when the depth
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Figure 11: Our Light Curtain (LC) Fusion Network can take in RGB images from a single monocular image, multiple temporally consistent monocular
images, or a stereo camera pair to generate a Depth Probability Volume (DPV) prior. We then recursively drive our Triangulation Light Curtain’s laser line
to plan and place curtains on regions that are uncertain and refine them. This is then fed back on the next timestep to get much more refined DPV estimate.

Mono + LC Fusion Lidar Upsampling

Figure 12: In KITTI + Simulated Light Curtain, we note improved depthmaps when Monocular inputs are fused with Light Curtain inputs. Note the
improvements in regions bounded in the yellow box. Our network is also capable of ingesting Stereo inputs, and also solving the task of Lidar Upsampling

Mono + LC Fusion

Figure 13: In real world Experiments, we are able to see the monocular scale ambiguity in domain specific scenarios (driving scenario with a van 8m away)
get corrected by the Light Curtain, and we are able to see correction in an arbitrary scene (dumpster 15m away) provided to the system as well
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Figure 14: We show the internal state of the bayesian update at Iteration 0 and Iteration 5. Starting with a prior DPV from Monocular Depth estimation, we
show the convergence of the sensor’s laser and curtain profile on an object 10m away

RGB NIR Monocular RGB Depth only Light Curtain Depth Only Fused Depth Estimate

Figure 15: Monocular RGB alone suffers from scale ambiguity but does give an inital uncertain depth estimate on a car 15m away. Iterating on Light Curtain
measurements from a mean-centered gaussian prior alone gives a more accurate depth but with a noisy profile, but starting with the RGB DPV results in a
more accurate and smoother profile.
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Table 2: Effects of Soft Cross Entropy (c4t), Left/Right Consistency
(Lgels Urer), Smoothness losses (Is) on Monocular Depth Estimation.

Mono vs Stereo
Mono | 2.904
Stereo | 1.737

Lidar Upsample with DPV Fusion Network
Without DPV Fusion Network | 1.118
With DPV Fusion Network 0.702

Table 3: Left: Stereo pair at ¢ instead of Monocular pair at ¢,¢ — 1 input
to the network. Right: Fusing the GT LIDAR data with alpvé0 to generate
dp”u,lf1 and dp'utL with Bayesian inference vs DPV Fusion Network.
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Figure 16: Top: Adaptive depth sensing with the Light Curtain: Starting
from a Prior distribution from a Monocular Depth Network as opposed to a
gaussian with a large o leads to faster convergence towards the true depth.
Bottom: Monocular (Left) and Stereo (Right) Depth Estimation show im-
provements when we enabled feedback of the sensed Light Curtain DPV
at epoch 16 when training on KITTI dataset with light curtain simulator.

is effectively encoded as a one-hot vector (eg. o4 = 0.05),
since the depth was more likely to be forced into one of
the categories in D. Adding in g4, 1o and [ improved
performance further.

Stereo Inputs: Since our method can generalize to any
N camera setup, we compare and contrasted monocular pair
inputs at times ¢, ¢ — 1, against a stereo pair at time ¢ as in-
put (extrinsics known in both cases). As expected, we note
significantly better performance with stereo input (Table 3).

Effect of a Stronger Prior: Previously, we had run
our adaptive sensing algorithm from a gaussian prior with
a large o (Fig. 10). In various outdoor experiments, we
show that a prior DPV from our network instead, yields
higher accuracy and faster convergence towards the true
depth (Fig. 15, Fig. 16)(a, b).

DPV Fusion Network: With this corrected DPV, we
want to explore how to effectively handle erroneous mea-
surements (due to low light curtain returns etc.), or fuse it
other DPVs (from previous frame or from another sensor).
With this in mind, we consider the sub task of LIDAR Up-
sampling. The Velodyne LIDAR in the KITTI dataset, can

be converted into a low resolution depthmap, and conse-
quently a low-res DPV we call dpvft. We could then fuse
both dpv!® and dpv?" to generate dpuv!! using Bayesian in-
ference. Alternatively, we could feed both of those inputs
into our DPV Fusion Network, which relies on a series of
3D Convolutions. We note improved performance in this
upsampling task using this approach as seen in Table 3.

Light Curtain Fusion Network: Finally, we combine
all of these concepts into one. Here, we train our monocular
and stereo depth estimation without light curtain feedback,
and one where we enable dpv!® to be planned and fed-back
on the next stage via our DPV Fusion Network, as described
in (Fig. 11). Training is done on the KITTI dataset with our
light curtain simulator, with a maximum of 5 update itera-
tions for performance and memory reasons. We observed
qualitative (Fig. 13) and quantitative (Fig. 16(c, d)) perfor-
mance improvement of depth with Monocular input, and
marginal but visible improvement with Stereo. This is due
to the wide baseline of 0.7m in the stereo pair, so we could
see that smaller baseline pairs would benefit more with our
light curtain measurements.

Performance: Our un-optimized implementation of
each planning and curtain placement step takes 40ms.
Depth convergence occurs in 5 iterations (5 fps) when start-
ing from a monocular RGB prior and 10 iterations (2.5 fps)
with a Gaussian prior. In temporally continuous operations,
the prior from ¢—1 reduces convergence to 2 iterations (12.5
fps) depending on the camera motion. A well-engineered
implementation could achieve 20-40 fps but much faster
motion would require explicitly encoding 3D optical flow.

8. Future Work

We have demonstrated the first known work that has
leveraged uncertainty in RGB-based depth estimation to
drive an Adaptive Sensor such as a Light Curtain, in the
context of ADAS (Fig. 1). Our approach can generalize to
any sensor that uses the principle of driving a laser or light
source to specific pixels that are uncertain, and can bene-
fit from depth uncertainty information at a pixel. Normally
non-incident and high reflectively surfaces with poor inten-
sity returns are handled by the scaling factor term p,, , in
our model, so we hope to build a better sensor model that
utilizes albedo and normal information to predict this bet-
ter. We could also model scene flow to handle temporally
changing scenes (fast moving vehicle).

Project Page: The project page, datasets and code can be
found at https://soulslicer.github.io/rgb-lc-fusion/
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