
Porting the GNU Hurd to the L4 Microkernel

Marcus Brinkmann

August 2003

ii

Contents

1 Introduction 1

1.1 Genesis . 1

1.2 Work In Progress . 3

2 Booting 5

2.1 System bootstrap . 5

2.1.1 Booting the ia32 . 5

2.2 The loader laden . 6

2.3 The L4 kernel . 7

2.4 The initial server σ0 . 7

2.5 The initial server σ1 . 7

2.6 The rootserver wortel . 7

2.7 The physical memory server physmem 8

2.8 The task server . 9

2.9 The device access server deva . 10

2.10 The device access server archive 10

2.11 The root filesystem . 10

3 Inter-process communication (IPC) 11

3.1 Capabilities . 13

3.1.1 Bootstrapping a client-server connection 14

3.1.2 Returning a capability from a server to a client 17

3.1.3 Copying a capability from one client to another task . . . 17

3.1.4 The trust rule . 25

3.2 Synchronous IPC . 26

3.3 Notifications . 27

4 Threads and Tasks 29

4.1 Accounting . 31

4.2 Proxy Task Server . 32

4.3 Scheduling . 32

iii

iv CONTENTS

5 Virtual Memory Management 33
5.1 Introduction . 33

5.1.1 Learning from Unix . 34
5.1.2 Learning from Mach . 35
5.1.3 Following the Hurd Philosophy 35

5.2 Self Paging . 35
5.3 Bootstrap . 37
5.4 Memory Allocation Policy . 37

5.4.1 Guaranteed Frames and Extra Frames 37
5.4.2 An External Memory Policy Server 38

5.5 Containers . 39
5.5.1 The Container Interface 40
5.5.2 Moving Data . 44

5.6 Caching Store Accesses . 44
5.6.1 Caching in the File System 46
5.6.2 Caching Interfaces . 47

5.7 The Memory Policy Server . 47
5.8 Sending Data to Swap . 47
5.9 Self Paging . 48

5.9.1 The Pager . 48
5.9.2 Reusing Virtual Frames 49
5.9.3 Taking Advantage of Self-Paging 49

6 The POSIX personality 51
6.1 Authentication . 51

6.1.1 Authenticating a client to a server 52
6.2 Process Management . 54

6.2.1 Signals . 54
6.2.2 The fork() function . 55
6.2.3 The exec functions . 55

6.3 Unix Domain Sockets . 58
6.4 Pipes . 59
6.5 Filesystems . 59

6.5.1 Directory lookup across filesystems 59
6.5.2 Reparenting . 60

7 Debugging 63

8 Device Drivers 65
8.1 Requirements . 65
8.2 Overview . 65

8.2.1 Layer of the drivers . 66
8.2.2 Address spaces . 66
8.2.3 Zero copying and DMA 66
8.2.4 Physical versus logical device view 67
8.2.5 Things for the future . 67

CONTENTS v

8.3 Bus Drivers . 67
8.3.1 Root bus driver . 68
8.3.2 Generic Bus Driver . 68
8.3.3 ISA Bus Driver . 68
8.3.4 PCI Bus Driver . 69

8.4 Device Drivers . 69
8.4.1 Classes . 69
8.4.2 Human input devices (HID) and the console 70
8.4.3 Generic Device Driver . 70
8.4.4 ISA Devices . 70
8.4.5 PCI Devices . 71

8.5 Service Servers . 71
8.5.1 Plugin Manager . 71
8.5.2 Deva . 71
8.5.3 ω0 . 72

8.6 Resource Management . 72
8.6.1 IRQ handling . 72
8.6.2 Memory . 73

8.7 Bootstrapping . 74
8.7.1 deva . 74
8.7.2 Plugin Manager . 74

8.8 Order of implementation . 74
8.9 Scenarios . 74

8.9.1 Insert Event . 74
8.9.2 Several Plugin Managers 77

vi CONTENTS

Chapter 1

Introduction

What is right in this particular case, like everything else, requires to

be explained.

Republic V by Plato

1.1 Genesis

The GNU Hurd is a multi-user, time sharing, general purpose, network operating
system. The Hurd’s existence is motivated by perceived design flaws in Unix
and other operating systems: either the system is overly restrictive and does
not allow the user to perform interesting operations without the intervention of
the administrator (e.g. mount file systems) or the security policy is overly lax
and users can harm each other and the system. The Hurd emphasizes flexibility
and security. The fundamental philosophy is:

The operating system should empower users while maintaining strict

system security.

Speed, although very important, is secondary to correctness and security. We
have however reason to believe that we have identified important areas where
the Hurd, due to its design, will not only be able to compete with traditional
systems, but outperform them.

In order to achieve this goal, a multi-server architecture has been embraced.
The initial prototype of the Hurd runs on a derivative of the Mach microkernel
developed at Carnegie Mellon University in the 1980s and early 1990s. With
this implementation, an authentication scheme similar to Kerberos was explored
which separates the user identity from the process thereby allowing tasks to
identify themselves not by an inherent attribute but using unforgeable identity

1

2 CHAPTER 1. INTRODUCTION

tokens. User space file systems and a user space virtual file system, VFS, allowed
users to mount their own file systems including NFS and to create their own
special file systems such as ftpfs without needing special permissions on the
system and without harming other users. This was based on the observation
that the only reason that users are not permitted to mount file systems in Unix
is that it involves twiddling kernel data structures: with the VFS outside of the
kernel, this was no longer an impedance.

During this implementation, much was learned including: Mach did not remove
enough policy from the kernel and as a result, its mechanisms were still too
heavy-weight. Mach moves what has now become POSIX from the Unix ker-
nel into user space and only provides IPC, a scheduler, memory management
and device drivers. This design leaves the resource allocation and management
schemes in the kernel while the resource utilization was moved completely into
user space (e.g. file systems). This made important information about resource
utilization inaccessible to the allocation mechanisms and thus made smart im-
plementations of resource managers extremely difficult and far less intelligent
than their monolithic kernel counterparts. In keeping with the Hurd philos-
ophy of empowering the user, it was observed that many applications could
profit if they could control how the resources they are using are managed, e.g.
which pages are evicted when there is memory pressure. This is not only an
improvement over the Mach scheme, but also over a traditional Unix-like de-
sign: applications not only know how a resource is being used but also what its
contents are. Unix knows how a frame of memory is allocated, e.g. to the block
cache, but it does not know what its contents are nor the classes of data and
the type of expected usage patterns of the data types contained therein. This
scheme should permit an application to make far more intelligent decisions than
are possible with the superficial knowledge that a monolithic kernel has.

The L4 microkernel makes implementing this philosophy possible: it aims to
absolutely minimize the amount of policy in the microkernel while providing
powerful foundational mechanisms for inter-process communication, memory
movement (mapping and granting of pages via address space manipulation) and
task and thread creation and manipulation.

Thus, while the L4 microkernel tries to minimize the policy that the kernel
enforces on the software running on it, the Hurd tries to minimize the policy
that the operating system enforces on its users. The Hurd also aims to provide a
POSIX conformant, general purpose layer. This POSIX personality of the Hurd,
however, is provided for convenience only and to make the Hurd useful: many
applications target a subset of POSIX. Other personalities can be implemented
and used in parallel. This default personality of the Hurd is not sandboxed: it
provides convenient features that allow the user to extend the system so that
all POSIX compatible programs can take advantage of them.

1.2. WORK IN PROGRESS 3

1.2 Work In Progress

This manual is less a manual than a series of notes about the effort to document
the current strategy to port the Hurd to the L4 microkernel.

Remarks about the history of a certain feature and implementation details are
set in a smaller font and separated from the main text, just like this paragraph.
Because this is work in progress, there are naturally a lot of such comments.

The port to L4 was set into action in the summer of 2002 when Neal H. Walfield
went to the Universität of Karlsruhe. During that time, he worked with the L4
group and designed a basic IPC, Task and Thread API as well as doing extensive
design work on the virtual memory manager. He was aided greatly by discus-
sions with Marcus Brinkmann, Uwe Dannowski, Kevin Elphinstone, Andreas
Haeberlen, Wolfgang Jährling, Joshua LeVasseur, Espen Skoglund, Volkmar
Uhlig and Marcus Völp.

A public release of L4 was made in May of 2003. It was soon after this that
Marcus Brinkmann began overhauling the proposed IPC system and identifying
important flaws and scenarios that had been originally overlooked. He also
revised the fork and exec strategy and began extensive work on the rest of the
system.

Peter De Schrijver and Daniel Wagner started to design the device driver frame-
work.

Niels Müller was the first one to realize that the exec server can be eliminated
and gave helpful input on several aspects of the task server and IPC design.

During this process valuable input and discussion has come from many different
corners including:

4 CHAPTER 1. INTRODUCTION

Chapter 2

Booting

A multiboot-compliant bootloader, for example GNU GRUB, loads the loader
program laden, the kernel, σ0, the rootserver and further modules. The loader
is started, patches the kernel interface page, and starts the kernel. The kernel
starts σ0 and the rootserver. The rootserver has to deal with the other modules.

2.1 System bootstrap

The initial part of the boot procedure is system specific.

2.1.1 Booting the ia32

On the ia32, the BIOS will be one of the first things to run. Eventually, the BIOS
will start the bootloader. The Hurd requires a multiboot-compliant bootloader,
such as GNU GRUB. A typical configuration file entry in the menu.list file of
GNU GRUB will look like this:

title = The GNU Hurd on L4

root = (hd0,0)

kernel = /boot/laden

module = /boot/ia32-kernel

module = /boot/sigma0

module = /boot/wortel

module = /boot/physmem

module = /boot/task

module = /boot/deva

module = /boot/deva-drivers

module = /boot/rootfs

5

6 CHAPTER 2. BOOTING

GNU GRUB loads the binary image files into memory and jumps to the entry
point of laden.

2.2 The loader laden

laden is a multiboot compliant kernel from the perspective of GNU GRUB. It
expects at least three modules. The first module is the L4 kernel image, the
second module is the σ0 server image, and the third module is the rootserver
image.

Later, the L4 kernel will support the optional UTCB paging server σ1, which
has to be treated like the other initial servers by laden. A command line option
to laden will allow the user to specify if the third module is the rootserver or
σ1. If σ1 is used, the rootserver is the fourth module in the list.

laden copies (or moves) the three executable images to the right location in
memory, according to their respective ELF headers. It also initializes the BSS
section to zero.

Laden has to deal with overlapping source and destination memory areas in an
intelligent way. It currently will detect such situations, but is not always able
to find a solution, even if one exists.

If a memory area stretches out to the very last page addressible in 32 bit, the
high address of the memory descriptor will overflow. This is in fact the behaviour
of kickstart. laden currently truncates such an area by one page. This needs
clarification in the L4 standard.

Then it searches for the kernel interface page (KIP) in the L4 kernel image and
modifies it in the following way:

• The memory descriptors are filled in according to the memory layout of
the system. On ia32, this information is – at least partially – provided by
GNU GRUB.

GNU GRUB seems to omit information about the memory that is shared
with the VGA card. laden creates a special entry for that region, overriding
any previous memory descriptor.

• The start and end addresses and the entry point of the initial servers are
filled in.

A future version of L4 should support adding information about the UTCB
area of the initial rootserver as well. Until then, the rootserver has no clean
way to create a new thread (a hack is used by the rootserver to calculate
the UTCB addresses for other threads).

• The boot_info field is initialized.

The boot_info field is currently set to the GNU GRUB multiboot_info

structure. This only works for the ia32 architecture of course. We might
want to have a more architecture independent way to pass the information
about further modules to the rootserver. We also might want to gather the
information provided by GNU GRUB in a single page (if it is not).

2.3. THE L4 KERNEL 7

2.3 The L4 kernel

The L4 kernel initializes itself and then creates the address spaces and threads
for the initial servers σ0 and the rootserver. It maps all physical memory idem-
potently into σ0, and sets the pager of the rootserver thread to σ0. Then it
starts the initial servers.

2.4 The initial server σ0

σ0 acts as the pager for the rootserver, answering page fault messages by map-
ping the page at the fault address idempotently in the rootserver.

σ0 can also be used directly by sending messages to it, according to the σ0 RPC
protocol. This is used by the kernel to allocate reserved memory, but can also be
used by the user to explicitely allocate more memory than single pages indirectly
via page faults.

The thread ID of σ0 is (UserBase, 1).

We will write all thread IDs in the form (thread nr, version).

Any fpage will only be provided to one thread. σ0 will return an error if another
thread attempts to map or manipulate an fpage that has already been given to
some other thread, even if both threads reside in the same address space.

2.5 The initial server σ1

σ1 is intended to provide a paging service for UTCB memory. This will allow
orthogonal persistence to be implemented. It is not yet supported.

The thread ID of σ1 is (UserBase + 1, 1).

2.6 The rootserver wortel

The rootserver that L4 started is the only task in the system which threads can
perform privileged system calls. So the rootserver must provide wrappers for
the system calls to other unprivileged system tasks.

For this, a simple authentication scheme is required. The rootserver can keep
a small, statically allocated table of threads which are granted access to the
system call wrappers. The caller could provide the index in the table for fast
O(1) lookup instead linear search. Threads with access could be allowed to add
other threads or change existing table entries. The same scheme can be used in
the device driver framework.

The rootserver should have one thread per CPU, and run at a high priority.

8 CHAPTER 2. BOOTING

Our rootserver is called wortel, and also bootstraps the operating system. Wor-
tel thus acts as a simple manager OS and as a bootloader program.

Ideally, there would be a real manager OS on top of L4 in which you can run
different sand-boxed operating systems. Wortel implements only some rudimen-
tary features such a system would provide: Access to the system memory and
execution of privileged L4 system calls.

If you had such a real manager OS, then this manager OS would start a boot-
loader to boot up a sand-boxed operating system. For simplicity, wortel currently
implements such a bootloader for the Hurd system. Eventually, the code should
be split to allow both components to develop independently.

The rootserver has the following initial state:

• Its thread ID is (UserBase + 2, 1).

• The priority is set to the 255, the maximum value.

The rootserver, or at least the system call wrapper, should run at a very
high priority.

• The instruction pointer %eip is set to the entry point, all other registers
are undefined (including the stack pointer).

• The pager is set to σ0.

• The exception handler is set to nilthread.

• The scheduler is set to the rootserver thread itself.

So the first thing the rootserver has to do is to set up a simple stack.

Then the rootserver should evaluate the boot_info field in the KIP to find
the information about the other modules. It should parse the information and
create the desired initial tasks of the operating system. The Hurd uses a boot
script syntax to allow to pass information about other initial tasks and the root
tasks to each initial task in a generalized manner.

The exact number and type of initial tasks necessary to boot the Hurd are not
yet known. Chances are that this list includes the task server, the physical
memory server, the device servers, and the boot filesystem. The boot filesystem
might be a small simple filesystem, which also includes the device drivers needed
to access the real root filesystem.

2.7 The physical memory server physmem

The physical memory server is the first component of the actual Hurd system
that is started (wortel serves as a manager OS in the background, and its pres-
ence is of no relevance to Hurd programs other than the fundamental core servers
described in this chapter). It provides memory management routines that allow
tasks in the Hurd system to be self-paged.

2.8. THE TASK SERVER 9

The rootserver moves the physical memory server executable image to its ELF
load address (and initializes the BSS section to zero), creates a new address
space and several threads in this address space, starts the first thread and then
maps all the fpages covering the executable image 1:1 into the address space at
the first pagefault (the fpage on which the thread faulted is mapped last - this
makes the thread fault repeatedly until the whole image is mapped).

Wortel should follow the exec() protocol to startup the new task as closely as
possible. However, there is little that wortel can provide to physmem in this
terms.

So, the physical memory server runs on mapped memory in its own address
space, but the virtual addresses of its executable image coincede with the phys-
ical addresses.

Then, in a private protocol between wortel and physmem, the following happens:

1. Physmem requests all system memory from wortel. Wortel maps the mem-
ory from σ0 and maps it to physmem.

The memory is mapped, not granted, to allow wortel (of which we think
as a manager OS here) to unmap and recover the memory in case of a
(possibly forced) system shutdown.

2. For each module that has not been used yet, wortel requests a capability
in physmem that can be used to map in pages from the range of memory
that the module occupies. These capabilities should implement the same
pager interface that mappable files implement.

