Lecture 20:

Heterogeneous Parallelism
and Hardware Specialization

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2025



Logistics

We've heard feedback on grading & communication
Please share your feedback!

Poll currently live:
https://docs.google.com/forms/d/e/1FAlpQLSf8QuUPJL20ZX6EFCsx
saWmJ5UVBtXgNYDC8SNoKf3GWfqv7zQ/viewform?usp=dialog

(see Piazza)
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Let’s begin this lecture by reminding you...

That we observed in assignment 1 that a well-
optimized parallel implementation of a
compute-bound application was about 44 times
faster than single-threaded C code compiled
with gcc -O3, running on the same processor
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You need to buy a computer system

Processor A Processor B
4 cores 16 cores

Each core has sequential performance P Each core has sequential performance P/2

All other components of the system are equal.

Which do you pick?
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Amdahl’s law revisited

1
(1-f)+1

T

speedup(f,n) =

/ =fraction of program that is parallelizable
n = parallel processors

Assumptions:
Parallelizable work distributes perfectly onto »
processors of equal capability
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Rewrite Amdahl’s law in terms of resource limits
1

speedup(f,n,r) = - 7
perf(r) T perf(r)- =

Relative to processor with 1 unit of
resources, n=1. Assume perf(1) = 1

= fraction of program that is parallelizable
n = total processing resources (e.g., transistors on a chip) More general

r = resources dedicated to each processing core, form of
Amdahl’s Law in

terms of £, n, r

= each of the n/r cores has sequential performance perf(r)

Two examples where
n=16

ra =4
o | [om | [0 ][ o= |

S [
== ]

Processor A Processor B

v

. , . . CMU 15-418/618,
[Hill and Marty 08] Amdahl’s Law in the Multicore Era Soring 2025



Speedup (relative to n=1)

10 Symmetric, n= 16

Speedupsymmetric
S Mo

N S OO ©

ap—
2
c—

rBCEs

Up to 16 cores (n=16)

2 o ; ' '
Symmetric, n = 256
= — = (.999
200 o0 f=0.99
. .
§150-
-
= 100 ¢
BV Vg,
W
o0 |
01 2 4 8 16 32 64 128 256
(b) r BCEs

Up to 256 cores (n=256)

X-axis = r (chip with many small cores to left, fewer “fatter” cores to right)
Each line corresponds to a different workload

Each graph plots performance as resource allocation changes, but total chip
resources resources kept the same (constant » per graph)

perf(r) modeled as \/;

[Figure credit: Hill and Marty 08]
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Asymmetric set of processing cores

Example: n=16
One core: r=4
Other 12 cores: =1

1

speedup(f,n,r) = 7 7

(of heterogeneous processor erf(r _I_ erf(r n—r
with n resources, relative to P ( ) 4 P ( ) —I_( )ﬂ
uniproceSSOr with one unit onhe perf(r) processor + (n-r)
worth of resources, n=1) perf(1)=1 processors

CMU 15-418/618,
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Speedup (relative to n=1)

[Source: Hill and Marty 08]

18 K_symmetric, n=16 | 20 symmetric, n =256 = ————
1A | e f = 0.999
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(a) rBCES (b) r BCEs

X-axis for symmetric architectures gives r for all cores (many small cores to left, few “fat” cores to right)

. Asymmetric, n = 16 250 F psymmetric, n = 256
200 f

o 12 ¢ o
E-u- = 150 |
£ | a
= 8 100}
S el 5|

) 50 |

2 — | i - i | |

0 2 4 g 16 0 2 4 8 16 32 64 128 256

(c) rBCEs (d) rBCEs

X-axis for asymmetric architectures gives r for the single “fat” core (assume rest of cores are r = 1)
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Heterogeneous processing

Observation: most “real world” applications have complex workload
characteristics *

They have components that And components that are
can be widely parallelized. difficult to parallelize.

They have components that

are amenable to wide SIMD And components that are not.

(divergent control flow)

execution.

They have components And components with

with predictable data unpredictable access (but those
access accesses might cache well).

