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Today

e |ab2

e Elaboration

e Static Semantics
— scope
— symbol tables

e Type Checking (in brief)
e Inference Rules

— Control Flow Checks
— Initialization checks

e Basic Blocks
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Compiler Phases

Abstract syntax tree

Semantics translation

AST+symbol tables
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Elaboration X&z/

e Eliminate syntactic sugar Fa
e Simplify future analysis
e For example:
— for (init; test; incr) stmt %
—while (test) stmt
— expr && expr
— expr || exprg

— others?



for loop
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for loop

for (init; test; incr) stmt

R

init;
while (test) { stmt; incr; }
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X&&Y

expl && exp2
—> expl ? exp2 : false
expl || exp2
—> expl ? true : exp2



When?

e \When to do elaboration?
— While parsing?

@,— new Block( );
S->append(.2);
Block body=new Block();
body->append($9)
body->append(§7)

$S- >appen5(new 55, body));

; expr; simpstmt ) stmt

}

— As a separate pass, after parsing?
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e Absolutely(for, &§&, D '\";

What?

e What about: int x =

— What would we elaborate it to?
— Why would this be good? Bad?

e Other things to keep in mind:

— line numbers

— errors

e,

'e



Now ready to goto IR?

e Many choices of IR (discussed in lecture 2)

— | chose tree-IR and Triples

e Before converting to IR: Semantic Analysis



Semantic Analysis

e Semantic analysis is a static analysis of the
program to make sure it has a meaning

e |t is a context sensitive analysis!

e At this point in the compilation we have an
AST of the input program
l.e., we know it is syntactically correct

e \WWhat kinds of checks are needed to ensure
a semantically correct program?



Semantic Analysis

e Type checks
— Is variable x declared?
— What is its type?
— Can an operator operate on a particular type?

— What is the result type of an operation?

e Control flow checks

— Is the placement of a break or continue legal?

— Is the placement of a return legal?
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4 -
Semantic Analysis 5%@@
RS

e Uniqueness checks \
- !
— Is a variable declared more than once? M*@

— Are the labels in a switch unique? w

— Are the labels in a procedure legal? ;
— Are the field names in a record unique? S:S(‘*’!'g')

e Matching Name checks 2

— E.g., in ada loops can have names at start and
end and they must be the same



Semantic Analysis et

. . A
e Static analysis: ) ax)
— Type checks 'L/‘d‘g ’@'

— Control flow checks Y \{\f"‘ﬂf
— Uniqueness checks f..sc—g"‘/\f"’
— Matching Name checks

e As opposed to dynamic analysis: TC‘EZ

— dereferencing a null pointer
— array bounds checks
— infinite loops

e Why do we defer the static checks til now?
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The easy cases

e Control flow checks
e Matching names
e Uniqueness?



The easy cases

e Control flow checks

— recursively walk AST keeping track of loop
depth.

— If break or continue encountered, then
depth == 0 = error.

e Matching names
e Uniqueness?



The easy cases

e Control flow checks

— recursively walk AST keeping track of loop
depth.

— If break or continue encountered, then
depth == 0 = error.

e Matching names

— recursive walk of tree keep track of “opening”
name and then match to “closing” name.

e Uniqgueness?
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Uniqueness

e These questions are harder:
— Is a variable declared more than once?
— Are the labels in a switch unique?
— Are the labels in a procedure legal?
— Are the field names in a record unique?

e \When is a variable declared more than once?

int foo(int a) {
int a;
for (i=0; i<100; i++) {
int a = 1i*1i;

}

e |n checking types and declarations we must take scope
into account.
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Scope

e Declarations associate information with
names

— a variable name to its type, storage, etc.
— a type name to a particular type

— a function name to its parameter list, body,
etc.

e The scope rules of a language determine
the extent that the declaration is valid

or

e They determine which declaration applies
to a name at a given place in the program
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Different Kinds of Scope Rules

C like

— static/lexical scoping

— global, static, local, block (most closely nested)
Pascal

— local, block

— nested procedures

— T
Java

— global, package, file, class, method, block
Lisp

— dynamic scope



Example of nesting

int £(int b) {
b=20;
{ int b =1; int ¢ = 1;
{int b = 2; int ¢ = 2;

{int b = 3; .. ¢ ..




Dynamic V. Static Scope

void weird () {

int N =1;

void show() { a&
print (N) ; print (™ “) 1} \' )

void two () {
int N = 2;

show () ;
g—

}

show(); two(); show(); two();
.——*f-#

Static scope: “1111”

Q{%?@opea—au—z ]2"":&—— 2
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Symbol Tables ) @

e Symbol tables are key data structure for
semantic analysis 5 3

e A symbol table maps identifiers to attrib

— its type

— its location on stack

— its register name if any

— storage class

— offset from base of record

D R

[

e Structure of symbol table(s) must reflect scope
of program

e |t must be efficient

e Support multiple name spaces
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Symbol Tables

e Two main choices:

— A Stack of tables:
e entering a scope: create new table, link to parent

e leaving a scope: remove table
— Table of stacks

e one symbol table
e A stack for variables pointing to entry in table

e On leaving scope, remove all variables declared in current
scope

e Where do we store information, e.g., type, ...