The idea is that these capabilities can be used in the exec() protocol to
start up the tasks for these modules. If a module is not a task, the capability
can be used to access the module data by mapping it into the address space
like a file. Physmem can even swap out pages that back these objects on
memory pressure.

So, the physical memory server is in fact a simple filesystem for these initial
tasks, usable only for mapping operations.

Wortel can then start up the other tasks in the module list using the normal
exec() protocol.

The result is that all tasks except for the rootserver can be started and manage
their memory through physmem like normal Hurd tasks.

Later on, wortel will provide physmem with further information retrieved from
the task and deva servers.

2.8 The task server

The task server is the second Hurd server started by wortel. Its responsibility
is to keep track of allocation of task and thread IDs in the system, and manage
related resources (recording and restricting CPU usage).

FIXME More has to be said here.

10 CHAPTER 2. BOOTING

2.9 The device access server deva

The device access server deva is the third Hurd server started by wortel. It
implements access to a low-level device driver framework in a way that trans-
parently fits into the overall Hurd system. This means that access to device
drivers is managed via capabilities, and that physmem containers are used for
data exchange between a user-level application and a low-level device driver.

It also provides system integration services to the underlying low-level device
driver framework. In particular, it intermediates access to privileged resources
and provides device drivers and related data from the systems filesystem.

FIXME More has to be said here.

2.10 The device access server archive

The device access server needs to load device drivers before a root filesystem
service is available. In particular, it needs to be able to provide device drivers
for the root filesystem to the device driver framework.

The device access server archive is an archive of device drivers that is loaded by
the bootloader and contains drivers necessary to run the root filesystem.

2.11 The root filesystem

The root filesystem is the fourth and last Hurd server started by wortel. After
the root filesystem starts up and has exchanged the necessary bootstrap infor-
mation with deva, it starts up the rest of the operating system services from its
filesystem.

The root filesystem is the first program to actually run in a proper environment,
given that it can access device drivers, task and physmem services.

From the time the root filesystem starts up, the bootstrap continues roughly as
it is implemented in the Hurd running on GNU Mach.

Chapter 3

Inter-process
communication (IPC)

The Hurd requires a capability system. Capabilities are used to prove your
identity to other servers (authentication), and access server-side implemented
objects like devices, files, directories, terminals, and other things. The server can
use a capability for whatever it wants. Capabilities provide interfaces. Interfaces
can be invoked by sending messages to the capability. In L4, this means that
a message is sent to a thread in the server providing the capability, with the
identifier for the capability in the message.

Capabilities are protected objects. Access to a capability needs to be granted
by the server. Once you have a capability, you can copy it to other tasks (if the
server permits it, which is usually the case). In the Hurd, access to capabilities
is always granted to a whole task, not to individual threads.

There is no reason for the server not to permit it, because the holder of the
capability could also just act as a proxy for the intended receiver instead copying
the capability to it. The operation might fail anyway, for example because of
resource shortage, in particular if the server puts a quota on the number of
capabilities a user can hold.

Capabilities provide two essential services to the Hurd. They are used to restrict
access to a server function, and they are the standard interface the components
in the Hurd use to communicate with each others. Thus, it is important that
their implementation is fast and secure.

There are several ways to implement such a capability system. A more tradi-
tional design would be a global, trusted capability server that provides capabil-
ities to all its users. The L4 redirector could be used to reroute all client traffic
automatically through this server. This approach has several disadvantages:

• It adds a lot of overhead to every single RPC, because all traffic has to
be routed through the capability server, which must then perform the
authentication on the server’s behalf.

11

12 CHAPTER 3. INTER-PROCESS COMMUNICATION (IPC)

• It would be difficult to copy a capability to another task. Either the cap
server would have to provide interfaces for clients to do it, or it would be
have to know the message format for every interface and do it automati-
cally.

• It would be a single point of failure. If it had a bug and crashed, the whole
system would be affected.

• Users could not avoid it, it would be enforced system code.

• It is inflexible. It would be hard to replace or extend at run-time.

Another approach is taken by CORBA with IORs. IORs contain long random
numbers which allow the server to identify a user of an object. This approach
is not feasible for the following reasons:

• Even good random numbers can be guessed. Long enough random num-
bers can reduce the likelihood to arbitrary small numbers, though (below
the probability of a hardware failure).

• Good random numbers are in short supply, and is slow to generate. Good
pseudo random is faster, but it is still difficult to generate. The random
number generator would become a critical part of the operating system.

• The random number had to be transfered in every single message. Because
it would have to be long, it would have a significant negative impact on
IPC performance.

The Hurd implements the capability system locally in each task. A common
default implementation will be shared by all programs. However, a malicious
untrusted program can do nothing to disturb the communication of other tasks.
A capability is identified in the client task by the server thread and a local
identifier (which can be different from client to client). The server thread will
receive messages for the capabilities. The first argument in the message is
the capability identifier. Although every task can get different IDs for the same
capability, a well-behaving server will give the same ID to a client which already
has a capability and gets the same capability from another client. So clients can
compare capability IDs from the server numerically to check if two capabilities
are the same, but only if one of the two IDs is received while the client already
had the other one.

Because access to a capability must be restricted, the server needs to be careful
in only allowing registered and known users to access the capability. For this,
the server must be sure that it can determine the sender of a message. In
L4, this is easy on the surface: The kernel provides the receiving thread with
the sender’s thread ID, which also contains the task ID in the version field.
However, the server must also know for sure if this task is the same task that it
gave access to the capability. Comparing the task IDs numerically is not good
enough, the server must also somehow have knowledge or influence on how task
IDs are reused when tasks die and are created.

The same is true for the client, of course, which trusts the server and thus must
be sure that it is not tricked into trusting on unreliable data from an imposter,
or sends sensitive data to it.

3.1. CAPABILITIES 13

The task server wants to reuse thread numbers because that makes best use
of kernel memory. Reusing task IDs, the version field of a thread ID, is not so
important, but there are only 14 bits for the version field (and the lower six bits
must not be all zero). So a thread ID is bound to be reused eventually.

Using the version field in a thread ID as a generation number is not good enough,
because it is so small. Even on 64-bit architectures, where it is 32 bit long, it
can eventually overflow.

The best way to prevent that a task can be tricked into talking to an imposter is
to have the task server notify the task if the communication partner dies. The
task server must guarantee that the task ID is not reused until all tasks that
got such a notification acknowledge that it is processed, and thus no danger of
confusion exists anymore.

The task server provides references to task IDs in form of task info capabilities.
If a task has a task info capability for another task, it prevents that this other
task’s task ID is reused even if that task dies, and it also makes sure that task
death notifications are delivered in that case.

Because only the task server can create and destroy tasks, and assign task IDs,
there is no need to hold such task info capabilities for the task server, nor does
the task server need to hold task info capabilities for its clients. This avoids the
obvious bootstrap problem in providing capabilities in the task server. This will
even work if the task server is not the real task server, but a proxy task server
(see section 4.2 on page 32).

As task IDs are a global resource, care has to be taken that this approach does
not allow for a DoS-attack by exhausting the task ID number space, see section
4 on page 29 for more details.

3.1 Capabilities

This subsection contains implementation details about capabilities.

A server will usually operate on objects, and not capabilities. In the case of a
filesystem, this could be file objects, for example.

In the Hurd, filesystem servers have to keep different objects for each time a
file is looked up (or “opened”), because some state, for example authentication,
open flags and record locks, are associated not with the file directly, but with
this instance of opening the file. Such a state structure (“credential”) will also
contain a pointer and reference to the actual file node. For simplicity, we will
assume that the capability is associated with a file node directly.

To provide access to the object to another task, the server creates a capability,
and associates it with the object (by setting a hook variable in the capability).
From this capability, the server can either create send references to itself, or
to other tasks. If the server creates send references for itself, it can use the
capability just as it can use capabilities implemented by other servers. This
makes access to locally and remotely implemented capabilities identical. If you

14 CHAPTER 3. INTER-PROCESS COMMUNICATION (IPC)

write code to work on capabilities, it can be used for remote objects as well as
for local objects.

If the server creates a send reference for another task (a client), a new capability
ID will be created for this task. This ID will only be valid for this task, and
should be returned to the client.

The client itself will create a capability object from this capability ID. The
capability will also contain information about the server, for example the server
thread which should be used for sending messages to the capability.

If the client wants to send a message, it will send it to the provided server
thread, and use the capability ID it got from the server as the first argument in
the RPC. The server receives the message, and now has to look up the capability
ID in the list of capabilties for this task.

The server knows the task ID from the version field of the sender’s thread ID. It
can look up the list of capabilities for this task in a hash table. The capability
ID can be an index into an array, so the server only needs to perform a range
check. This allows to verify quickly that the user is allowed to access the object.

This is not enough if several systems run in parallel on the same host. Then the
version ID for the threads in the other systems will not be under the control of
the Hurd’s task server, and can thus not be trusted. The server can still use the
version field to find out the task ID, which will be correct if the thread is part

of the same subsystem. It also has to verify that the thread belongs to this sub-
system. Hopefully the subsystem will be encoded in the thread ID. Otherwise,
the task server has to be consulted (and, assuming that thread numbers are not
shared by the different systems, the result can be cached).

The server reads out the capability associated with the capability ID, and in-
vokes the server stub according to the message ID field in the message.

After the message is processed, the server sends it reply to the sender thread
with a zero timeout.

Servers must never block on sending messages to clients. Even a small timeout
can be used for DoS-attacks. The client can always make sure that it receives the
reply by using a combined send and receive operation together with an infinite
timeout.

The above scheme assumes that the server and the client already have task info
caps for the respective other task. This is the normal case, because acquiring
these task info caps is part of the protocol that is used when a capability is
copied from one task to another.

3.1.1 Bootstrapping a client-server connection

If the client and the server do not know about each other yet, then they can
bootstrap a connection without support from any other task except the task

server. The purpose of the initial handshake is to give both participants a
chance to acquire a task info cap for the other participants task ID, so they can
be sure that from there on they will always talk to the same task as they talked
to before.

3.1. CAPABILITIES 15

Preconditions The client knows the thread ID of the server thread that re-
ceives and processes the bootstrap messages. Some other task might hold a task
info capability to the server the client wants to connect to.

If no such other tasks exists, the protocol will still work. However, the client
might not get a connection to the server that run at the time the client started
the protocol, but rather to the server that run at the time the client acquired
the task info cap for the server’s task ID (after step 1 below).

This is similar to how sending signals works in Unix: Technically, at the time
you write kill 203, and press enter, you do not know if the process with the
PID 203 you thought of will receive the signal, or some other process that got
the PID in the time between you getting the information about the PID and
writing the kill-command.

FIXME: Here should be the pseudo code for the protocol. For now, you have
to take it out of the long version.

1. The client acquires a task info capability for the server’s task ID, either
directly from the task server, or from another task in a capability copy.
From that point on, the client can be sure to always talk to the same task
when talking to the server.

Of course, if the client already has a task info cap for the server it does
not need to do anything in this step.

As explained above, if the client does not have any other task holding the
task info cap already, it has no secure information about what this task is
for which it got a task info cap.

2. The client sends a message to the server, requesting the initial handshake.

3. The server receives the message, and acquires a task info cap for the client
task (directly from the task server).

Of course, if the server already has a task info cap for the client it does
not need to do anything in this step.

At this point, the server knows that future messages from this task will
come from the same task as it got the task info cap for. However, it does
not know that this is the same task that sent the initial handshake request
in step 2 above. This shows that there is no sense in verifying the task ID
or perform any other authentication before acquiring the task info cap.

4. The server replies to the initial handshake request with an empty reply
message.

Because the reply now can go to a different task than the request came
from, sending the reply might fail. It might also succeed and be accepted
by the task that replaced the requestor. Or it might succeed normally. The
important thing is that it does not matter to the server at all. It would
have provided the same “service” to the “imposter” of the client, if he had
bothered to do the request. As no authentication is done yet, there is no
point for the server to bother.

16 CHAPTER 3. INTER-PROCESS COMMUNICATION (IPC)

This means however, that the server needs to be careful in not consuming
too many resources for this service. However, this is easy to achieve. Only
one task info cap per client task will ever be held in the server. The server
can either keep it around until the task dies (and a task death notification
is received), or it can clean it up after some timeout if the client does not
follow up and do some real authentication.

5. The client receives the reply message to its initial handshake request.

6. The client sends a request to create its initial capability. How this request
looks depends on the type of the server and the initial capabilities it
provides. Here are some examples:

• A filesystem might provide an unauthenticated root directory object
in return of the underlying node capability, which is provided by
the parent filesystem and proves to the filesystem that the user was
allowed to look up the root node of this filesystem (see section 6.5.1
on page 59).

In this example, the parent filesystem will either provide the task info
cap for the child filesystem to the user, or it will hold the task info cap
while the user is creating their own (which the user has to verify by
repeating the lookup, though). Again, see section 6.5.1 on page 59.
The unauthenticated root directory object will then have the be au-
thenticated using the normal reauthentication mechanism (see section
6.1 on pagerefauth). This can also be combined in a single RPC.

• Every process acts as a server that implements the signal capability
for this process. Tasks who want to send a signal to another task
can perform the above handshake, and then provide some type of
authentication capability that indicates that they are allowed to send
a signal. Different authentication capabilities can be accepted by the
signalled task for different types of signals.

The Hurd used to store the signal capability in the proc server, where
authorized tasks could look it up. This is no longer possible because a
server can not accept capabilities implemented by untrusted tasks, see
below.

7. The server replies with whatever capability the client requested, provided
that the client could provide the necessary authentication capabilities, if
any.

It is not required that the server performs any authentication at all, but it
is recommended, and all Hurd servers will do so.

In particular, the server should normally only allow access from tasks run-
ning in the same system, if running multiple systems on the same host is
possible.

Result The client has a task info capability for the server and an authenticated
capability. The server has a task info capability for the client and seen some
sort of authentication for the capability it gave to the client.

If you think that the above protocol is complex, you have seen nothing yet! Read
on.

3.1. CAPABILITIES 17

3.1.2 Returning a capability from a server to a client

Before we go on to the more complex case of copying a capability from one client
to another, let us point out that once a client has a capability from a server, it
is easy for the server to return more capabilities it implements to the client.

The server just needs to create the capability, acquire a capability ID in the
client’s cap ID space, and return the information in the reply RPC.

FIXME: Here should be the pseudo code for the protocol. For now, you have
to take it out of the long version.

The main point of this section is to point out that only one task info capability
is required to protect all capabilities provided to a single task. The protocols
described here always assume that no task info caps are held by anyone (except
those mentioned in the preconditions). In reality, sometimes the required task
info caps will already be held.

3.1.3 Copying a capability from one client to another task

The most complex operation in managing capabilities is to copy or move a
capability from the client to another task, which subsequently becomes a client
of the server providing the capability. The difficulty here lies in the fact that the
protocol should be fast, but also robust and secure. If any of the participants
dies unexpectedly, or any of the untrusted participants is malicious, the others
should not be harmed.

Preconditions The client C has a capability from server S (this implies that
C has a task info cap for S and S has a task info cap for C). It wants to copy
the capability to the destination task D. For this, it will have to make RPCs
to D, so C has also a capability from D (this implies that C has a task info cap
for D and D has a task info cap for C). Of course, the client C trusts its servers
S and D. D might trust S or not, and thus accept or reject the capability that
C wants to give to D. S does not trust either C or D.

The task server is also involved, because it provides the task info capabilities.
Everyone trusts the task server they use. This does not need to be the same
one for every participant.

FIXME: Here should be the pseudo code for the protocol. For now, you have
to take it out of the long version.

1. The client invokes the cap_ref_cont_createRPC on the capability, pro-
viding the task ID of the intended receiver D of the capability.

2. The server receives the cap_ref_cont_create RPC from the client. It
requests a task info cap for D from its trusted task server, under the
constraint that C is still living.

18 CHAPTER 3. INTER-PROCESS COMMUNICATION (IPC)

A task can provide a constraint when creating a task info cap in the task

server. The constraint is a task ID. The task server will only create the
task info cap and return it if the task with the constraint task ID is not
destroyed. This allows for a task requesting a task info capability to make
sure that another task, which also holds this task info cap, is not destroyed.
This is important, because if a task is destroyed, all the task info caps it
held are released.

In this case, the server relies on the client to hold a task info cap for D

until it established its own. See below for what can go wrong if the server
would not provide a constraint and both, the client and the destination
task would die unexpectedly.