Idea: the most efficient processor is a heterogeneous

mixture of resources (“use the most efficient tool for
the job")

* You will likely make a similar observation during your projects M o



Intel Alder Lake Core 19 (2022)

8 fast CPU cores + 8 efficient CPU cores + GPU integrated on one chip
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More heterogeneity: add discrete GPU

Keep discrete (power hungry) GPU turned off unless needed for graphics-

intensive applications

Use integrated, low power graphics for basic graphics/window manager/Ul

DDR5
Memory

High-end
discrete GPU
(AMD or
NVIDIA) PCle x16
bus

CPU CPU Gen?
Core O Core 3 Graphics
Ring
interconnect
L3 cache (8 Memory
MB) controller

DDR3
Memory

CMU 15-418/618,
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15in Macbook Pro 2011 (two GPUs)

AMD Radeon HD GPU

Quad-core Intel Core i7 CPU
B (contains integrated GPU)
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M1 Macbook Pro 2021

M1 Processor

Power mgmt

From ifixit.com teardown CMU 15-418/618,
Sorina 2025



Apple M1 processor

Big CPUs
Little CPUs
GPU

Neural Engine

+ much more

Credit: Hector Martin

https://twitter.com/marcan42/ M o




Smartphone Processor
— — I Apple A12, 2018

- 6.9 billion transistors

Processors
- 2 high-power CPUs
- 7-wide issue

- 4 low-power CPUs

system cache
slices (x4) GPU cores (x4)

and shared logic . - k — 3_wide issue
Neural Engine . - 4-core GPU
(cores x8) : ; .
o , | ,_ - Neural engine
little cores (x4) Tech
| 5 Insights
- for deep neural network
; o evaluation
* Neural Engine = Specialized hardware
- Fixed sequence of arithmetic - Video encode/decode
operations
- 8-bit FP - GPS
- 8-wide parallelism - Encryption/Decryption
- 5x 10" ops/second T e
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Supercomputers use heterogeneous processing

Los Alamos National Laboratory: Roadrunner

Fastest US supercomputer in 2008, first to break Petaflop barrier: 1.7 PFLOPS

Unique at the time due to use of two types of processing elements

(IBM'’s Cell processor served as “accelerator” to achieve desired compute density)
- 6,480 AMD Opteron dual-core CPUs (12,960 cores)

- 12,970 IBM Cell Processors (1 CPU + 8 accelerator cores per Cell = 116,640
cores)

- 2.4 MWatt (about 2,400 average US homes)

CMU 15-418/618,
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GPU-accelerated supercomputing

Local Network

Node 1 Node 2

= Oak Ridge Summit

- World’s #2 powerful computer
= Each Node

- 2 IBM 22-core POWER9 processors

- 6 nVidia Graphics Processing Units

- 608 GB DRAM

- 1600 GB Flash
= Overall

- 10MW water cooled = ol o e

- $325 M for two machitr ... T

2 SUmmi - |EM Power System AC922, IBM POWER®S 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

* Source: NPR DOE/SC/0ak Ridge National Laboratory

United States

Rank System

Node 4,608

Rmax
Cores ITFlop/s)

7,630,848 442,010.0

2,414,592 148,600.0

Rpeak
[TFlop/s)

537,212.0

200,794.9

Power
(kW)

29,899

10,096



Intel Xeon Phi (Knights Landing)

= 72 “simple” x86 cores (1.1 Ghz, derived from Intel Atom)
= 16-wide vector instructions (AVX-512), four threads per core
= Targeted as an accelerator for supercomputing applications

CMU 15-418/618,
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Heterogeneous architectures for supercomputing
Source: Top500.org Fall 2021 rankings

Rank

Rmax Rpeak Power
System Cores (TFlop/s) [TFlop/s) (kW)

‘I

1 aku - Supercomputer Fugaku, 7,630,848 442.010.0 537,212.0 29,899
mtﬂgmfg(” ~48-core ARM w ’scalable vectors’

ompu ence

Japan

SUMMi g AC922, IBM POWER? 22C 2,614,592 148,600.0 200,794.9 10,096

NVIDIA GPU

Inﬂmba 0, 1D
DOE/SC/0ak Ridge Mational Laboratory

United States

Sierra -
3.1GHz

NVIDIA Volta GV10(
Infinibz—-

DDE;’NNSMLLN |
United States

S TaihuLight - S MPP 10, 93,01 25 5,
sumay i sy i S0 ] itiffay 025 65¢6re* hanycore