15-411/611 © 2019-21 Goldstein

27



Rewrite AST

e When we insert a new entry, attach
attribute information to decl node

e When we lookup a name, point to the decl
node to which it maps.

e When we are done with this pass the
bol table is no longer needed!




Semantic Analysis

e Type checks
— Is variable x declared?
— What is its type?
— Can an operator operate on a particular type?
— What is the result type of an operation?

e Uniqueness checks
— Is a variable declared more than once?
— Are the labels in a switch unique?
— Are the labels in a procedure legal?
— Are the field namesin a record unique?

15-411/611 © 2019-21 Goldstein
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Type Checking

e Ensures that type of an expression is valid
in the context in which it appears.

e For example:

— arguments to + are integers
— index operation is applied to arrays
— thati) applied to records

— function call has proper number of args (and
they are of proper type)

— casts are legal



Whatis a Type?

e Atype describes a class of values.
e Sofarin CO

— int: class of integers
— bool: true or false
— More coming soon

e Two kinds of declarations:

. ‘-ﬂ
— Type declarations create new types from other
types.

— Variable declarations specify that a variable will
always have a particular type.
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What does decl of x tell us

e From the type:
— Know what kinds of values are stored in x
— Know what kinds of operations are legal
° +,-,%, ...
e Function call: # of args, return type
— How big x is
e From the scope:
— Where it is stored
— How it is allocated, inited

— How long it should be kept around

© 2019-21 Goldstein
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Type Checking

e Build up an environment which maps
— variables to type
— values to types
— expressions to types

e Given an environment and an expression
— check that it is correct
— update the environment

e Do this on entire program

e This is a syntax directed analysis, i.e.,
recursively walk ast checking types as we

go.

© 2019-21 Goldstein
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Approaches to Semantic Analysis

e Ad hoc, e.g., tree-walk to make sure all
control-flow paths end in a return

e Attribute grammars: Use a grammar to
automatically generate an analysis pass

e Inference rules, judgements and solvers



Using Inference Rules

e Our language:

e:=n | x| el+e2 | el && e2
S

TR

if(e,sliSZ)

while (e, s)

P ———

return (e)

seq(sl,s2)

decl (x,T,s) 'ﬁ

_

T %,
S‘.



Check for Proper Returns

hasret(return (e)) ’W@@@fg}
At — (

hasret(s1) hasret(s2)
hasret(seq (sl ,h s2)) hasret(seqg(sl,s2))

decl? hc‘c"gCSD "\’\.asrjt SQi/} .
if? \LM\{' Qe_) SU-TZB)

while?
nop?
assign?




Check for Proper Returns

hasret(return (e))

hasret(s1)
hasret(seq (s_i!_. , s?) )

hasret(s)

hasret(decl (x,1,s))
——— — o~ <

hasret(s2)

hasret(seq(sl,s2))

hasret(sl) hasret(s2)

hasret(if (e,sl,s2))

L



hasret(return (e))

hasret(s1)
hasret(seqg(sl,s2))

hasret(s2)
hasret(seq(sl,s2))

hasret(s)

‘ hasret(decl (x,1,s))

hasret(sl) hasret(s2)

‘ hasret(if (e,sl,s2))
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Iplementation

A recursive treewalk using
judgements as cases.

hasret(return(e)) =true

hasret(seq(s1,s2)) = hasret(sl)|| hasret(s2)
hasret(decl(x,t,s)) = hasret(s)
hasret(if(e,s1,s2)) = hasret(s1l)&&hasret(s2)
hasret(while(e,s)) = false

© 2019-21 Goldstein

38



Initialization Checking

e How do we make sure all variables are
initialized before they are used?

e:=n | x | el+e2 | el && e2
S =X&e

nop

if (e,sl,s2)

while (e, s)

return (e)

seq(sl,s2)

decl (x, T, s)



Initialization Checking

e How do we make sure all variables are
initialized before they are used?
e:=n | x | el+e2 | el && e2
S =X&e

nop

1f (e,sl,s2) If variable is live at point of
while (e, s) declaration, then we have
an errofr.

return (e)

seq(sl,s2)

decl (x, T, s)
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Plan for Veritying Proper Init

e |f variable is live at point of
declaration, then we have an
error.

— Determine if a variable is live at a statement

— Will depend on whether there is a use of a
variable in an expression

— Determine if a statement will define a variable

— Put it all together in a predicate to check for
proper initialization.



the init predicate

init(s1) init(s2)

E

If variable is live at point of declaration, then we have an error.

15-411/611
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Plan for Veritying Proper Init

e |f variable is live at point of
declaration, then we have an
error.