Now that the server established its own task info cap for D, it creates a
reference container for D, that has the following properties:

• The reference container has a single new reference for the capability.

• The reference container has an ID that is unique among all reference
container IDs for the client C.

• The reference container is associated with the client C. If C dies, and
the server processes the task death notification for it, the server will
destroy the reference container and release the capability reference
it has (if any). All resources associated with the reference container
will be released. If this reference container was the only reason for S

to hold the task info cap for D, the server will also release the task
info cap for D.

• The reference container is also associated with the destination task D.
If D dies, and the server processes the task death notification for it,
the server will release the capability reference that is in the reference
container (if any). It will not destroy the part of the container that
is associated with C.

The server returns the reference container ID R to the client.

3. The client receives the reference container ID R.

If several capabilities have to be copied in one message, the above steps need
to be repeated for each capability. With appropriate interfaces, capabilities
could be collected so that only one call per server has to be made. We are
assuming here that only one capability is copied.

4. The client sends the server thread ID T and the reference container ID R

to the destination task D.

5. The destination task D receives the server thread ID T and the reference
container ID R from C.

It now inspects the server thread ID T , and in particular the task ID
component of it. D has to make the decision if it trusts this task to be a
server for it, or if it does not trust this task.

3.1. CAPABILITIES 19

If D trusts C, it might decide to always trust T , too, irregardless of what
task contains T .

If D does not trust C, it might be more picky about the task that contains
T . This is because D will have to become a client of T , so it will trust it.
For example, it will block on messages it sends to T .

If D is a server, it will usually only accept capabilities from its client that are
provided by specific other servers it trusts. This can be the authentication
server, for example (see section 6.1 on page 51).

Usually, the type of capability that D wants to accept from C is then
further restricted, and only one possible trusted server implements that
type of capabilities. Thus, D can simply compare the task ID of T with
the task ID of its trusted server (authentication server, ...) to make the
decision if it wants to accept the capability or not.

If D does not trust T , it replies to C (probably with an error value indi-
cating why the capability was not accepted). In that case, jump to step
8.

Otherwise, it requests a task info cap for S from its trusted task server,
under the constraint that C is still living.

Then D sends a cap_ref_cont_accept RPC to the server S, providing
the task ID of the client C and the reference container ID R.

cap_ref_cont_accept is one of the few interfaces that is not sent to a
(real) capability, of course. Nevertheless, it is part of the capability object
interface, hence the name. You can think of it as a static member in the
capability class, that does not require an instance of the class.

6. The server receives the cap_ref_cont_accept RPC from the destination
task D. It verifies that a reference container exists with the ID R, that is
associated with D and C.

The server will store the reference container in data structures associated
with C, under an ID that is unique but local to C. So D needs to provide
both information, the task ID and the reference container ID of C.

If that is the case, it takes the reference from the reference container, and
creates a capability ID for D from it. The capability ID for D is returned
in the reply message.

From that moment on, the reference container is deassociated from D. It
is still associated with C, but it does not contain any reference for the
capability.

It is not deassociated from C and removed completely, so that its ID R (or
at least the part of it that is used for C) is not reused. C must explicitely
destroy the reference container anyway because D might die unexpectedly
or return an error that gives no indication if it accepted the reference or
not.

7. The destination task D receives the capability ID and enters it into its
capability system. It sends a reply message to C.

20 CHAPTER 3. INTER-PROCESS COMMUNICATION (IPC)

If the only purpose of the RPC was to copy the capability, the reply message
can be empty. Usually, capabilities will be transfered as part of a larger
operation, though, and more work will be done by D before returning to
C.

8. The client C receives the reply from D. Irregardless if it indicated failure
or success, it will now send the cap_ref_cont_destroy message to the
server S, providing the reference container R.

This message can be a simple message. It does not require a reply from the
server.

9. The server receives the cap_ref_cont_destroy message and removes the
reference container R. The reference container is deassociated from C and
D. If this was the only reason that S held a task info cap for D, this task
info cap is also released.

Because the reference container can not be deassociated from C by any
other means than this interface, the client does not need to provide D. R

can not be reused without the client C having it destroyed first. This is
different from the cap_ref_cont_accept call made by D, see above.

Result For the client C, nothing has changed. The destination task D either
did not accept the capability, and nothing has changed for it, and also not for
the server S. Or D accepted the capability, and it now has a task info cap for S

and a reference to the capability provided by S. In this case, the server S has
a task info cap for D and provides a capability ID for this task.

The above protocol is for copying a capability from C to D. If the goal was to
move the capability, then C can now release its reference to it.

Originally we considered to move capabilities by default, and require the client
to acquire an additional reference if it wanted to copy it instead. However, it
turned out that for the implementation, copying is easier to handle. One reason
is that the client usually will use local reference counting for the capabilities it
holds, and with local reference counting, one server-side reference is shared by
many local references. In that case, you would need to acquire a new server-
side reference even if you want to move the capability. The other reason is
cancellation. If an RPC is cancelled, and you want to back out of it, you need
to restore the original situation. And that is easier if you do not change the
original situation in the first place until the natural “point of no return”.

The above protocol quite obviously achieves the result as described in the above
concluding paragraph. However, many other, and often simpler, protocols would
also do that. The other protocols we looked at are not secure or robust though,
or require more operations. To date we think that the above is the shortest (in
particular in number of IPC operations) protocol that is also secure and robust
(and if it is not we think it can be fixed to be secure and robust with minimal
changes). We have no proof for its correctness. Our confidence comes from the
scrutiny we applied to it. If you find a problem with the above protocol, or if
you can prove various aspects of it, we would like to hear about it.

3.1. CAPABILITIES 21

To understand why the protocol is laid out as it is, and why it is a secure
and robust protocol, one has to understand what could possibly go wrong and
why it does not cause any problems for any participant if it follows its part of
the protocol (independent on what the other participants do). In the following
paragraphs, various scenarios are suggested where things do not go as expected
in the above protocol. This is probably not a complete list, but it should come
close to it. If you find any other problematic scenario, again, let us know.

Although some comments like this appear in the protocol description above,
many comments have been spared for the following analysis of potential prob-
lems. Read the analysis carefully, as it provides important information about
how, and more importantly, why it works.

The server S dies What happens if the server S dies unexpectedly sometime
throughout the protocol?

At any time a task dies, the task info caps it held are released. Also, task death
notifications are sent to any task that holds task info caps to the now dead task.
The task death notifications will be processed asynchrnouly, so they might be
processed immediately, or at any later time, even much later after the task died!
So one important thing to keep in mind is that the release of task info caps a
task held, and other tasks noticing the task death, are always some time apart.

Because the client C holds a task info cap for S no imposter can get the task
ID of S. C and D will get errors when trying to send messages to S.

You might now wonder what happens if C also dies, or if C is malicious and
does not hold the task info cap. You can use this as an exercise, and try to find
the answer on your own. The answers are below.

Eventually, C (and D if it already got the task info cap for S) will process the
task death notification and clean up their state.

The client C dies The server S and the destination task D hold a task info
cap for C, so no imposter can get its task ID. S and D will get errors when
trying to send messages to C. Depending on when C dies, the capability might
be copied successfully or not at all.

Eventually, S and D will process the task death notification and release all
resources associated with C. If the reference was not yet copied, this will include
the reference container associated with C, if any. If the reference was already
copied, this will only include the empty reference container, if any.

Of course, the participants need to use internal locking to protect the integrity
of their internal data structures. The above protocol does not show where locks
are required. In the few cases where some actions must be performed atomically,
a wording is used that suggests that.

22 CHAPTER 3. INTER-PROCESS COMMUNICATION (IPC)

The destination task D dies The client C holds a task info cap for D over
the whole operation, so no imposter can get its task ID. Depending on when
D dies, it has either not yet accepted the capability, then C will clean up by
destroying the reference container, or it has, and then S will clean up its state
when it processes the task death notification for D.

The client C and the destination task D die This scenario is the reason
why the server acquires its own task info cap for D so early, and why it must
do that under the constraint that C still lives. If C and D die before the server
created the reference container, then either no request was made, or creating the
task info cap for D fails because of the constraint. If C and D die afterwards,
then no imposter can get the task ID of D and try to get at the reference in the
container, because the server has its own task info cap for D.

This problem was identified very late in the development of this protocol. We
just did not think of both clients dieing at the same time! In an earlier version
of the protocol, the server would acquire its task info cap when D accepts its
reference. This is too late: If C and D die just before that, an imposter with D’s
task ID can try to get the reference in the container before the server processes
the task death notification for C and destroys it.

Eventually, the server will receive and process the task death notifications. If
it processes the task death notification for C first, it will destroy the whole
container immediately, including the reference, if any. If it processes the task
death notification for D first, it will destroy the reference, and leave behind the
empty container associated with C, until the other task death notification is
processed. Either way no imposter can get at the capability.

Of course, if the capability was already copied at the time C and D die, the
server will just do the normal cleanup.

The client C and the server S die This scenario does not cause any prob-
lems, because on the one hand, the destination task D holds a task info cap for
C, and it acquires its own task info cap for S. Although it does this quite late in
the protocol, it does so under the constraint that C still lives, which has a task
info cap for S for the whole time (until it dies). It also gets the task info cap for
S before sending any message to it. An imposter with the task ID of S, which
it was possible to get because C died early, would not receive any message from
D because D uses C as its constraint in acquireing the task info cap for S.

The destination task D and the server S die As C holds task info caps
for S and D, there is nothing that can go wrong here. Eventually, the task
death notifications are processed, but the task info caps are not released until
the protocol is completed or aborted because of errors.

3.1. CAPABILITIES 23

The client C, the destination task D and the server S die Before the
last one of these dies, you are in one of the scenarios which already have been
covered. After the last one dies, there is nothing to take care of anymore.

In this case your problem is probably not the capability copy protocol, but the
stability of your software! Go fix some bugs.

So far the scenarios where one or more of the participating tasks die unexpect-
edly. They could also die purposefully. Other things that tasks can try to do
purposefully to break the protocol are presented in the following paragraphs.

A task that tries to harm other tasks by not following a protocol and behaving as
other tasks might expect it is malicious. Beside security concerns, this is also an
issue of robustness, because malicious behaviour can also be triggered by bugs
rather than bad intentions.

It is difficult to protect against malicious behaviour by trusted components,
like the server S, which is trusted by both C and D. If a trusted component
is compromised or buggy, ill consequences for software that trusts it must be
expected. Thus, no analysis is provided for scenarious involving a malicious or
buggy server S.

The client C is malicious If the client C wants to break the protocol, it has
numerous possibilities to do so. The first thing it can do is to provide a wrong
destination task ID when creating the container. But in this case, the server
will return an error to D when it tries to accept it, and this will give D a chance
to notice the problem and clean up. This also would allow for some other task
to receive the container, but the client can give the capability to any other task
it wants to anyway, so this is not a problem.

If a malicious behaviour results in an outcome that can also be achieved following
the normal protocol with different parameters, then this not a problem at all.

The client could also try to create a reference container for D and then not
tell D about it. However, a reference container should not consume a lot of
resources in the server, and all such resources should be attributed to C. When
C dies eventually, the server will clean up any such pending containers when
the task death notification is processed.

The same argument holds when C leaves out the call to cap_ref_cont_destroy.

The client C could also provide wrong information to D. It could supply a
wrong server thread ID T . It could supply a wrong reference container ID R.
If D does not trust C and expects a capability implemented by some specific
trusted server, it will verify the thread ID numerically and reject it if it does
not match. The reference container ID will be verified by the server, and it
will only be accepted if the reference container was created by the client task
C. Thus, the only wrong reference container IDs that the client C could use to
not provoke an error message from the server (which then lead D to abort the
operation) would be a reference container that it created itself in the first place.
However, C already is frree to send D any reference container it created.

24 CHAPTER 3. INTER-PROCESS COMMUNICATION (IPC)

Again C can not achieve anything it could not achieve by just following the
protocol as well. If C tries to use the same reference container with several
RPCs in D, one of them would succeed and the others would fail, hurting only
C.

If D does trust C, then it can not protect against malicious behaviour by C.

To summarize the result so far: C can provide wrong data in the operations
it does, but it can not achieve anything this way that it could not achieve by
just following the protocol. In most cases the operation would just fail. If it
leaves out some operations, trying to provoke resource leaks in the server, it will
only hurt itself (as the reference container is strictly associated with C until the
reference is accepted by D).

For optimum performance, the server should be able to keep the information
about the capabilities and reference containers a client holds on memory that is
allocated on the clients behalf.

It might also use some type of quota system.

Another attack that C can attempt is to deny a service that S and D are
expecting of it. Beside not doing one or more of the RPCs, this is in particular
holding the task info caps for the time span as described in the protocol. Of
course, this can only be potentially dangerous in combination with a task death.
If C does not hold the server task info capability, then an imposter of S could
trick D into using the imposter as the server. However, this is only possible if D

already trusts C. Otherwise it would only allow servers that it already trusts,
and it would always hold task info caps to such trusted servers when making the
decision that it trusts them. However, if D trusts C, it can not protect against
C being malicious.

If D does not trust C, it should only ever compare the task ID of the server
thread against trusted servers it has a task info cap for. It must not rely on C

doing that for D.

However, if D does trust C, it can rely on C holding the server task info cap
until it got its own. Thus, the task ID of C can be used as the constraint when
acquiring the task info cap in the protocol.

If C does not hold the task info cap of D, and D dies before the server acquires
its task info cap for D, it might get a task info cap for an imposter of D. But
if the client wants to achieve that, it could just follow the protocol with the
imposter as the destination task.

The destination task D is malicious The destination task has not as many
possibilities as C to attack the protocol. This is because it is trusted by C. So
the only participant that D can try to attack is the server S. But the server S

does not rely on any action by D. D does not hold any task info caps for S.
The only operation it does is an RPC to S accepting the capability, and if it
omits that it will just not get the capability (the reference will be cleaned up
by C or by the server when C dies).

3.1. CAPABILITIES 25

The only thing that D could try is to provide false information in the cap_ref_cont_accept
RPC. The information in that RPC is the task ID of the client C and the ref-
erence container ID R. The server will verify that the client C has previously
created a reference container with the ID R that is destined for D. So D will
only be able to accept references that it is granted access to. So it can not
achieve anything that it could not achieve by following the protocol (possibly
the protocol with another client). If D accepts capabilities from other trans-
actions outside of the protocol, it can only cause other transactions in its own
task to fail.

If you can do something wrong and harm yourself that way, then this is called
“shooting yourself in your foot”.

The destination task D is welcome to shoot itself in its foot.

The client C and the destination task D are malicious The final ques-
tion we want to raise is what can happen if the client C and the destination
task D are malicious. Can C and D cooperate and attacking S in a way that
C or D alone could not?

In the above analysis, there is no place where we assume any specific behaviour
of D to help S in preventing an attack on S. There is only one place where
we make an assumption for C in the analysis of a malicious D. If D does
not accept a reference container, we said that C would clean it up by calling
cap_ref_cont_destroy. So we have to look at what would happen if C were
not to do that.

Luckily, we covered this case already. It is identical to the case where C does
not even tell D about the reference container and just do nothing. In this case,
as said before, the server will eventually release the reference container when C

dies. Before that, it only occupies resources in the server that are associated
with C.

This analysis is sketchy in parts, but it covers a broad range of possible attacks.
For example, all possible and relevant combinations of task deaths and mali-
cious tasks are covered. Although by no means complete, it can give us some
confidence about the rightness of the protocol. It also provides a good set of
test cases that you can test your own protocols, and improvements to the above
protocol against.

3.1.4 The trust rule

The protocol to copy a capability from one client to another task has a dramatic
consequence on the design of the Hurd interfaces.

Because the receiver of the capability must make blocking calls to the server
providing the capability, the receiver of the capability must trust the server
providing the capability.

26 CHAPTER 3. INTER-PROCESS COMMUNICATION (IPC)

This means also: If the receiver of a capability does not trust the server providing
the capability, it must not accept it.

The consequence is that normally, servers can not accept capabilities from
clients, unless they are provided by a specific trusted server. This can be the
task or auth server for example.

This rule is even true if the receiver does not actually want to use the capability
for anything. Just accepting the capability requires trusting the server providing
it already.