MNational Supercomputing Center in Wuxi

AC922, IBM POWERY 22C 1,572,480 94,640.0 125,712.0 7,438

NVIDIA*GPU

ellanox

China

Perlm 5n, AMD EPYC 7763 64C 761,854 70,870.0 93,750.0 2,589
? aﬁeHNwww GPU

DOE/S

United States

Selene AMD EPYC 7742 64C 555,520 63,460.0 79,215.0 2,646

INVIDIA GPU

N"u"lDIﬂ agels
United States

Tianhe-2A - TH-IVB-FEP Clustdt, ».rzl ntéqln)(leoﬁmph° 100,678.7 18,482

12C 2.2GHz, TH Express-2, Mat
MNational Super Computer Center in Guangzhuu
China

JUWELS Booster Mog
EPYC 7402 24C 2.8G
InfiniBand/ParTec P2
Forschungszentrum Juelich [FEJ]

H2000, AMD 449,280 44,120.0 70,7980.0 1,764

“|NVIDIA GPU

Germany
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Green500: most energy efficient supercomputers
Efficiency metric: MFLOPS per Watt

Source: Green500
Fall 2021 rankings
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Cores

1,664

16,704

Rmax

(TFlop/s)

2,181.2

2,274.1

GPU

19,840

26,880

138,880

6,480

761,856

2,255.0

2,287.0

17,200.0

1,818.0

70,870.0

Power

(kW)

55

103

72

74

583

63

2,589

Power Efficiency
(GFlops/watts)

39.379

33.983

31.538

30.797

29.521

29.046

27.374
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Energy-constrained computing

= Supercomputers are energy constrained

- Due to shear scale

- Overall cost to operate (power for machine and for cooling)
= Datacenters are energy constrained

- Reduce cost of cooling

- Reduce physical space requirements
" Mobile devices are energy constrained

- Limited battery life

- Heat dissipation

CMU 15-418/618,
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Limits on chip power consumption

= General mobile processing rule: the longer a task runs the less power it
can use

- Processor’s power consumption is limited by heat generated
(efficiency is required for more than just maximizing battery life)

e Electrical limit: max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
(chip can run at high power for short period of time until chip heats to Tj)

"
-
-
-
-
-
-
-—
-
-

E Case temp: mobile device gets too hot for user to comfortably hold
S +(chip is at suitable operating temp, but heat is dissipating into case)
o ’
o
- Battery life: chip and case are cool, but want to reduce
" power consumption to sustain long battery life for given
! task
iPhone 6 battery: 7 watt-hours
9.7in iPad Pro battery: 28 watt-hours
15in Macbook Pro: 99 watt-hours
>
Time
Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote CMU 15-418/618,

Sprina 2025



Efficiency benefits of compute specialization

= Rules of thumb: compared to high-quality C code on CPU...

* Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute
bound

" Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt

Clock and Data supply
Control 28%

24%

Arithmetic___
6%
Instruction
supply
42%
Efficient Embedded Computing [Dally et al. 08]
[Source: Chung et al. 2010, Dally 08] CMU 15-418/618,

Sprina 2025



Hardware specialization increases efficiency

Area-normalized FFT Performance (40nm)

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ig2(N) (data set size)

FFT Energy Efficiency (40nm)

100 X"""EIE KK E K -=-@®---Core il
= LX760 «----s--
D ik GTX285
3 ——— GTX480
ol 10 ok ASIC
0 M‘Wﬁﬁ*ﬁﬁ
-

LL

(? 1 H-0-0-0-9-90-90-9

O - “e-0-0-0,

= o -
@ 0

o

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ig2(N) (data set size)
[Chung et al. MICRO 2010]

- X\HH(_HHK——?HK—)HK——X -=--$-=-Core i7

a 100 LX760 ===+ FPGA

i A— GTX285

A —¢— GTX480 GPUs

O« 10 %— ASIC

L E

OE ASIC delivers same

S | W“:‘;ﬁ:":““*}l—ﬁ performance as one CPU
2 A adh ARl ah d SO UGN core with ~ 1/1000th the
a 0.1 chip area.

GPU cores: ~ 5-7 times
more area efficient than
CPU cores.

ASIC delivers same
performance as one CPU
core with only ~ 1/100th
the energy.

CMU 15-418/618,
Sprina 2025



Benefits of increasing efficiency

= Run faster for a fixed period of time
- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

= Run at a fixed level of performance for longer
- e.g., video playback

- Achieve “"always-on” functionality that was previously impossible

b\l}lnk outdoor

Recording triggered by
motion (continuous would
drain battery in ~hours)

Always listening for “ok, google now”
Siri activated by button press Device contains ASIC for detecting this

or holding phone up to ear audio pattern.