— Determine if a variable is live at a statement

— Will depend on whether there is a use of a
variable in an expression

— Determine if a statement will define a variable

— Put it all together in a predicate to check for
proper initialization.



live predicate (take 1)

HSE! e. .17

live(assign(y\d). =)
- .




Plan for Veritying Proper Init

e |f variable is live at point of
declaration, then we have an
error.

— Determine if a variable is live at a statement

— Will depend on whether there is a use of a
variable in an expression

— Determine if a statement will q_efine a variable

— Put it all together in a predicate to check for
proper initialization.



the use predicate

no rule for no rule for

use(z._ T) use(x, r) use(y,z),y # x_

< T
use&bﬂ:) use(es, )

RN A R
use(eq & e, ) use(ey & eg, )
'ﬂ d
use(ey, ) use(es, )
use(e; && e, x) use(ey && ez, )

Pﬂ

15-411/611

use(e, x) is a Wno guarantee x will be used, but it may be used.

© 2019-21 Goldstein
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live predicate

use(e, )

(take 2)

live(assign(y. ), x)
H

use(e, ) live(sy,x)

live(if

(

_ e 00000000

[
E

live(sa, x)

2, 81, 892), ) live(if (e, s1, 52), o) live(if(e, s1,82), )

use(e, x) Iiue: s, It)

live(while(e, s), ) Iive(while(e@ )

use(& )

no rule for
live(return(e), x) live(nop, x)
live(sq,x) —d

live(x,s) y+#x

live(decl(y, 7, 5), =)

ef(sy,x) live(sq,x)

live(seq( sy, S2), )

© 2019-21 Goldstein
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live predicate (take 2)

use(e, )

live(assign(y. ), x)

use(e, x) live(sy,x) live(sa, x)

live(if(e, s1,82), x) live(if (e, s1, 52), o) live(if(e, s1,52), x)

use(e, x) live(s, x)

live(while(e, s), ) live(while(e, s), x) \

use(e, x) no rule for live(x, 3) U %ﬁ
live(return(e), x) live(nop, x) Iive(declg T,5), 1)
T

T

live(sq,x) —def(sy,x) live(sy, x)

live(seq( sy, S2), ) live(seq( sy, s2), x)



live predicate (take 2)

use(e, )

live(assign(y. ), x)

use(e, x) live(sy,x) live(sa, x)

live(if(e, s1,82), x) live(if (e, s1, 52), o) live(if(e, s1,52), x)

use(e, x) live(s, x)

live(while(e, s), ) live(while(e, s), x)

use(e, x) live(x,s) y+#x

no rule for
live(return(e), x) live(nop, x) live(decl(y, 7, 5), =)

Iive(.;a_i._ )

live(seq( sy, S2), )

1




Plan for Veritying Proper Init

e |f variable is live at point of
declaration, then we have an
error.

— Determine if a variable is live at a statement

— Will depend on whether there is a use of a
variable in an expression

— Determine if a statement will define a variable

— Put it all together in a predicate to check for
proper initialization.
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the def predicate

no rule for
def (assign(x.e), ) def(assign(y.e).x).y # x
def(sy,x) def(sy,x) no rule for

def(if (e, s1,82), ) def(while(e, s), x)

no rule for def(s1,z) def(s2, z)

def(nop, ) def(seq(s1. s2), ) def (seq(s1, s2).x)

def(s,z) y#=x
def (decl(y. 1. s). )

def(return(e), x)

© 2019-21 Goldstein
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the def predicate

no rule for
def (assign(x.e), ) def(assign(y.e).x).y # x

def(sy,z) def(sz,z) e for

def(if (e, s1,82), ) def(while(e, s), x)

no rule for def(s1,z) def(s2, z)

def(nop, ) def(seq(s1. s2), ) def (seq(s1, s2).x)

def(s,z) y#=x
def (decl(y. 1. s). )

def(return(e), x)

sisin scope of y

15-411/611 © 2019-21 Goldstein
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the def predicate

no rule for
def (assign(x.e), ) def(assign(y.e).x).y # x
def(sy,x) def(sy,x) no rule for

def(if (e, s1,82), ) def(while(e, s), x)

no rule for def(s1,z) def(s2, z)

def(nop, ) def(seq(s1. s2), ) def (seq(s1, s2).x)

def(s,z) y#=x

def (decl(y. 1. s). )

def(return(e), x)

© 2019-21 Goldstein
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the init predicate

init(s1) init(s2)

init(nop) init(seq(sy,s2))

init(s) —live(s,x)

init(decl(x, 7, s))



After Static Semantics ...

e Translate AST to IR

e Then (or simultaneously) create Basic
Blocks and CFG



Basic Blocks

Each basic block starts with a “leader”
— function entry

— |abel

Ends with return or jmp
Only 1 entry, only 1 exit

If last statement is conditional jump, two
possible successors in control flow graph
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