In the Hurd on Mach, ports (which are analogous to capabilities in this context)
can be passed around freely. There is no security risk in accepting a port from
any source, because the kernel implements them as protected objects. Using a
port by sending blocking messages to it requires trust, but simply storing the
port on the server side does not.

This is different in the Hurd on L4: A server must not accept capabilities unless
it trusts the server providing them. Because capabilities are used for many
different purposes (remote objects, authentication, identification), one has to
be very careful in designing the interfaces. The Hurd interfaces on Mach use
ports in a way that is not possible on L4. Such interfaces need to be redesigned.

Often, redesigning such an interface also fixes some other security problems that
exists with in the Hurd on L4, in particular DoS attacks. A good part of this
paper is about redesigning the Hurd to avoid storing untrusted capabilities on
the server side.

Examples are:

• The new authentication protocol, which eliminates the need for a ren-
dezvous port and is not only faster, but also does not require the server to
block on the client anymore (see section 6.1 on page 51).

• The signal handling, which does not require the proc server to hold the
signal port for every task anymore (see section 6.2.1 on page 54).

• The new exec protocol, which eliminates the need to pass all capabilities
that need to be transfered to the new executable from the old program
to the filesystem server, and then to the exec server (see section 6.2.3 on
page 55).

• The new way to implement Unix Domain Sockets, which don’t require a
trusted system server, so that descriptor passing (which is really capability
passing) can work (see section 6.3 on page 58.

• The way parent and child filesystem are linked to each other, in other
words: how mounting a filesystem works (see section 6.5.1 on page 59).

• The replacement for the file_reparent() RPC (see section 6.5.2 on page
60).

3.2 Synchronous IPC

The Hurd only needs synchronous IPC. Asynchronous IPC is usually not re-
quired. An exception are notifications (see below).

3.3. NOTIFICATIONS 27

There are possibly some places in the Hurd source code where asynchronous
IPC is assumed. These must be replaced with different strategies. One example
is the implementation of select() in the GNU C library.

A naive implementation would use one thread per capability to select on. A
better one would combine all capabilities implemented by the same server in one
array and use one thread per server.

A more complex scheme might let the server process select() calls asynchronously
and report the result back via notifications.

In other cases the Hurd receives the reply asynchronously from sending the
message. This works fine in Mach, because send-once rights are used as reply
ports and Mach guarantees to deliver the reply message, ignoring the kernel
queue limit. In L4, no messages are queued and such places need to be rewritten
in a different way (for example using extra threads).

What happens if a client does not go into the receive phase after a send, but
instead does another send, and another one, quickly many sends, as fast as pos-
sible? A carelessly written server might create worker threads for each request.
Instead, the server should probably reject to accept a request from a client thread
that already has a pending request, so the number of worker threads is limited
to the number of client threads.

This also makes interrupting an RPC operation easier (the client thread ID can
be used to identify the request to interrupt).

3.3 Notifications

Notifications to untrusted tasks happen frequently. One case is object death
notifications, in particular task death notifications. Other cases might be select()
or notifications of changes to the filesystem.

The console uses notifications to broadcast change events to the console content,
but it also uses shared memory to broadcast the actual data, so not all notifica-
tions need to be received for functional operation. Still, at least one notification
is queued by Mach, and this is sufficient for the console to wakeup whenever
changes happened, even if the changes can not be processed immediately.

From the servers point of view, notifications are simply messages with a send
and xfer timeout of 0 and without a receive phase.

For the client, however, there is only one way to ensure that it will receive the
notification: It must have the receiving thread in the receive phase of an IPC.
While this thread is processing the notification (even if it is only delegating it),
it might be preempted and another (or the same) server might try to send a
second notification.

It is an open challenge how the client can ensure that it either receives the
notification or at least knows that it missed it, while the server remains save
from potential DoS attacks. The usual strategy, to give receivers of notifications
a higher scheduling priority than the sender, is not usable in a system with
untrusted receivers (like the Hurd). The best strategy determined so far is to

28 CHAPTER 3. INTER-PROCESS COMMUNICATION (IPC)

have the servers retry to send the notification several times with small delays
inbetween. This can increase the chance that a client is able to receive the
notification. However, there is still the question what a server can do if the
client is not ready.

An alternative might be a global trusted notification server that runs at a higher
scheduling priority and records which servers have notifications for which clients,
and that can be used by clients to be notified of pending notifications. Then the
clients can poll the notifications from the servers.

Chapter 4

Threads and Tasks

The task server will provide the ability to create tasks and threads, and to
destroy them.

In L4, only threads in the privileged address space (the rootserver) are allowed to
manipulate threads and address spaces (using the ThreadControl and Space-

Control system calls). The task server will use the system call wrappers pro-
vided by the rootserver, see section 2.6 on page 7.

The task server provides three different capability types.

Task control capabilities If a new task is created, it is always associated
with a task control capability. The task control capability can be used to create
and destroy threads in the task, and destroy the task itself. So the task control
capability gives the owner of a task control over it. Task control capabilities
have the side effect that the task ID of this task is not reused, as long as the task
control capability is not released. Thus, having a task control capability affects
the global namespace of task IDs. If a task is destroyed, task death notifications
are sent to holders of task control capabilities for that task.

A task is also implicitely destroyed when the last task control capability reference
is released.

Task info capabilities Any task can create task info capabilities for other
tasks. Such task info capabilities are used mainly in the IPC system (see section
3 on page 11). Task info capabilities have the side effect that the task ID of
this task is not reused, as long as the task info capability is not released. Thus,
having a task info capability affects the global namespace of task IDs. If a task
is destroyed, task death notifications are sent to holders of task info capabilities
for that task.

Because of that, holding task info capabilities must be restricted somehow. Sev-
eral strategies can be taken:

29

30 CHAPTER 4. THREADS AND TASKS

• Task death notifications can be monitored. If there is no acknowdgement
within a certain time period, the task server could be allowed to reuse the
task ID anyway. This is not a good strategy because it can considerably
weaken the security of the system (capabilities might be leaked to tasks
which reuse such a task ID reclaimed by force).

• The proc server can show dead task IDs which are not released yet, in
analogy to the zombie processes in Unix. It can also make available the
list of tasks which prevent reusing the task ID, to allow users or the system
administrator to clean up manually.

• Quotas can be used to punish users which do not acknowledge task death
timely. For example, if the number of tasks the user is allowed to create is
restricted, the task info caps that the user holds for dead tasks could be
counted toward that limit.

• Any task could be restricted to as many task ID references as there are live
tasks in the system, plus some slack. That would prevent the task from
creating new task info caps if it does not release old ones from death tasks.
The slack would be provided to not unnecessarily slow down a task that
processes task death notifications asynchronously to making connections
with new tasks.

In particular the last two approaches should proof to be effective in providing
an incentive for tasks to release task info caps they do not need anymore.

Task manager capability A task is a relatively simple object, compared to
a full blown POSIX process, for example. As the task server is enforced system
code, the Hurd does not impose POSIX process semantics in the task server.
Instead, POSIX process semantics are implemented in a different server, the
proc server (see also section 6.2 on page 54). To allow the proc server to do
its work, it needs to be able to get the task control capability for any task, and
gather other statistics about them. Furthermore, there must be the possibility
to install quota mechanisms and other monitoring systems. The task server
provides a task manager capability, that allows the holder of that capability to
control the behaviour of the task server and get access to the information and
objects it provides.

For example, the task manager capability could be used to install a policy capa-
bility that is used by the task server to make upcalls to a policy server whenever
a new task or thread is created. The policy server could then indicate if the cre-
ation of the task or thread is allowed by that user. For this to work, the task

server itself does not need to know about the concept of a user, or the policies
that the policy server implements.

Now that I am writing this, I realize that without any further support by the
task server, the policy server would be restricted to the task and thread ID of
the caller (or rather the task control capability used) to make its decision. A
more capability oriented approach would then not be possible. This requires
more thought.

The whole task manager interface is not written yet.

When creating a new task, the task server allocates a new task ID for it. The
task ID will be used as the version field of the thread ID of all threads created
in the task. This allows the recipient of a message to verify the sender’s task
ID efficiently and easily.

4.1. ACCOUNTING 31

The version field is 14 bit on 32-bit architectures, and 32 bit on 64 bit architec-
tures. Because the lower six bits must not be all zero (to make global thread
IDs different from local thread IDs), the number of available task IDs is 214

−26

resp. 232
− 26.

If several systems are running in parallel on the same host, they might share
thread IDs by encoding the system ID in the upper bits of the thread number.

Task IDs will be reused only if there are no task control or info capabilities for
that task ID held by any task in the system. To support bootstrapping an IPC
connection (see section 3.1.1 on page 14), the task server will delay reusing a
task ID as long as possible.

This is similar to how PIDs are generated in Unix. Although it is attempted to
keep PIDs small for ease of use, PIDs are not reused immediately. Instead, the
PID is incremented up to a certain maximum number, and only then smaller
PID values are reused again.

As task IDs are not a user interface, there is no need to keep them small. The
whole available range can be used to delay reusing a task ID as long as possible.

When creating a new task, the task server also has to create the initial thread.
This thread will be inactive. Once the creation and activation of the initial
thread has been requested by the user, it will be activated. When the user
requests to destroy the last thread in a task, the task server makes that thread
inactive again.

In L4, an address space can only be implicitely created (resp. destroyed) with
the first (resp. last) thread in that address space.

Some operations, like starting and stopping threads in a task, can not be sup-
ported by the task server, but have to be implemented locally in each task
because of the minimality of L4. If external control over the threads in a task
at this level is required, the debugger interface might be used (see section 7 on
page 63).

4.1 Accounting

We want to allow the users of the system to use the task server directly, and
ignore other task management facilities like the proc server. However, the
system administrator still needs to be able to identify the user who created such
anonymous tasks.

For this, a simple accounting mechanism is provided by the task server. An
identifier can be set for a task by the task manager capability, which is inherited
at task creation time from the parent task. This accounting ID can not be
changed without the task manager capability.

The proc server sets the accounting ID to the process ID (PID) of the task
whenever a task registers itself with the proc server. This means that all tasks
which do not register themself with the proc server will be grouped together

32 CHAPTER 4. THREADS AND TASKS

with the first parent task that did. This allows to easily kill all unregistered
tasks together with its registered parent.

The task server does not interpret or use the accounting ID in any way.

4.2 Proxy Task Server

The task server can be safely proxied, and the users of such a proxy task server
can use it like the real task server, even though capabilities work a bit differently
for the task server than for other servers.

The problem exists because the proxy task server would hold the real task info
capabilities for the task info capabilities that it provides to the proxied task. So
if the proxy task server dies, all such task info capabilities would be released,
and the tasks using the proxy task server would become insecure and open to
attacks by imposters.

However, this is not really a problem, because the proxy task server will also
provide proxy objects for all task control capabilities. So it will be the only
task which holds task control capabilities for the tasks that use it. When the
proxy task server dies, all tasks that were created with it will be destroyed
when these tak control capabilities are released. The proxy task server is a vital
system component for the tasks that use it, just as the real task server is a vital
system component for the whole system.

4.3 Scheduling

The task server is the natural place to implement a simple, initial scheduler for
the Hurd. A first version can at least collect some information about the cpu
time of a task and its threads. Later a proper scheduler has to be written that
also has SMP support.

The scheduler should run at a higher priority than normal threads.

This might require that the whole task server must run at a higher priority,
which makes sense anyway.

Not much thought has been given to the scheduler so far. This is work that still
needs to be done.

There is no way to get at the “system time” in L4, it is assumed that no time
is spent in the kernel (which is mostly true). So system time will always be
reported as 0.00, or 0.01.

Chapter 5

Virtual Memory
Management

The mind and memory are more sharply exercised in comprehending

another man’s things than our own.

Timber or Discoveries by Ben Jonson

5.1 Introduction

The goal of an operating system is simply, perhaps reductively, stated: manage
the available resources. In other words, it is the operating system’s job to dictate
the policy for obtaining resources and to provide mechanisms to use them. Most
resources which the operating system manages are sparse resources, for instance
the CPUs, the memory and the various peripherals including graphics cards
and hard drives. Any given process, therefore, needs to compete with the other
processes in the system for some subset of the available resources at any given
time. As can be imagined, the policy to access and the mechanisms to use these
resources determines many important characteristics of the system.

A simple single user system may use a trivial first come first serve policy for
allocating resources, a device abstraction layer and no protection domains. Al-
though this design may be very light-weight and the thin access layer conducive
to high speed, this design will only work on a system where all programs can
be trusted: a single malicious or buggy program can potentially halt all others
from making progress simply by refusing to yield the CPU or allocating and not
releasing resources in a timely fashion.

The Hurd, like Unix, aims to provide strong protection domains thereby prevent-
ing processes from accidentally or maliciously harming the rest of the system.

33

34 CHAPTER 5. VIRTUAL MEMORY MANAGEMENT

Unix has shown that this can be done efficiently. But more than Unix, the Hurd
desires to identify pieces of the system which Unix placed in the kernel but which
need not be there as they could be done in user space and provide additional
user flexibility. Through our experience and analysis, we are convinced that one
area is much of the virtual memory system: tasks are often allocating as much
memory without regard—because Unix provides them with no mechanism to
do so—for the rest of the system. But it is not a cooperative model which we
wish to embrace but a model which holds the users of the resource responsible
for it and when asked to release some of its memory will or violate the social
contract and face exile. Not only will this empower users but it will force them
to make smarter decisions.

5.1.1 Learning from Unix

Unix was designed as a multiuser timesharing system with protection domains
thereby permitting process separation, i.e. allowing different users to concur-
rently run processes in the system and gain access to resources in a controlled
fashion such that any one process cannot hurt or excessively starve any other.
Unix achieved this through a monolithic kernel design wherein both policy and
mechanism are provided by the kernel. Due to the limited hardware avail-
able at the time and the state of Multics1, Unix imposed a strong policy on how
resources could be used: a program could access files, however, lower level mech-
anism such as the file system, the virtual file system, network protocol stacks
and devices drivers all existed in the kernel proper. This approach made sense
for the extremely limited hardware that Unix was targeted for in the 1970s.
As hardware performance increased, however, a separation between mechanism
and policy never took place and today Unix-like operating systems are in a very
similar state to those available two decades ago; certainly, the implementations
have been vastly improved and tuned, however, the fundamental design remains
the same.

One of the most important of the policy/mechanism couplings in the kernel is
the virtual memory subsystem: every component in the system needs memory
for a variety of reasons and with different priorities. The system must attempt
to meet a given allocation criteria. However, as the kernel does not and cannot
know how how a task will use its memory except based on the use of page fault
statistics is bound to make sub-ideal eviction decisions. It is in part through
years of fine tuning that Unix is able to perform as well as it does for the general
applications which fit its assumed statistical model.

1Multics was seen as a system which would never realize due to its overly ambitious feature
set.

5.2. SELF PAGING 35

5.1.2 Learning from Mach

The faults of Unix became clear through the use of Mach. The designers of Mach
observed that there was too much mechanism in the kernel and attempted to
export the file systems, network stack and much of the system API into user
space servers. They left a very powerful VMM in the kernel with the device
drivers and a novel IPC system. Our experience shows that the VMM although
very flexible, is unable to make smart paging decisions: because Unix was tied
to so many subsystems, it had a fair knowledge of how a lot of the memory in
the system was being used. It could therefore make good guesses about what
memory could be evicted and not be needed in the near future. Mach, however,
did not have this advantage and relied strictly on page fault statistics and access
pattern detection for its page eviction policy.

Based on this observation, it is imperitive that the page eviction scheme have
good knowledge about how pages are being used as it only requires a few bad
decisions to destroy performance. Thus, a new design can either choose to
return to the monolithic design and add even more knowledge to the kernel to
increase performance or the page eviction scheme can be remove from the kernel
completely and placed in user space and make all tasks self paged.

5.1.3 Following the Hurd Philosophy

As the Hurd aims, like Unix, to be a multiuser system for mutually untrusted
users, security is an absolute necessity. But it is not the object of the sys-
tem to limit users excessively: as long as operations can be done securely, they
should be permitted. It is based on this philosophy that we have adopted a
self paging design for the new Hurd VMM: who knows better how a task will
use its memory than the task itself? This is clear from the problems that have
been encountered with LRU, the basic page evition algorithm, by database de-
velopers, language designers implementing garbage collectors and soft realtime
application developers such as multimedia developers: they all wrestle with the
underlying operating system’s page eviction scheme. By putting the responsi-
bility to page on tasks we think that tasks will be forced to make smart decisions
as they can only hurt themselves.