CMU 15-418/618,
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Original iPhone touchscreen controller

Separate digital signal processor to interpret raw signal from capacitive touch
sensor (do not burden main CPU)

RECEIVE RAW DATA -/
l 304

FILTER RAW DATA

l

GENERATE GRADIENT DATA

l

CALCULATE BOUNDARIES FOR TOUCH
REGIONS

l

CALCULATE COORDINATES FOR EACH
TOUCH REGION

l 312

TOUCH REGIONS

\

il

|_r R
. I ]
oy

Km
-
3]

L

FIG. 17D

\7”
-
Co

COORDINATES OF TOUCH REGIONS

a=15.00 p=121.93
x=172.0d, y=234 237208

o= 8=33.00 p=133.97 )
m x=T07.07 04, y=331.323230

FIG. 17B
GRADIENT DATA ﬁ
a=500 p=113.313

\w
—
o

x=417.29, y=333.666667

a=35.00 p=133.74
x=Z80.18, y=570.155850

PERFORM MULTIPOINT TRACKING / FIG. 17E
FIG. 16 FIG. 17C
From US Patent Application 2006/0097991 CMU 15-418/618,
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Modern computing: efficiency often
matters more than in the past, not less

Fourth, there's battery life.

To achieve long battery life when playing video, mobile devices must decode the video in
hardware; decoding it in software uses too much power. Many of the chips used in modern
mobile devices contain a decoder called H.264 - an industry standard that is used in every
Blu-ray DVD player and has been adopted by Apple, Google (YouTube), Vimeo, Netflix and
many other companies.

Although Flash has recently added support for H.264, the video on almost all Flash websites
currently requires an older generation decoder that is not implemented in mobile chips and
must be run in software. The difference is striking: on an iPhone, for example, H.264 videos
play for up to 10 hours, while videos decoded in software play for less than 5 hours before
the battery is fully drained.

When websites re-encode their videos using H.264, they can offer them without using Flash
at all. They play perfectly in browsers like Apple’s Safari and Google's Chrome without any
plugins whatsoever, and look great on iPhones, iPods and iPads.

Steve Jobs’ “Thoughts on Flash”, 2010
http://www.apple.com/hotnews/thoughts-on-flash/

(Justification for why Apple won’t support Adobe Flash)

CMU 15-418/618,
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Qualcomm Hexagon Digital Signal Processor
= Originally used for audio/LTE support on Qualcomm SoCs %E e
"  Multi-threaded, VLIW DSP
* Third major programmable unit on Qualcomm SoCs

- Multi-core CPU

-  Multi-core GPU (Adreno)

- Hexagon DSP

* Dual 64-bit execution units

Variable sized « Standard 8/16/32/64bit data

instruction packets Instruction types

(1 to 4 instructions Cache » SIMD vectorized MPY / ALU

per Packet) [ . : / SHIFT, Permute, BitOps
Instruction Unit . Up to 8 16b MAC/cycle

+ 2 SP FMA/cycle

-

L

: >
DEVICE s . -
DDR Cache
semmory I TCM
. Dualéabit L %8 Data Unit Data Unit Execution Execution
load/store (Load/ (Load/ (6%::& (6U4'1:n
it Store/ Store/
: ;J\Ts': 32.bit ALU) ALU) Vector) Vector)
ALU R + Unified 32x32bit

General Register
File is best for
compiler.

, ! — + No separate Address
Register File/Thread | AT B
I *+ Per-Thread
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[Developed by DE Shaw Research]

Anton supercomputer

Supercomputer highly specialized for molecular dynamics
- Simulates time evolution of proteins

ASIC for computing particle-particle interactions (512 of them in
machine)

Throughput-oriented subsystem for efficient fast-Fourier transforms

Tower Particles -
Custom, low-latency Plate Particles — e e
communication network dESig ned Plate Particle | Tower Particle Plate and Tower Particle Match Units
Position and Position and T | | | | | |

for communication patterns of N- \___PairQueue and Select /'

body simulations | |
Particle Distance q, q, Cc:-mblnlng Rule
Calculations E Calculations
r lx’fﬁ
Ele-:trnstatlc: Functlnn Van der Wﬁﬂl
Evaluatnr Function Evaluatnr
\ Adder /