5.2 Self Paging

If memory was infinite and the only problem was worrying about one program
accessing the memory of another, memory allocation would be trivial. This is
not, however, the case: memory is visibly finite and a well designed system will
exploit it all. As memory is a system resource, a system wide memory allocation
policy must be established which maximizes memory usage according to a given
set of criteria.

36 CHAPTER 5. VIRTUAL MEMORY MANAGEMENT

In a typical Unix-like VMM, allocating memory (e.g. using sbrk or mmap)
does not allocate physical memory but virtual memory. In order to increase
the amount of memory available to users, the kernel uses a backing store,
typically a hard disk, to temporarily free physical memory thereby allowing
other processes to make progress. The sum of these two is referred to as virtual
memory. The use of backing store ensures data integrity when physical memory
must be freed and application transparency is required. A variety of criteria are
used to determine which frames are paged out, however, most often some form
of a priority based least recently used, LRU, algorithm is applied. Upon memory

pressure, the system steals pages from low priority processes which have not
been used recently or drain pages from an internal cache.

This design has a major problem: the kernel has to evict the pages but only
the applications know which pages they really need in the near term. The
kernel could ask the applications for this data, however, it is unable to trust
the applications as they could, for instance, not respond, and the kernel would
have to forcefully evict pages anyway. As such, the kernel relies on page fault
statistics to make projections about how the memory will be used, thus the LRU
eviction scheme. An additional result of this scheme is that as applications never
know if mapped memory is in core, they are unable to make guarantees about
deadlines.

These problems are grounded in the way the Unix VMM allocates memory:
it does not allocate physical memory but virtual memory. This is illustated
by the following scenario: when a process starts and begins to use memory,
the allocator will happily give it all of memory in the system as long as no
other process wants it. What happens, however, when a second memory hungry
process starts is that the kernel has no way to take back memory it allocated to
the first process. At this point, it has two options: it can either return failure
to the second process or it can steal memory from the first process and send it
to backing store.

One way to solve these problems is to have the VMM allocate phsyical memory
and make applications completely self-paged. Thus, the burden of paging lies
the application themselves. When application request memory, they no longer
request virutal memory but physical memory. Once the application has ex-
hausted its available frames, it is its responsibility to multiplex the available
frames. Thus, virtual memory is done in the application itself. It is important
to note that a standard manager or managers should be supplied by the op-
erating system. This is important for implementing something like a POSIX
personality. This should not, however, be hard coded: certain application may
greatly benefit by being able to control their own eviction schemes. At its most
basic level, hints could be provided to the manager by introducing extentions
on basic function calls. For instance, malloc could take an extra parameter
indicating the class of data being allocated. These class would provide hints
about the expected usage pattern and life time of the data.

5.3. BOOTSTRAP 37

5.3 Bootstrap

When the Hurd starts up, all physical memory is eventually transfered to the
physical memory server by the root server. At this point, the physical memory
server will control all of the physical pages in the system.

5.4 Memory Allocation Policy

5.4.1 Guaranteed Frames and Extra Frames

The physical memory server maintains a concept of guaranteed frames and
extra frames. The former are virtual frames that a given task is guaranteed
to map in a very short amount of time. Given this predicate, the total number
of guaranteed frames can never exceed the total number of physical frames
in the system. Extra frames are frames which are given to clients who have
reached their guaranteed frame allocation limit. The physical memory server
may request that a client relinquish a number of extant extra frames at any
time. The client must return the frames to the physical memory (i.e. free
them) in a short amount of time. The task should not assume that it has
enough time to send frames to backing store. As such, extra frames should
only contain remanufacturable data (i.e. cached data). Should a task fail to
return the frames in a reasonable amount of time, it risks having all of its
memory dropped—not swapped out or saved in any way—and reclaimed by the
physical memory server. Note that the physical memory server does not know
if a given frame is considered guaranteed or extra: it knows that a given task
has G guaranteed frames and G+E allocated frames, and E extra frames. The
distinction between guaranteed and extra frames must be made by the task
itself. One strategy is to remember which frames can be remanufactured (e.g.
reread from disk or recalculated) and internally promote them to guaranteed
frames when the frame becomes dirty being careful to never have less than E

clean frames in the task. Given these semantics, guanteed frames should not
be thought of as wired (e.g. mlocked in the POSIX sense)—although they can
have this property—but as frames which the task itself must multiplex. Thus
the idea of self-paged tasks.

Readers familiar with VMS will see striking similarities with the self-paging
and guaranteed frame paradigms. This is not without reason. Yet, differences
remain: VMS does not have extra frames and the number of guaranteed frames
is fixed at task creation time. Frames returned to VMS (in order to allocate a
new frame) are placed in a dirty list (thus the actual multiplexing of frames is
done in VMS, not in user space) thereby simulating a two level backing store:
a fast memory backing store where frames are waylaid and swap, where they
are sent to when sufficient memory pressure forces them out. It is in this way
that a given task may access more than its quota of memory when there is low
memory contention (e.g. if there are two tasks each with 100 frames and there

38 CHAPTER 5. VIRTUAL MEMORY MANAGEMENT

are 1000 frames in the system for tasks, the remaining 800 are not dormant).
Our divergence from VMS is motivated by the location of file systems and device
drivers in the Hurd: unlike in VMS, the file systems and device drivers are in
user space. Thus, the caching that was being done by VMS cannot be done
intelligently by the physical memory server.

5.4.2 An External Memory Policy Server

The number of guaranteed frames that a given task has access to is not deter-
mined by the physical memory server but by the memory policy server. This
division means the physical memory server need only concern itself with alloca-
tion mechanisms; all policy decisions are delegated to the policy server provided
by the underlying operating system. (An important implication is that although
tailored for Hurd specific needs, the physical memory server is essentially sepa-
rate from the Hurd and can be used by other operating systems running on the
L4 microkernel.) It is the memory policy server’s responsibility to determine
who gets how much memory. This may be calculated as a function of the user
or looking in a file on disk for e.g. quotas. As can be seen this type of data
acquisition could add significant complexity to the physical memory server and
require blocking states (e.g. waiting for a read operation on file i/o) and could
create circular dependencies. The default memory policy server’s mechanisms
and policies will be discussed later.

The physical memory server and the memory policy server will contain a shared
buffer of tupples indexed by task id containing the number of allocated frames,
the number of guaranteed frame, and a boolean indicating whether or not this
task is eligible for guaranteed frames. The guaranteed frame field and the extra
frame predicate may only be written to by the memory policy server. The
number of allocated frames may only be written to by the physical memory
server. This scheme means that no locking in required. (On some architectures
where a read of a given field cannot be performed in a single operation, the read
may have to be done twice.) The memory policy server must not over commit
the number of frames, i.e. the total number of guaranteed frames must never
exceed the number of frames avilable for allocation.

Until the memory policy server makes the intial contact with the physical mem-
ory server, memory will be allocated on a first come first serve basis. The
memory policy server shall use the following remote procedure call to contact
the physical memory server:

error t pm get control (out hurd cap t control)

This function will succeed the first time it is called and return a control ca-
pability. It will fail all subsequent times. By using a capability, the acquiring
task may move or copy the capability to another task. This permits replacing
the policy server on a live system. At this point, the physical memory server

5.5. CONTAINERS 39

will begin allocating memory according to the described protocol. Note that
the inital buffer will be initialized with the current total allocations while the
guaranteed frames will be set to zero. The memory policy server must request
the shared policy buffer as soon as possible and adjust these values.

The shared policy buffer may be obtained from the physical memory server by
the policy by calling:

error t pm get policy buffer (out l4 map t buffer)

The returned buffer is mapped with read and write access into the policy mem-
ory server’s address space. It may need to be resized due to the number of tasks
in the system. When this is the case, the physical memory server shall unmap
the buffer from the memory policy server’s address space and copy the buffer
internally as required. The memory policy server will fault on the memory re-
gion on its next access and it may rerequest the buffer. This call will succeed
when the sender is the memory policy server, it will fail otherwise.

5.5 Containers

In a monolithic kernel, other than through pipes, little data is exchanged be-
tween tasks: all services are provided by the kernel, a trusted entity which is
able to directly access tasks’ address space. In a multiserver system, most data
acquisitions come from user space servers. As such, powerful primatives for
moving memory around is an absolute necessity: physical copying must be kept
to an absolute minimum and there must be a way to use and preserve copy on
write pages.

Containers are the basic abstraction used for allocating, addressing and sharing
memory. Conceptually, containers contain a set of integers identifying virtual

frames in the physical memory server. A virtual frame references a physi-
cal frame but is not bound to a particular physical frame (thereby allowing
the physical memory server to move the contents between physical frames for
page blocking, assembly of DMA arena and memory defragmentation). Virtual
frames are thus the sharing mechanism for physical frames. Although virtual
frames cannot be copied, their contents may be logically copied such that a new
virtual frame is created with the same underlying physical frame. Sharing may
be either real, e.g. System V shared memory, or logical, e.g. copy on write.

When a virtual frame is allocated into a container, there may be no physical
frame associated with it. The physical memory server guarantees that when the
contents of the virtual frame is accessed a physical frame will be provided in a
short amount of time (cf. guaranteed virtual frames above).

Each virtual frame in a container counts against the container’s owner’s total
allocated frames. Only the owner of a container may allocate frames into a
container.

40 CHAPTER 5. VIRTUAL MEMORY MANAGEMENT

Containers only hold virtual frames. When the contents of a frame are copied to
backing store, no association between the data on the backing store and the the
frame identifier in the container is maintained by the physical memory server.

When a task starts, it will allocate an initial container and several frames into
it. Typically, the total amount of memory used by an application will exceed
the total number of guaranteed frames. When the task reaches its maximum
permitted allocation, it must reuse an available frame. Typically, the task will
choose a victim page, unmap any pages that point to the associated frame, swap
the frame out, mark the frame as swapped out and save the swap identifier in the
mapping database. At this point, the task may reuse the frame. This example
illustrates that imagining a virtual frame as bound to a page in a task’s address
space for its entire lifetime is incorrect. It should also now be clear that when
the data is eventually brought back into memory from backing store, it may
reside in a different virtual frame (as well as a different physical frame).

Containers are used for passing data between tasks. Typically there will be two
tasks, a client and a server. L4 provides a mechanism to map pages from one
address space to another. This mechanism could be used to e.g. map a file
into a client task’s address space. An analysis reveals several problems with
this approach. If the server dies before the client, the mappings in the client’s
address space will suddenly disappear. Similarly, if the server is malicious, it
may revoke the mappings at some inconvenient (i.e. unrecoverable) time causing
the client to crash or unable to inform the user of the change. Also, if a server
allocates resources on behalf of the the client it becomes impossible to do system
wide resource accounting as many servers are not trusted by the system. All
of these problems are solved by containers. When a client needs to read data
from a server, it creates a container, adds the number of frames that the server
will require for the operation to it and finally shares the container with the
server. After sending a request to the server, the server copies the data into
the provided container. It is important to understand that the server does not
“fill” the container: the number of frames remains constant; the state of the
bits changes. When the server returns to the client, the client revokes the share
and is now able to map the frames into its address space by contacting the
physical memory server. Should the server die, the client remains uneffected
as the data lives in the physical memory server. The physical memory server
is also trusted thus if a task is malicious, it can only be malicious during the
initial copy of the data into the container, i.e. before the client starts using the
data and thereby giving the client the opportunity to report an inconsistencies
to the caller. Finally, as the resources are allocated by the client via system
servers, global resource accounting is possible.

5.5.1 The Container Interface

Creating Containers A container may be created using:

error t pm container create (out container t container)

5.5. CONTAINERS 41

A container t is, for all intents and purposes, a hurd cap t. If a container is
shared with another task, the second task may allocate frames which count
against the container’s owner’s total allocated pages. This must be used with
care.

Sharing Containers To allow another task to access the contents of a con-
tainer, the container must be shared. Clearly, it is not desirable to grant full
access to the container to the remote task: trust between a client and a server
must exist, however, that trust is typically limited in both directions (neither
the client trusts the server fully nor does the server fully trust the client). Since
clients provide server with the resources for the operation, servers need a guar-
antee that the client will not touch the resources while it is in a critical section.
Horrific results can emerge if this happens during a DMA operation. Likewise,
clients need to have the ability to cancel an exant request and reclaim shared
resources if the server does not answer in a timely manner thereby also prevent-
ing the server from being able to steal resources. In both of these cases, the
physical memory server acts as the trusted third party. The physical memory
server allows a server to lock a container for a limited amount of time during
which the client may not access or destroy the resource. At any other time, the
client can cancel the server’s access to the shared resource.

To facility this, a second class capability is provided to access containers. Using
this capability, clients may not allocate or deallocate frames.

error t pm container share (in container t container, in task t re-
mote, out container t weak ref)

weak ref can be passed to the sharee using the normal capability passing pro-
tocol.

Allocating and Deallocating Memory Virtual frames may be allocated
into a container using:

error t pm container allocate (in container t container, in frame t
start, in out int count, in int flags)

start is the first frame identifier to use for the new memory. If count is greater
than one then frames will be allocated in the subsequent count− 1 frame iden-
tifiers. The number of frames actually allocated is returned in count. If an
identifier already references a virtual frame, EEXIST is returned. flags is a bit-
wise or of: CONT ALLOC PARTIAL, CONT ALLOC SQUASH and CONT ALLOC EXTRA.
If CONT ALLOC PARTIAL is set and the number of frames which can be allocated
before a memory allocation error occurs is greater than one but less than count

then the maximum number of frames is allocated, count is set to that num-
ber and the error is returned. If CONT ALLOC PARTIAL is not set then partial

42 CHAPTER 5. VIRTUAL MEMORY MANAGEMENT

allocations will fail, count will be set to 0 and an error will be returned. If
CONT ALLOC SQUASH is set and a frame identifier already references a frame, the
virtual frame will be dropped and its contents lost. Using this flag is dangerous
and be a sign of internal inconsistencies in the task! All virtual frames should
be accounted for by the task and deallocated explicitly. If CONT ALLOC EXTRA

is set then extra frames may be allocated otherwise the physical memory server
will only allocate up to the guaranteed virtual frame limit. This flag should
only be used by tasks able to handle the added complexity of the extra frame
protocol. The contents of allocated frames is undefined.

Deallocating memory is done using:

error t pm container deallocate (in container t container, in frame t
start, in out int count, in int flags)

The arguments have similar meaning as those in pm container allocate. CONT DEALLOC PARTIAL

and CONT DEALLOC SQUASH are similar to CONT ALLOC PARTIAL and CONT ALLOC SQUASH

respectively.

Mapping Memory The physical memory server guarantees that a mapping
operation takes a short amount of time: no guarantee is made that this will
happen immediately as the underlying physical frames may have to be allocated
in which case the physical memory server may have to be reap physical pages
from other tasks’ extra frame allocations.

The physical memory server may unmap pages at any time. This allows the
physical memory server to fucntionally lock the contents of the frame and move
it to a new physical frame. As such, tasks must be prepared to reestablish a
mapping with the physical memory server at anytime. The physical memory
server is not a registry of mappings: it is a cache.

Read-only mappings may be returned when read/write mapping are requested:
the physical memory server will never grant a read/write mapping if the frame is
marked copy on write. In order to obtain a read/write mapping (and thus force
the copy on write), the task must add the enforced write flag to the mapping
request.

error t pm container map (in container t container, in frame t start,
in int nr frames, in int flags)

Flags may is a bitwise or of: CONT MAP READ, CONT MAP WRITE and CONT MAP FORCE WRITE.
CONT MAP FORCE WRITE will only be respected if CONT MAP WRITE is also set.

Doing It All At Once When reading to or writing data from a server, the
task will normally: allocate a new container, fill it with memory and share the
container with the server. Since this is such a common operation, short cuts are
provided to reduce the required number of rpcs:

5.5. CONTAINERS 43

error t pm container create with (out container t container, in in int
frame count, out container t weak ref)

error t pm container create from (out container t container, in con-
tainer t source, in frame t start, in int count, out container t weak ref)

error t pm container create grather (out container t container, in
container t source, in frame t [] frames, out container t weak ref)

Copying Data Into or Out of Containers It is possible to copy data
into containers by mapping the frames in question and using memcpy. If this
technique is used there is no easy way to create logical copies (copy on write): an
especially important technique for sharing executable and shared library text.
A family of functions are available which logically copies the contents of one
container to another:

error t pm container copy (in container t src, in frame t src start,
in countainer t dest, in frame t dest start, in int frame count, out
frame t frame error)

error t pm container copy scatter (in container t src, in frame t src start,
in countainer t dest, in frame t [] dest frames, out frame t frame error)

error t pm container copy gather (in container t src, in frame t []
src frames, in countainer t dest, in frame t dest start, out frame t
frame error)

error t pm container copy scatter gather (in container t src, in frame t
[] src frames, in countainer t dest, in frame t [] dest frames, out
frame t frame error)

If a frame does not exist in the source, ENOENT. If a frame does not exist
in the destination, ENOMEM is returned. In both cases, the frame identifier
causing the error is returned in frame error.

Locking Containers and Pinning Memory

Finding Deallocate Memory

Reusing frames release data

44 CHAPTER 5. VIRTUAL MEMORY MANAGEMENT

5.5.2 Moving Data

Data will be moved around using containers. Describe how to read and write.
Task -¿ FS -¿ Device drivers. Locking memory. Caching.

It is important that clients do the allocation for the memory which they use:
not the servers doing allocations on behalf on clients: in the latter, there is no
way to do resource tracking.

Discuss mmap: local function call. RPC is done when a page is faulted: do a
read from the fs (into a container), then map the data from the container into
the AS as required.

MAP COPY sucks: fs must save all modified data. What happens when a
100MB file is completely rewritten (or 1GB, etc)? can we use upcalls? If we do,
the fs still needs to hold the data in the intern. Can we copy the file on disk
and use that as backing store (think how deleting an open file works).

Can a readonly private mapping once faulted be dropped or must we promote
it to anonymous memory and send it to swap fearing that the underlying block
might change between dropping it and rereading it (e.g. by another task modi-
fying the file)?

5.6 Caching Store Accesses

It need not be explained how caching accesses to stores can radically improve the
speed of the system. In a monolithic kernel this cache is added to by the readers,
i.e. the device drivers, supplemented with metadata from the file systems in the
form of expected access patterns based on the type of data and how the file
was opened and managed by the virtual memory manager. In our design, this
is impossible: each component—each device driver, each file system and the
physical memory manager—all live in their own address spaces; additionally
there will rarely be mutual trust: the physical memory server may not trust
the file systems nor the “device drivers” (consider a network block device). A
caching mechanism must be designed.

The purpose of caching is useful for multiple readers of a given block. Sometimes
this is the same task, however, more often it is multiple tasks. Thus, having the
caching scheme in each task is quite difficult as tasks do not trust one another
and furthermore, tasks can die at any time thereby dropping their cache. The
logical place to put the cache then is the common point of access, the file system.

An argument could be made that in reality, the common point of access is the
device driver: there can be multiple accessors of the same store. The question
must be asked: what happens when the device driver is made the cache point
instead of the file system? Logically, a large tradeoff is made in terms of the
ability to intelligently decide what frame to keep in the cache. The file system,
for instance, has meta-data about how a given frame may be used based on how

5.6. CACHING STORE ACCESSES 45

a file is opened and may realize that some frames need not be placed in the
cache because they will be used once and immediately discarded. This is true
of the access patterns of multimedia applications. These types of hints may be
gathered at file open time. The class of data is another way the file system
is able to predict usage, for example, it understands the difference between
meta-data—inodes and directories—and file data. A file system is also able to
anticipate file-level access patterns whereas a device driver can only anticipate
block-level access patterns, i.e. although file data is sometimes sequential, it is
often scattered across a section of the disk due to fragmentation. The primary
way a the device driver can really manage its cache is through historical data
in the form of previous accesses (which is itself even more limited as the device
driver is uninformed of cache hits in the file system cache). This type of data
implies some form of LRU, least recently used, eviction scheme. It should now
be clear that the file system can make smarter decisions about what which
blocks to evict due to its ability to make predictions based on client hints and
its greater understanding of the data in the store.

If we resign ourselves to keeping the cache only in the file system, then multiple
users of a store will be penalized greatly: a block read by one client will always
be reread if another client requests the same block: not only is the store accessed
a second time, but twice as much memory will be used as there is no way to share
the frame and use copy on write. Is this penalty worth the added intelligence in
the file system? An argument can be made that using just one caching strategy
is suboptimital when we could just have two: nothing stops both the file system
and the device driver from caching thereby permitting the former to continue
to maintain an intelligent cache and the device driver to have its simple LRU
cache. This argument overlooks several important implications of having the
two caches. First, complexity is being added to the device driver in the form of
a list of frames it has read and given out. This increase in memory usage has a
secondary effect: if the data structures become large (as it certainly will for large
active stores), it will be impossible to keep the device driver in question in a
small address space (an important optimization on architectures without tagged
TLBs, table look aside buffers). Second, if both the file system and the device
driver keep a cache, when the file system has a cache miss, the device driver then
checks its cache before going to disk. The device driver will only ever have a
cache hit if there are multiple readers: when there is a single user of a store, the
file system’s cache and the device driver’s cache will be identical. This begs the
question: how often will there be multiple users of a single store? The answer
seems to be very rarely: assuming the common case that the store has some
type of file system on it, there can only be multiple users if all users are readers
(note that not even one can be a writer as this implies cache consistency issues
across different users of the store). Since this is a very rare case, we argue based
on the philosophy “do not optimize for rare cases” that the overhead is greater
than the potential pay back from the optimization. Having multiple caches
leads to a further problem: a frame is really not evicted from the system until
it is purged from all caches. Thus if the file system cache is smart and chooses

46 CHAPTER 5. VIRTUAL MEMORY MANAGEMENT

the better frames to evict, the cooresponding physical frames will not really be
freed until the device driver also drops its references to the frames. Thus, the
effectiveness of the smarter caching algorithm is impeded by the device driver’s
caching scheme. Double caching must be avoided.

5.6.1 Caching in the File System

We have argued above that all block caching will be done at the file system
layer. In this section, we detail how the caching will work.

The file system allocates extra frames as long as it can and adds all eligible
frames to the cache by logically copying them into a local container (data which
it reasons will be read once and then dropped may not be considered eligible).
When the physical memory server wants frames back, it chooses a victim with
extra frames and asks for a subset of them back. If a task has G guaranteed
frames and G + E frames allocated, the physical memory server can request
up to E frames back from the task. We recall from the definition of the extra
frames that extra frames must be given back quickly (i.e. there is no time to
send them to swap).

Although a task chooses a frame to evict from its cache, it does not mean that
the frame will be reused immediately, in fact, it is sometimes that case that
the frame cannot be reused at all as another task has a reference to the frame
(in the form of a logical copy). As such, it would be nice to be able to get
frames back that might still be in the physical memory server. The following
mechanism is thus provided: when a frame is returned to the physical memory
server, the reference to the frame is turned into a soft reference. Only when
the frame is actually reused by the physical memory server are soft references
discarded. A task is able to convert a soft reference back to a hard reference by
contacting the physical memory server and asking for the frame back. If this
operation returns ENOEXIST, the frame has been reused and the frame must be
remanufactured (e.g. by retrieving it from backing store). This operation may
also fail and return ENOMEM if the task does not have enough guaranteed frames
and there are no extra frames available.

There is a problem here in the form of name space pollution: the task doing
the caching has to remember the mapping of blocks to container identifiers in
order to recover the soft reference but the task has no way to know when the
physical memory server expires a given soft reference. Thus, while the physical
memory server may drop a frame, the task will only ever know this when it
tries to convert the soft reference to a hard reference and fails (i.e. gets a cache
miss). For frames which this is never done, the memorized mapping will never be
invalidated. This may not be a problem if a block offset to container id is used,
however, if hashing is done or some other mapping of block offsets to container
identifiers is used, this will pollute the cache container’s name space.

5.7. THE MEMORY POLICY SERVER 47

5.6.2 Caching Interfaces

The physical memory server will do an up call to a victim task requesting a
number of frames back. The physical memory server may do this at any time
for any reason and it expects to receive the frames back from the task within
a short amount of time (the victim task should not expect to be able to send
the frames to backing store in that amount of time). The physical memory
server will never request guaranteed frames. As such, this number will always
be less than or equal to the number of allocated frames minus the number of
guaranteed frames.

void pm return frames (in int count);

The physical memory send this message to the task’s memory control thread.
The thread must always be ready to receive: the physical memory server will
never wait (thus, the thread must be in the receiving state). If the thread is not
ready, the physical memory server assumes that the task is misbehaving. The
physical memory server does not wait for a reply, instead, the client must free
the frames using pm release frames as described above.

5.7 The Memory Policy Server

At task creation time, the task must negotiate a medium-term contract for
guaranteed frames and determine if it shall have access to extra frames. This
may be renegotiated later. It must be renegotiated when the contract expires.
The policy server will give the task enough time to send frames to swap before
committing if the number of guaranteed frames is reduced.

5.8 Sending Data to Swap

When a task reaches its guaranteed frame allocation, it must begin to reuse
its available virtual frames. If the data is frames is precious (i.e. not easliy
constructed by e.g. a calculation or by rereading a file) then the task will want
to save the contents for when it is needed in the future. This can be done by
sending a frame to backing store.

error t pm swap (in container t c, in container frame t frame, in int
count, out [] swap ids)

The swap server resides in (or is proxied by) the phsyical memory server. This
allows the logical copies of frames to be preserved across the swapped out period
(i.e. logical copies are not lost when a frame is sent to swap). If this was not
the case, then when a number of tasks all with a reference to a given physical

48 CHAPTER 5. VIRTUAL MEMORY MANAGEMENT

send the frame to swap, the swap server would allocate and write N times as
opposed to once when all of the tasks eventually release any references to the
frame.

Frame may not be sent to swap immediately. Instead, they are kept on an
inactive list allowing thereby allowing a task to recover the contents of a frame
before it is flushed to swap (that is to say, swap operations are not synchronous).

Since there may be multiple references to a virtual frame, it is recommended
that pm container orphan data be called before the frame is reused to prevent
gratuitous copy on writes from begin performed. It also important to call this
function if the frame was being used for shared memory.

Swap quotas (put the policy in the memory policy server).

5.9 Self Paging

As already explained, tasks are self-paged. The default implementation provided
with the hurd has each thread in a task set its pager (i.e. its fault handler) to
a common pager thread in the same address space. This thread maintains a
mapping database which associates virtual addresses with either a frame of
memory in a container or information on how to retrieve the data, e.g. from
swap or a file server.

Normally, there is a single primary container for virtual frames that is created
at start up. A task may choose to use more containers and generally will for
short periods of time (for instance, for reading to and writing from servers). The
pager must always be able to handle multiple containers. When using additional
containers, frames need to be added to them to be shared with the server. The
pager must provide a mechanism to allow the caller to steal guaranteed frames
for this purpose and return them upon deallocation of the container.

5.9.1 The Pager

The pager itself may require a fair amount of memory for its database and
all of the code and supporting libraries. This presents a problem: if the pager
handles page faults, who will handle its faults? One of two solutions are possible:
either all of the text and data must be wired into memory (thereby reducing the
number of frames available for multiplexing application memory) or the pager is
itself paged. The default self-pager implementation uses the latter option: the
pager, now referred to as the primary pager, is backed by a final pager. The
final pager only maps the pagers text and data thus it has a significantly smaller
memory footprint. Care must be taken to be sure that the primary pager does
not accidently allocate memory from common memory pools: in the very least it
needs its own private malloc arena. As the primary pager will call, for instance,
routines to manipulate capabilities, this text must be backed by the final pager.

5.9. SELF PAGING 49

Other code can also, however, makes calls to the capability library. This means
that the primary pager must also have a copy of these mappings in its database.

The purpose of the final pager is to allow the data and some of the text of the
primary pager to be swapped. As such, the final pager must be able to at least
read data from file servers and retrieve data from backing store. This may imply
significant overlap of the text for the primary and final pagers. In some case,
however, it may be useful to have a second implementation of a function only
for the final pager which is optimized for size or avoids making calls to certain
libraries.

Managing Mappings

Mappings are normally made via calls to mmap. Unlike in Unix, this is not
a system trap: instead it is almost always implemented locally. mmap must
associate a region with either anonymous memory or with a file on disk. This is
only a matter of creating a few entries in the mapping database so that faults
will brings the data in lazily.

Rather than have the caller manipulate the mapping database directly, instead,
a local ipc sent to the primary pager. If there is only ever a single thread which
manipulates the mapping database, there will be locking requirements. If the
pager thread is busy, then the local ipc call blocks in the kernel.

It is not always useful to fault memory in lazily: when a task has received data
from a server, it will normally be in a container from where it must be consumed.
The task will generally map the container into memory and then proceed to use
or at least copy the data to some other location. Clearly, the faulting the pages
in is a waste. As such, the pager should provide a mechanism which allows the
caller to not only establish a mapping from a container but also to map the
pages immediately in the address space.

5.9.2 Reusing Virtual Frames

Multiplexing frames: say the contents of a frame are sent to swap in order
to reuse the frame for something else. The frame itself must be cleared, i.e.
disassocitated with any logical copies. This is done using:

error t pm release data (in pm container t container, in pm frame t[]
frames)

5.9.3 Taking Advantage of Self-Paging

extend malloc via e.g. the slab mechanism, extend fopen (how a file is used).

50 CHAPTER 5. VIRTUAL MEMORY MANAGEMENT

Chapter 6

The POSIX personality

The Hurd offers a POSIX API to the user by default. This is implemented in the
GNU C library which uses the services provided by the Hurd servers. Several
system servers support the C library.

6.1 Authentication

Capabilities are a good way to give access to protected objects and services.
They are flexible, lightweight and generic. However, Unix traditionally uses
access control lists (ACL) to restrict access to objects like files. Any task running
with a certain user ID can access all files that are readable for the user with
that user ID. Although all objects are implemented as capabilities in the Hurd,
the Hurd also supports the use of user IDs for access control.

The system authentication server auth implements the Unix authentication
scheme using capabilities. It provides auth capabilities, which are associated
with a list of effective and available user and group IDs. The holder of such a
capability can use it to authenticate itself to other servers, using the protocol
below.

Of course, these other servers must use (and trust) the same auth server as the
user. Otherwise, the authentication will fail. Once a capability is authenticated
in the server, the server will know the user IDs of the client, and can use them
to validate further operations.

The auth server provides two types of capabilities:

Auth capabilities An auth capability is associated with four vectors of IDs:
The effective user and group IDs, which should be used by other servers to au-
thenticate operations that require certain user or group IDs, and the available

51

52 CHAPTER 6. THE POSIX PERSONALITY

user and group IDs. Available IDs should not be used for authentication pur-
poses, but can be turned into effective IDs by the holder of an auth capability
at any time.

New auth capabilities can be created from existing auth capabilities, but only
if the requested IDs are a subsets from the union of the (effective and available)
IDs in the provided auth capabilities. If an auth capability has an effective or
available user ID 0, then arbitrary new auth objects can be created from that.

Passport capabilities A passport capability can be created from an auth
capability and is only valid for the task that created it. It can be provided to
a server in an authentication process (see below). For the client, the passport
capability does not directly implement any useful operation. For the server, it
can be used to verify the identity of a user and read out the effective user and
group IDs.

The auth server should always create new passport objects for different tasks,
even if the underlying auth object is the same, so that a task having the pass-
port capability can not spy on other tasks unless they were given the passport
capability by that task.

6.1.1 Authenticating a client to a server

A client can authenticate itself to a server with the following protocol:

Preconditions The client C has an auth capability implemented by the auth
server A. It also has a capability implemented by the server S. It wants to
reauthenticate this capability with the auth capability, so the server associates
the new user and group IDs with it.

The server also has an auth capability implemented by its trusted auth server.
For the reauthentication to succeed, the auth server of the client and the server
must be identical. If this is the case, the participating tasks hold task info caps
for all other participating tasks (because of the capabilities they hold).

1. The client C requests the passport capability for itself from the auth ca-
pability from A.

Normally, the client will request the passport capability only once and store
it together with the auth capability.

2. The auth server receives the request and creates a new passport capability
for this auth capability and this client. The passport capability is returned
to the user.