— —
\ Multiplier/

Force(x,y,z) |Potentials Energy

Tower and Plate Force Reduction Tower Forces —»
Plate Forces —>
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Sprina 2025



GPUs are heterogeneous multi-core processors

Compute resources your CUDA programs used in assignment 2

GPU

Graphics-specific, fixed-
function compute resources

— 1

Tessellate Tessellate
Tessellate Tessellate
Clip/Cull Clip/Cull
Rasterize Rasterize
Clip/Cull Clip/Cull
Rasterize Rasterize

Scheduler / Work Distributor

GPU
Memory

CMU 15-418/618,
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Example graphics tasks performed in fixed-function HW

Determining what pixels a triangle overlaps

Rasterization:

=)
Pl

Texture mapping:

Warping/filtering images to apply detail to surfaces

Geometric tessellation:
computing fine-scale
geometry from coarse
geometry

CMU 15-418/618,
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FPGAs (Field Programmable Gate Arrays)

= Middle ground between an ASIC and a processor

=  FPGA chip provides array of logic blocks, connected by
interconnect

= Programmer-defined logic implemented directly by FGPA

Logic Block

Routing Fabric

OO I:II:I 10 OLC I{_ I/0 Block

D S—

] D —‘ ] Cout

0 —lo

ol a g

[ — | O

o B g

[ — | O

o T St B
OLC

O
]
L
-

(a)

Programmable lookup table (LUT)

Image credit: Bai et al. 2014

Flip flop (a register)
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[Putnam et al. ISCA 2014]

Project Catapult

= Microsoft Research using FPGAs to

accelerate datacenter workloads ,, GA board

y EXREYRREY Y - ) ' .'. 20 Al {
=0 g B ; vy LTSRS e v hmekepes rel
ot - iy g R R
g VL KLLLLLRL LR LA AR, | [
r —

= Demonstrated offload of part of Bing e . il |
Search’s document ranking logic & A /e |

* Now widely used to accelerate DNNs across ' . |
Microsoft services & other system

infrastructure
1U server (Dual socket CPU + FPGA connected via PCle bus)

M T

suacas
F 3

JEEREN

A

P -

" A e

« Two 8-core Xeon 2.1 GHz CPUs

s 2ty Air flow
+ 4HDDs @ 2 TB, 2 SSDs @ 512 GB 200 LFM
« 10 Gb Ethernet 68 0(: Inlet

« No cable attachments to server
CViU 15-418/618,

Sprina 2025



Summary: choosing the right tool for the job

Throughput-oriented FPGA/Future

processor (GPU) reconfigurable logic ASIC

Energy-optimized CPU Programmable DSP

Video encode/decode,
Audio playback,
Camera RAW processing,
neural nets (future?)

Easiest to program ~10X more efficient ~100X2?2?

(jury still out) ~100-1000x

more efficient

Difficult to program  Not programmable +

(making it easier is costs 10-100’s
active area of millions of dollars to
research) design / verify /
create
Credit Pat Hanrahan for this taxonomy CMU 15-418/618,
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Challenges of heterogeneous designs

CMU 15-418/618,
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Challenges of heterogeneity

= So far in this course:

- Homogeneous system: every processor can be used for every task

- To get best speedup vs. sequential execution, “keep all processors busy all the
time” (this is hard to achieve)

= Heterogeneous system: use preferred processor for each task

- Challenge for system designer: what is the right mixture of resources to meet
performance, cost, and energy goals?

- Too few throughput-oriented resources (lower peak performance/efficiency
for parallel workloads -- should have used resources for more throughput
cores)

- Too few sequential processing resources (get bitten by Amdahl’s Law)

- How much chip area should be dedicated to a specific function, like video?
(Resources taken away from general-purpose processing)

- How to publish what's available to software? (What abstractions? What about
compilers & operating systems?)