6.1. AUTHENTICATION 53

3. The user receives the reply from the auth server.

It then sends the reauthentication request to the server S, which is in-
voked on the capability the client wants to reauthenticate. It provides the
passport capability as an argument.

4. The server S can accept the passport capability, if it verifies that it is really
implemented by the auth server it trusts. If the client does not provide a
passport capability to the trusted auth server, the authentication process
is aborted with an error.

Now the server can send a request to the auth server to validate the
passport capability. The RPC is invoked on the passport capability.

5. The auth server receives the validation request on the passport capability
and returns the task ID of the client C that this passport belongs to, and
the effective user and group IDs for the auth cap to which this passport
cap belongs.

The Hurd on Mach returned the available IDs as well. This feature is not
used anywhere in the Hurd, and as the available IDs should not be used
for authentication anyway, this does not seem to be useful. If it is needed,
it can be added in an extended version of the validation RPC.

6. The server receives the task ID and the effective user and group IDs.
The server now verifies that the task ID is the same as the task ID of the
sender of the reauthentication request. Only then was the reauthentication
request made by the owner of the auth cap. It can then return a new
capability authenticated with the new user and group IDs.

The verification of the client’s task ID is necessary. As the passport cap
is copied to other tasks, it can not serve as a proof of identity alone. It is
of course absolutely crucial that the server holds the task info cap for the
client task C for the whole time of the protocol. But the same is actually
true for any RPC, as the server needs to be sure that the reply message is
sent to the sender thread (and not any imposter).

7. The client receives the reply with the new, reauthenticated capability.
Usually this capability is associated in the server with the same abstract
object, but different user credentials.

Of course a new capability must be created. Otherwise, all other users
holding the same capability would be affected as well.

The client can now deallocate the passport cap.

As said before, normally the passport cap is cached by the client for other
reauthentications.

54 CHAPTER 6. THE POSIX PERSONALITY

Result The client C has a new capability that is authenticated with the new
effective user and group IDs. The server has obtained the effective user and
group IDs from the auth server it trusts.

The Hurd on Mach uses a different protocol, which is more complex and is
vulnerable to DoS attacks. The above protocol can not readily be used on
Mach, because the sender task of a message can not be easily identified.

6.2 Process Management

The proc server implements Unix process semantics in the Hurd system. It will
also assign a PID to each task that was created with the task server, so that
the owner of these tasks, and the system administrator, can at least send the
SIGKILL signal to them.

The proc server uses the task manager capability from the task server to get
hold of the information about all tasks and the task control caps.

The proc server might also be the natural place to implement a first policy server
for the task server.

6.2.1 Signals

Each process can register the thread ID of a signal thread with the proc server.
The proc server will give the signal thread ID to any other task which asks for
it.

The thread ID can be guessed, so there is no point in protecting it.

The signal thread ID can then be used by a task to contact the task to which
it wants to send a signal. The task must bootstrap its connection with the
intended receiver of the signal, according to the protocol described in section
3.1.1 on page 14. As a result, it will receive the signal capability of the receiving
task.

The sender of a signal must then provide some capability that proves that
the sender is allowed to send the signal when a signal is posted to the signal
capability. For example, the owner of the task control cap is usually allowed
to send any signal to it. Other capabilities might only give permission to send
some types of signals.

The receiver of the signal decides itself which signals to accept from which other
tasks. The default implementation in the C library provides POSIX semantics,
plus some extensions.

Signal handling is thus completely implemented locally in each task. The proc

server only serves as a name-server for the thread IDs of the signal threads.

6.2. PROCESS MANAGEMENT 55

The proc server can not hold the signal capability itself, as it used to do in
the implementation on Mach, as it does not trust the tasks implementing the
capability. But this is not a problem, as the sender and receiver of a signal can
negotiate and bootstrap the connection without any further support by the proc

server.

Also, the proc server can not even hold task info caps to support the sender of a
signal in bootstrapping the connection. This means that there is a race between
looking up the signal thread ID from the PID in the proc server and acquiring
a task info cap for the task ID of the signal receiver in the sender. However, in
Unix, there is always a race when sending a signal using kill. The task server
helps the users a bit here by not reusing task IDs as long as possible.

Some signals are not implemented by sending a message to the task. SIGKILL

for example destroys the tasks without contacting it at all. This feature is
implemented in the proc server.

The signal capability is also used for other things, like the message interface
(which allows you to manipulate the environment variables and auth capability
of a running task, etc).

6.2.2 The fork() function

To be written.

6.2.3 The exec functions

The exec operation will be done locally in a task. Traditionally, exec overlays
the same task with a new process image, because creating a new task and
transferring the associated state is expensive. In L4, only the threads and
virtual memory mappings are actually kernel state associated with a task, and
exactly those have to be destroyed by exec anyway. There is a lot of Hurd
specific state associated with a task (capabilities, for example), but it is difficult
to preserve that. There are security concerns, because POSIX programs do not
know about Hurd features like capabilities, so inheriting all capabilities across
exec unconditionally seems dangerous.

One could think that if a program is not Hurd-aware, then it will not make any
use of capabilities except through the normal POSIX API, and thus there are no
capabilities except those that the GNU C library uses itself, which exec can take
care of. However, this is only true if code that is not Hurd-aware is never mixed
with Hurd specific code, even libraries (unless the library intimately cooperates
with the GNU C library). This would be a high barrier to enable Hurd features
in otherwise portable programs and libraries.

It is better to make all POSIX functions safe by default and allow for extensions
to let the user specify which capabilities besides those used for file descriptors
etc to be inherited by the new executable.

For posix_spawn(), this is straight-forward. For exec, it is not. either specific
capabilities could be markes as “do not close on exec”, or variants of the exec

function could be provided which take further arguments.

56 CHAPTER 6. THE POSIX PERSONALITY

There are also implementation obstacles hindering the reuse of the existing task.
Only local threads can manipulate the virtual memory mappings, and there is
a lot of local state that has to be kept somewhere between the time the old
program becomes defunct and the new binary image is installed and used (not
to speak of the actual program snippet that runs during the transition).

So the decision was made to always create a new task with exec, and copy the
desired state from the current task to the new task. This is a clean solution,
because a new task will always start out without any capabilities in servers,
etc, and thus there is no need for the old task to try to destroy all unneeded
capabilities and other local state before exec. Also, in case the exec fails, the
old program can continue to run, even if the exec fails at a very late point (there
is no “point of no return” until the new task is actually up and running).

For suid and sgid applications, the actual exec has to be done by the filesystem.
However, the filesystem can not be bothered to also transfer all the user state
into the new task. It can not even do that, because it can not accept capabilities
implemented by untrusted servers from the user. Also, the filesystem does not
want to rely on the new task to be cooperative, because it does not necessarily
trust the code, if is is owned by an untrusted user.

1. The user creates a new task and a container with a single physical page,
and makes the exec call to the file capability, providing the task control
capability. Before that, it creates a task info capability from it for its own
use.

2. The filesystem checks permission and then revokes all other users on the
task control capability. This will revoke the users access to the task, and
will fail if the user did not provide a pristine task object. (It is assumed
that the filesystem should not create the task itself so the user can not
use suid/sgid applications to escape from their quota restriction).

3. Then it revokes access to the provided physical page and writes a trusted
startup code to it.

4. The filesystem will also prepare all capability transactions and write the
required information (together with other useful information) in a stack
on the physical page.

5. Then it creates a thread in the task, and starts it. At pagefault, it will
provide the physical page.

6. The startup code on the physical page completes the capability transfer.
It will also install a small pager that can install file mappings for this
binary image. Then it jumps to the entry point.

7. The filesystem in the meanwhile has done all it can do to help the task
startup. It will provide the content of the binary or script via paging or
file reads, but that happens asynchronously, and as for any other task. So
the filesystem returns to the client.

6.2. PROCESS MANAGEMENT 57

8. The client can then send its untrusted information to the new task. The
new task got the client’s thread ID from the filesystem (possibly provided
by the client), and thus knows to which thread it should listen. The new
task will not trust this information ultimatively (ie, the new task will use
the authentication, root directory and other capabilities it got from the
filesystem), but it will accept all capabilities and make proper use of them.

9. Then the new task will send a message to proc to take over the old PID and
other process state. How this can be done best is still to be determined
(likely the old task will provide a process control capability to the new
task). At that moment, the old task is desrtoyed by the proc server.

This is a coarse and incomplete description, but it shows the general idea. The
details will depend a lot on the actual implementation.

The startup information

The following information is passed to the new task by the parent (the filesystem
in the suid case). Every item is a machine word.

1. magic

The first four bytes are E, X, E, C.

2. program header location

3. program header size

The location and size of the program header. The meaning of this field
depends on the binary format.

4. feature flags

This bit-field indicates which of the following information is present. If
the information is not present, the corresponding machine words are un-
defined. This provides simple version control.

They could also be undefined.

5. wortel thread ID

6. wortel control cap ID

The thread ID of the wortel rootserver, and the local ID of the wortel

control cap. The wortel control cap allows the user to make privileged
system calls. This field is only present if the user has this capability.
Usually, this is only the case for some initial servers at bootstrap.

7. physmem thread ID

58 CHAPTER 6. THE POSIX PERSONALITY

8. physmem control cap ID

The thread ID physical memory server, and the local ID of the physmem

control cap. This cap can be used to manage the physical memory of this
task.

9. physmem startup page container cap ID

The container cap ID for the startup code, containing this information,
the initial pager, and other startup code. This container is mapped into
the address space of the task outside of the actual program, and can be
unmapped by the program after it has used this information and installed
its own pager, by destroying this container, to reclaim the virtual address
space and physical memory it occupies.

10. (More to come.)

6.3 Unix Domain Sockets

In the Hurd on Mach, there was a global pflocal server that provided unix
domain sockets and pipes to all users. This will not work very well in the
Hurd on L4, because for descriptor passing, read: capability passing, the unix
domain socket server needs to accept capabilities in transit. User capabilities
are often implemented by untrusted servers, though, and thus a global pflocal
server running as root can not accept them.

However, unix domain sockets and pipes can not be implemented locally in the
task. An external task is needed to hold buffered data capabilities in transit.
in theory, a new task could be used for every pipe or unix domain socketpair.
However, in practice, one server for each user would suffice and perform better.

This works, because access to Unix Domain Sockets is controlled via the filesys-
tem, and access to pipes is controlled via file descriptors, usually by inheritance.
For example, if a fifo is installed as a passive translator in the filesystem, the
first user accessing it will create a pipe in his pflocal server. From then on, an
active translator must be installed in the node that redirects any other users to
the right pflocal server implementing this fifo. This is asymmetrical in that the
first user to access a fifo will implement it, and thus pay the costs for it. But
it does not seem to cause any particular problems in implementing the POSIX
semantics.

The GNU C library can contact /servers/socket/pflocal to implement socket-
pair, or start a pflocal server for this task’s exclusive use if that node does not
exist.

All this are optimizations: It should work to have one pflocal process for each
socketpair. However, performance should be better with a shared pflocal server,
one per user.

6.4. PIPES 59

6.4 Pipes

Pipes are implemented using socketpair(), that means as unnamed pair of
Unix Domain Sockets. The pflocal server will support this by implementing
pipe semantics on the socketpair if requested.

It was considered to use shared memory for the pipe implementation. But we
are not aware of a lock-free protocol using shared memory with multiple readers
and multiple writers. It might be possible, but it is not obvious if that would
be faster: Pipes are normally used with read() and write(), so the data has
to be copied from and to the supplied buffer. This can be done efficiently in
L4 even across address spaces using string items. In the implementation using
sockets, the pflocal server handles concurrent read and write accesses with
mutual exclusion.

6.5 Filesystems

6.5.1 Directory lookup across filesystems

The Hurd has the ability to let users mount filesystems and other servers pro-
viding a filesystem-like interface. Such filesystem servers are called translators.
In the Hurd on GNU Mach, the parent filesystem would automatically start up
such translators from passive translator settings in the inode. It would then
block until the child filesystem sends a message to its bootstrap port (provided
by the parent fs) with its root directory port. This root directory port can then
be given to any client looking up the translated node.

There are several things wrong with this scheme, which becomes apparent in
the Hurd on L4. The parent filesystem must be careful to not block on creating
the child filesystem task. It must also be careful to not block on receiving any
acknowledgement or startup message from it. Furthermore, it can not accept
the root directory capability from the child filesystem and forward it to clients,
as they are potentially not trusted.

The latter problem can be solved the following way: The filesystem knows about
the server thread in the child filesystem. It also implements an authentication
capability that represents the ability to access the child filesystem. This capa-
bility is also given to the child filesystem at startup (or when it attaches itself
to the parent filesystem). On client dir lookup, the parent filesystem can return
the server thread and the authentication capability to the client. The client
can use that to initiate a connection with the child filesystem (by first building
up a connection, then sending the authentication capability from the parent
filesystem, and receiving a root directory capability in exchange).

There is a race here. If the child filesystem dies and the parent filesystem
processes the task death notification and releases the task info cap for the child
before the user acquires its own task info cap for the child, then an imposter
might be able to pretend to be the child filesystem for the client.

This race can only be avoided by a more complex protocol:

60 CHAPTER 6. THE POSIX PERSONALITY

Variant 1: The user has to acquire the task info cap for the child fs, and then
it has to perform the lookup again. If then the thread ID is for the task it got
the task ID for in advance, it can go on. If not, it has to retry. This is not so
good because a directory lookup is usually an expensive operation. However, it
has the advantage of only slowing down the rare case.

Variant 2: The client creates an empty reference container in the task server,
which can then be used by the server to fill in a reference to the child’s task
ID. However, the client has to create and destroy such a container for every
filesystem where it excepts it could be redirected to another (that means: for all
filesystems for which it does not use O_NOTRANS). This is quite an overhead to
the common case.

<marcus> I have another idea

<marcus> the client does not give a container

<marcus> server sees child fs, no container -> returns O_NOTRANS node

<marcus> then client sees error, uses O_NOTRANS node, "" and container

<marcus> problem solved

<marcus> this seems to be the optimum

<neal> hmm.

<neal> So lazily supply a container.

<marcus> yeah

<neal> Hoping you won’t need one.

<marcus> and the server helps you by doing as much as it can usefully

<neal> And that is the normal case.

<neal> Yeah, that seems reasonable.

<marcus> the trick is that the server won’t fail completely

<marcus> it will give you at least the underlying node

The actual creation of the child filesystem can be performed much like a suid
exec, just without any client to follow up with further capabilities and startup
info. The only problem that remains is how the parent filesystem can know
which thread in the child filesystem implements the initial handshake protocol
for the clients to use. The only safe way here seems to be that the parent
filesystem requires the child to use the main thread for that, or that the parent
filesystem creates a second thread in the child at startup (passing its thread ID
in the startup data), requiring that this second thread is used. In either case
the parent filesystem will know the thread ID in advance because it created the
thread in the first place. This looks a bit ugly, and violates good taste, so we
might try to look for alternative solutions.

6.5.2 Reparenting

The Hurd on Mach contains a curious RPC, file_reparent, which allows you
to create a new capability for the same node, with the difference that the new
node will have a supplied capability as its parent node. A directory lookup of
.. on this new capability would return the provided parent capability.

This function is used by the chroot() function, which sets the parent node to
the null capability to prevent escape from a chroot() environment. It is also
used by the firmlink translator, which is a cross over of a symbolic and a hard
link: It works like a hard link, but can be used across filesystems.

6.5. FILESYSTEMS 61

A firmlink is a dangerous thing. Because the filesystem will give no indication if
the parent node it returns is provided by itself or some other, possibly untrusted
filesystem, the user might follow the parent node to untrusted filesystems with-
out being aware of it.

In the Hurd port to L4, the filesystem can not accept untrusted parent capa-
bilities on behalf of the user anymore. The chroot() function is not difficult
to implement anyway, as no real capability is required. The server can just be
instructed to create a node with no parent node, and it can do that without
problems. Nevertheless, we also want a secure version of the firmlink transla-
tor. This is possible if the same strategy is used as in cross filesystem lookups.
The client registers a server thread as the handler for the parent node, and the
filesystem returns a capability that can be used for authentication purposes.
Now, the client still needs to connect this to the new parent node. Normally, the
filesystem providing the new parent node will also not trust the other filesystem,
and thus can not accept the capability that should be used for authentication
purposes. So instead creating a direct link from the one filesystem to the other,
the firmlink translator must act as a middle man, and redirect all accesses to
the parent node first to itself, and then to the filesystem providing the parent
node. For this, it must request a capability from that filesystem that can be
used for authentication purposes when bootstrapping a connection, that allows
such a bootstrapping client to access the parent node directly.

This also fixes the security issues, because now any move away from the filesys-
tem providing the reparented node will explicitely go first to the firmlink

translator, and then to the filesystem providing the parent node. The user can
thus make an informed decision if it trusts the firmlink translator and the
filesystem providing the parent node.

This is a good example where the redesign of the IPC system forces us to fix
a security issue and provides a deeper insight into the trust issues and how to
solve them.

62 CHAPTER 6. THE POSIX PERSONALITY

Chapter 7

Debugging

L4 does not support debugging. So every task has to implement a debug inter-
face and implement debugging locally. gdb needs to be changed to make use of
this interface. How to perform the required authentication, and how the debug
thread is advertised to gdb, and how the debug interface should look like, are
all open questions.

63

64 CHAPTER 7. DEBUGGING

Chapter 8

Device Drivers

This section written by Peter De Schrijver and Daniel Wagner.

8.1 Requirements

• Performance: Speed is important!

• Portability: Framework should work on different architectures.

Also: Useable in a not hurdisch environment with only small changes.

• Flexibility

• Convenient interfaces

• Consistency

• Safety: driver failure should have as minimal system impact as possible.

8.2 Overview

The framework consists of:

• Bus drivers

• Device drivers

• Service servers (plugin managers, ω0, deva)

65

66 CHAPTER 8. DEVICE DRIVERS

8.2.1 Layer of the drivers

The device driver framework consists only of the lower level drivers and doesn’t
need to have a complicated scheme for access control. This is because it should
be possible to share devices, e.g. for neighbour Hurd. The authentication is done
by installing a virtual driver in each OS/neighour Hurd. The driver framework
trusts these virtual drivers. So it’s possible for a non Hurdish system to use the
driver framework just by implementing these virtual drivers.

Only threads which have registered as trusted are allowed to access device
drivers. The check is simply done by checking the senders ID against a table of
known threads.

8.2.2 Address spaces

Drivers always reside in their own AS. The overhead for cross AS IPC is small
enough to do so.

8.2.3 Zero copying and DMA

It is assumed that there are no differences between physical memory pages. For
example each physical memory page can be used for DMA transfers. Of course,
older hardware like ISA devices can so not be supported.

Still some support for ISA devices like serial ports and PS/2 for keyboard is
needed.

With this assumption, the device driver framework can be given any physical
memory page for DMA operation. This physical memory page must be pinned
down.

If an application wants to send or receive data to/from a device driver it has
to tell the virtual driver the page on which the operation has to be executed.
Since the application doesn’t know the virtual-real memory mapping, it has to
ask the physical memory manager for the real memory address of the page in
question. If the page is not directly mapped from the physical memory manager
the application asks the mapper (another application which has mapped this
memory region to the first application) to resolve the mapping. This can be
done recursively. Normally, this resolving of a mapping can be sped up using a
cache services, since a small number of pages are reused very often.

With the scheme, the drivers do not have to take special care of zero copying
if there is only one virtual driver. When there is more than one virtual driver
pages have to be copied for all other virtual drivers.

8.3. BUS DRIVERS 67

8.2.4 Physical versus logical device view

The device driver framework will only offer a physical device view. Ie. it will
be a tree with devices as the leaves connected by various bus technologies.
Any logical view and naming persistence will have to be build on top of this
(translator).

8.2.5 Things for the future

• Interaction with the task server (e.g. listings driver threads with ps,etc.)

• Powermanagement

8.3 Bus Drivers

A bus driver is responsible to manage the bus and provide access to devices
connected to it. In practice it means a bus driver has to perform the following
tasks:

• Handle hotplug events

Busses which do not support hotplugging, will treated as if there is 1
insertion event for every device connected to it when the bus driver is
started. Drivers which don’t support autoprobing of devices will probably
have to read some configuration data from a file1 or if the driver is needed
for bootstrapping configuration can be given as argument on its stack.
In some cases the bus doesn’t generate insertion/removal events, but can
still support some form of hotplug functionality if the user tells the driver
when a change to the bus configuration has happened (eg. SCSI).

• Configure client device drivers

The bus driver should start the appropriate client device driver translator
when an insertion event is detected. It should also provide the client device
driver with all necessary configuration info, so it can access the device it
needs. This configuration data typically consists of the bus addresses of
the device and possibly IRQ numbers or DMA channel ID’s. The device
driver is loaded by the associated plugin manager.

• Provide access to devices

This means the bus driver should be able to perform a bus transaction on
behalf of a client device driver. In some cases this involves sending a mes-
sage and waiting for reply (eg. SCSI, USB, IEEE 1394, Fibre Channel,...).
The driver should provide send/receive message primitives in this case. In

1It might be a good idea, if the device driver has no notion how the configuraiton is stored.
It just asks the bus driver which should know how to get the configuration.

68 CHAPTER 8. DEVICE DRIVERS

other cases devices on the bus can be accessed by memory accesses or
by using special I/O instructions. In this case the driver should provide
mapping and unmapping primitives so a client device driver can get ac-
cess to the memory range or is allowed to access the I/O addresses. The
client device driver should use a library, which is bus dependant, to access
the device on the bus. This library hides the platform specific details of
accessing the bus.

• Rescans

Furthermore the bus driver must also support rescans for hardware. It
might be that not all drivers are found during bootstrapping and hence
later on drivers could be loaded. This is done by generating new attach no-
tification, which are sent to the bus’s plugin manager. The plugin manager
then loads a new driver, if possible. A probe funtion is not needed since
all supported hardware can be identified by vendor/device identification
(unlike ISA hardware). For hardware busses which don’t support such
identification only static configuration is possible (configuration scripts
etc.)

8.3.1 Root bus driver

The root bus is the entrypoint to look up devices.

8.3.2 Generic Bus Driver

Operations:

• notify (attach, detach)

• string enumerate

8.3.3 ISA Bus Driver

Inherits from:

• Generic Bus Driver

Operations:

• (none)

8.4. DEVICE DRIVERS 69

8.3.4 PCI Bus Driver

Inherits from:

• Generic Bus Driver

Operations:

• map mmio: map a PCI BAR for MMIO

• map io: map a PCI BAR for I/O

• map mem: map a PCI BAR for memory

• read mmio 8,16,32,64: read from a MMIO register

• write mmio 8,16,32,64: write to a MMIO register

• read io 8,16,32,64: read from an IO register

• write io 8,16,32,64: write to an IO register

• read config 8,16,32,?: read from a PCI config register

• write config 8,16,32,?: write to a PCI config register

• alloc dma mem(for non zero copying): allocate main memory useable for
DMA

• free dma mem (for non zero copying): free main memory useable for DMA

• prepare dma read: write back CPU cachelines for DMAable memory area

• sync dma write: discard CPU cachelines for DMAable memory area

• alloc consistent mem: allocate memory which is consistent between CPU
and device

• free consistent mem: free memory which is consistent between CPU and
device

• get irq mapping (A,B,C,D): get the IRQ matching the INT(A,B,C,D) line

8.4 Device Drivers

8.4.1 Classes

• character: This the standard tty as known in the Unix environment.

• block

70 CHAPTER 8. DEVICE DRIVERS

• human input: Keyboard, mouse, ...

• packet switched network

• circuit switched network

• framebuffer

• streaming audio

• streaming video

• solid state storage: flash memory

8.4.2 Human input devices (HID) and the console

The HIDs and the console are critical for user interaction with the system.
Furthmore, the console should be working as soons as possible to give feed-
back. Log messages which are send to the console before the hardware has been
initialized should be buffered.

8.4.3 Generic Device Driver

Operations:

• init : prepare hardware for use

• start : start normal operation

• stop : stop normal operation

• deinit : shutdown hardware

• change irq peer : change peer thread to propagate irq message to.

8.4.4 ISA Devices

Inherits from:

• Generic Device Driver

Supported devices

• Keyboard (ps2)

• Serial port (mainly for debugging purposses)

8.5. SERVICE SERVERS 71

8.4.5 PCI Devices

Inherits from:

• Generic Device Driver

Supported devices:

• block devices

8.5 Service Servers

8.5.1 Plugin Manager

Each bus driver has a handle/reference to which insert/remove events are send.
The owner of the handle/refence must then take appropriate action like loading
the drivers. These actors are called plugin managers.

The plugin manager is also the pager for the loaded driver.

Obviously, the plugin manager needs some sort of exec format support. Maybe
it’s own ELF loader.

8.5.2 Deva

Deva stands for Device Access Server. This server implements basic services
for the device driver framework like thread creation, thread deletion, etc. The
device driver framework itself doesn’t depend on any Hurd code. The interaction
with the Hurd system will be abstracted by deva.

Which services must deva provide:

• task/thread manipulation (create, deletion)

• memory (de)allocation (virtual, physical)

• io ports

• driver (un)loading

• bootstrapping

72 CHAPTER 8. DEVICE DRIVERS

8.5.3 ω0

ω0 is a system-central IRQ-logic server. It runs in the privileged AS space in
order to be allowed rerouting IRQ IPC.

If an IRQ is shared between several devices, the drivers are daisy chained and
have to notify their peers if an IRQ IPC has arrived.

For more details see http://os.inf.tu-dresden.de/h̃ohmuth/prj/omega0.ps.gz

Operations:

• attach irq : attach an ISR thread to the IRQ

• detach irq : detach an ISR thread from the IRQ

8.6 Resource Management

8.6.1 IRQ handling

IRQ based interrupt vectors

Some CPU architectures (eg 68k, IA32) can directly jump to an interrupt vector
depending on the IRQ number. This is typically the case on CISC CPU’s. In
this case there is some priorization scheme. On IA32 for example, the lowest IRQ
number has the highest priority. Sometimes the priorities are programmable.
Most RISC CPU’s have only a few interrupt vectors which are connected exter-
nal IRQs. (typically 1 or 2). This means the IRQ handler should read a register
in the interrupt controller to determine which IRQ handler has to be executed.
Sometimes the hardware assists here by providing a register which indicates the
highest priority interrupt according to some (programmable) scheme.

IRQ acknowlegdement

The IRQ acknowledgement is done in two steps. First inform the hardware
about the successful IRQ acceptance. Then inform the ISRs about the IRQ
event.

Edge versus level triggered IRQs

Edge triggered IRQs typically don’t need explicit acknowledgment by the CPU
at the device level. You can just acknowledge them at the interrupt controller
level. Level triggered IRQs typically need to explicitly acknowledged by the
CPU at the device level. The CPU has to read or write a register from the
IRQ generating peripheral to make the IRQ go away. If this is not done, the
IRQ handler will be reentered immediatly after it ended, effectively creating an
endless loop. Another way of preventing this would be to mask the IRQ.

8.6. RESOURCE MANAGEMENT 73

Multiple interrupt controllers

Some systems have multiple interrupt controllers in cascade. This is for example
the case on a PC, where you have 2 8259 interrupt controllers. The second con-
troller is connected to the IRQ 2 pin of the first controller. It is also common in
non PC systems which still use some standard PC components such as a Super
IO controller. In this case the 2 8259’s are connected to 1 pin of the primary
interrupt controller. Important for the software here is that you need to ac-
knowledge IRQ’s at each controller. So to acknowledge an IRQ from the second
8259 connected to the first 8259 connected to another interrupt controller, you
have to give an ACK command to each of those controllers. Another import
fact is that on the PC architecture the order of the ACKs is important.

Shared IRQs

Some systems have shared IRQs. In this case the IRQ handler has to look at
all devices using the same IRQ...

IRQ priorities

All IRQs on L4 have priorities, so if an IRQ occurs any IRQ lower then the first
IRQ will be blocked until the first IRQ has been acknowlegded. ISR priorities
must much the hardware priority (danger of priority inversion). Furthermore
the IRQ acknowledgment order is important.

The 8259 also supports a specific IRQ acknowledge iirc. But, this scheme does
not work in most level triggered IRQ environments. In these environments you
must acknowledge (or mask) the IRQ before leaving the IRQ handler, otherwise
the CPU will immediately reenter the IRQ handler, effectively creating an end-
less loop. In this case L4 would have to mask the IRQ. The IRQ thread would
have to unmask it after acknowledgement and processing.

IRQ handling by L4/x86

The L4 kernel does handle IRQ acknowlegdment.

8.6.2 Memory

If no physical memory pages are provided by the OS the device driver framework
alloces pages from the physical memory manager. The device driver framework
has at no point of time to handle any virtual to physical page mapping.

74 CHAPTER 8. DEVICE DRIVERS

8.7 Bootstrapping

The device driver framework will be started by deva, which is started by wortel.
All drivers and servers (e.g. the plugin manager) are stored in a archive which
will be extracted by deva.

8.7.1 deva

For bootstrapping deva will only have a subset of drivers ready. As soon the
filesystem runs deva can ask for drivers from the harddisk. If new drivers are
available it has to inform the plugin manager to ask for unresolved drivers again.

Deva starts as first task a plugin server. The plugin server does then the rest of
the bootstrapping process.

8.7.2 Plugin Manager

A Plugin manager handles driver loading for devices. It asks deva for drivers.

The first plugin server does also some bootstrapping. First, it starts the root
bus driver.

8.8 Order of implementation

1. deva, plugin manager

2. root bus server

3. pci bus

4. isa bus

5. serial port (isa bus)

6. console

8.9 Scenarios

8.9.1 Insert Event

If a simple hardware device is found the ddf will load a driver for the new
hardware device as follows (see Figure 8.1):

8.9. SCENARIOS 75

1.

2.

3.

16.

11.

14.

20.

10.

15.

12.

17.

18.

13.

4.

9.
5. 8.

7.6.

21.

ddf hurd

Root Bus
Driver

PCI Bus
Driver

IDE
Driver

NIC
Driver

PLM Deva wortel

physmem

ext2

ddwrapper

Figure 8.1: A new hardware device is detected (a network card) by the PCI root
bus driver. The PCI root bus driver initiates the loading of the correct driver
for the new hardware device.

76 CHAPTER 8. DEVICE DRIVERS

1. The PCI Bus Driver detects a hardware device for which no driver has
been loaded yet. It generates an insert event which it sends to one (all?)
registered entity. The interface for the event handler has not been decided
yet.

2. The Root Bus Driver receives the event signal. Note it is not necessary
that the Root Bus Driver handles the insert signal for all drivers. It
forwards the signal to the/a Plugin Manager (PLM).

3. The/a Plugin Manager (PLM) asks Deva to load the driver binary for the
new device.

4. Deva forwards the loading request to the ext2 filesystem process. During
bootstrapping Deva will handle the request by itself. Deva has an archive
of drivers loaded by grub.

5. The ext2 process decides where it finds the device driver binary (block
address)

6. The ddwrapper (device driver wrapper) forwards the read call from the
ext2 process to the IDE Driver.

7. After checking if the caller is allowed start a read command, the IDE
Driver reads the device driver from the disk.

8. The IDE Driver returns the data.

9. ddwrapper returns the data. XXX This might be wrong. IFRC, the data is
returned in a container and only the handle of the container is transfered.

10. Ext2 returns the device driver (data).

11. Deva returns the device driver (data).

12. Ask Deva to create a new address space.

13. Deva asks wortel to create new address space.

14. wortel returns “a new address space”.

15. Deva returns “a new address space”.

16. PLM is registered as pagefault handler for the new driver address space.
The bootstrap thread starts to run and generates a page fault.

17. PLM asks Deva for memory.

18. Deva asks physmem for memory.

19. physmem returns memory pages.

20. Deva returns memory pages.

21. PLM maps the device driver binary into the address space of the new
driver.

8.9. SCENARIOS 77

Root Bus

Driver

Default

PLM

Deva

PCI
Root

Driver

Special
PLM

NIC

ddf

Figure 8.2: For the new NIC driver a specialised plugin manager is loaded first.

8.9.2 Several Plugin Managers

For certain drivers it makes sense to have specialised plugin managers. The
default plugin manger (dPLM) has to be asked to create a new plugin man-
ager. It is loaded like a normal driver. The default plugin manager will also
act as pager for the new plugin manager. When the new plugin manager is
activated it registers itself to the Deva as new plugin manager. Deva will send
all signals/messages from outside of the ddf to all registered plugin managers.