= Implication: increased pressure to understand workloads accurately at chip
design time

CMU 15-418/618,
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Pitfalls of heterogeneous designs

[Molnar 2010]

Tessellate Tessellate
Tessallate Tessellate .?z - -
i\\. o | o
Clip/Cull Clip/Cull INIE
Rasterize Rasterize o | o | o | @ .//c . o\\ o | e
— ¢ (/ L L \ L]
Cligd/Cull Clip/Cull oo e |ofe|e oo .\ .
Raslerize Rasterize e | o o /o | e | e e e \

. DR

Zbuffer / Zbuffer / Zbutfer / o | o j/' o | ol a—F e o o
Blend Blend Blend o | T ele|le|e|le|lole

=

Zbuffer/  Zbuffer/  Zbuffer/
Blend Blend Blend

Scheduler / Work Distributor

Say 10% of the workload is rasterization

Let’s say you under-provision the fixed-function rasterization unit on GPU:

Chose to dedicate 1% of chip area used for rasterizer, really needed 20% more throughput: 1.2% of
chip area

Problem: rasterization is now the bottleneck, so the expensive programmable processors (99% of

chip) are idle waiting on rasterization. 99% of the chip runs at 80% efficiency!

-).Te.n.del?cy is tc? be conservative, and over-provision fixed-function components CMU 15-418/618.
(diminishing their advantage) Sprina 2025



Challenges of heterogeneity

= Heterogeneous system: preferred processor for each task

Challenge for hardware designer: what is the right mixture of resources?

Too few throughput oriented resources (lower peak throughput for parallel
workloads)

Too few sequential processing resources (limited by sequential part of
workload)

How much chip area should be dedicated to a specific function, like video?
(these resources are taken away from general-purpose processing)

Work balance must be anticipated at chip design time
= System cannot adapt to changes in usage over time, new algorithms, etc.

= Challenge to software developer: how to map programs onto a heterogeneous
collection of resources?

Challenge: “Pick the right tool for the job"”: design algorithms that
decompose well into components that each map well to different processing
components of the machine

The scheduling problem is more complex on a heterogeneous system
Available mixture of resources can dictate choice of algorithm
Software portability & maintenance nightmare (we’ll revisit this next class)

CMU 15-418/618,
Sprina 2025



Reducing energy consumption idea 1:
use specialized processing

Reducing energy consumption idea 2:
move less data

CMU 15-418/618,
Sprina 2025



Data movement has high energy cost

= Rule of thumb in mobile system design: always seek to
reduce amount of data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor
performance). Now, we wish to reduce communication to reduce energy
consumption

= v Ballpark" numbers [Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
- Integerop: ~1pJ* Suggests that
_ . . . recomputing
Floating point op: ~20 pJ * values. rather
- Reading 64 bits from small local SRAM (1Tmm away on chip): ~ 26 pJ than storing and

reloading them,

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ ... pcttor answer

z z when optimizing
= Implications Code for anergy
- Reading 10 GB/sec from memory: ~1.6 watts efficiency!

- Entire power budget for mobile GPU: ~1 watt (remember phone is also
running CPU, display, radios, etc.)

- iPhone 6 battery: ~7 watt-hours (compare: Macbook Pro laptop: 99 watt-
hour battery)

- Exploiting locality matters!!!

CMU 15-418/618,

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Spring 2025
Dringa


http://www.displaymate.com/iPad_ShootOut_1.htm

Three trends in energy-optimized computing

=  Compute less!

Computing costs energy: parallel algorithms that do more work than
sequential counterparts may not be desirable even if they run faster

...But performance matters too, because processors burn energy whenever
they are turned on (“static power”)

= Specialize compute units:

Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-
like cores)

Fixed-function units: audio processing, “movement sensor processing” video
decode/encode, image processing/computer vision?

Specialized instructions: expanding set of AVX vector instructions, new
instructions for accelerating AES encryption (AES-NI)

Programmable soft logic: FPGAs

= Reduce bandwidth requirements

Exploit locality (restructure algorithms to reuse on-chip data as much as
possible)

- Aggressive use of compression: perform extra computation to compress

application data before transferring to memory (likely to see fixed-function

HW to reduce overhead of general data compression/decompression)

CMU 15-418/618,
Sprina 2025



Summary

= Heterogeneous parallel processing: use a mixture of
computing resources that each fit with mixture of needs of
target applications

- Latency-optimized sequential cores, throughput-optimized parallel cores,
domain-specialized fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers,
supercomputers

* Traditional rule of thumb in “good system design” is to
design simple, general-purpose components

- This is not the case with emerging processing systems (optimized for
perf/watt)

- Today: want collection of components that meet perf requirement AND
minimize energy use

= Challenge of using these resources effectively is pushed up to
the programmer

- Current CS research challenge: how to write efficient, portable programs for
emerging heterogeneous architectures?

CMU 15-418/618,
Sprina 2025
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