

The Middle-End

15-411/15-611 Compiler Design

Seth Copen Goldstein

January 29, 2026

Today

- lab2
- Elaboration
- Static Semantics
 - scope
 - symbol tables
- Type Checking (in brief)
- Inference Rules
 - Control Flow Checks
 - Initialization checks
- Basic Blocks

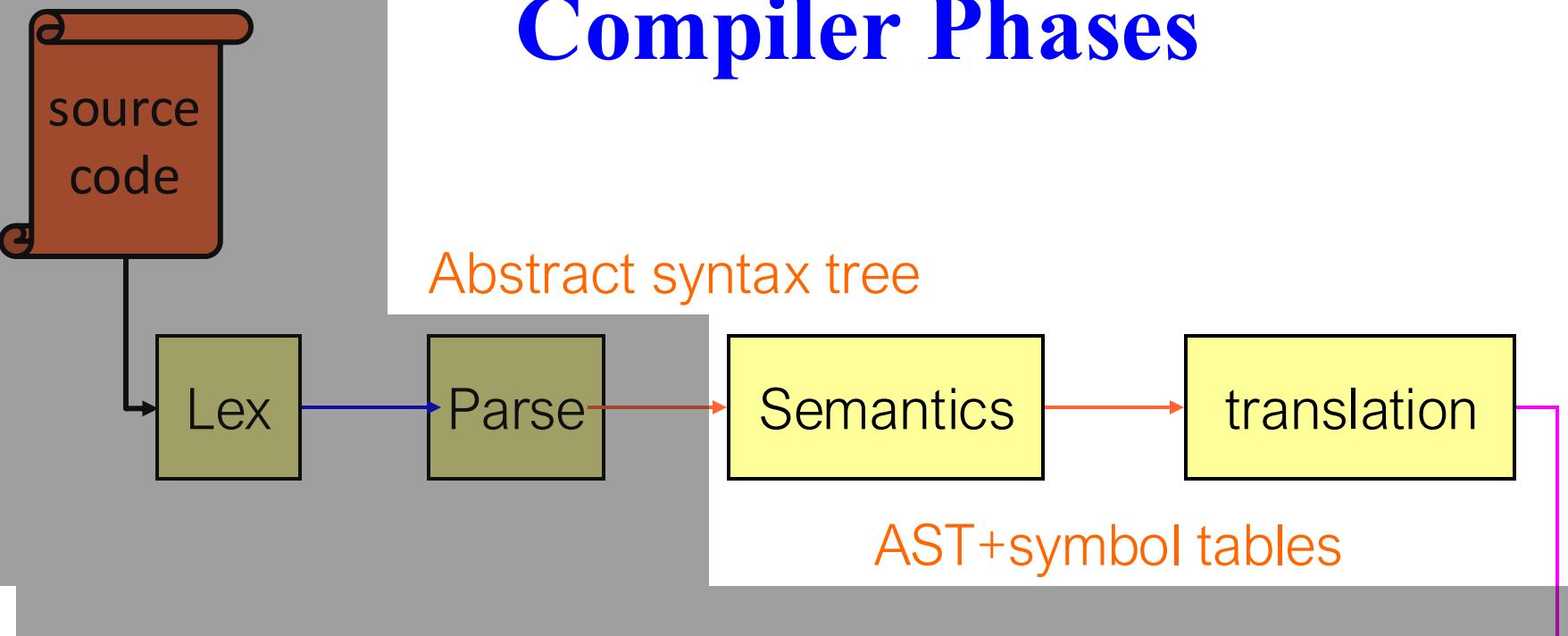
L2

$x++$
 $x = x + 1$

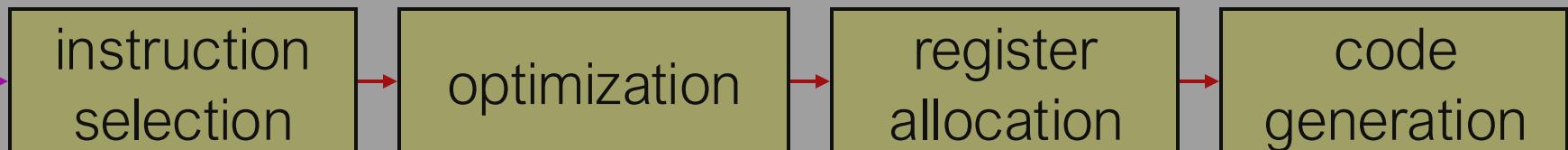
{program} ::= int main () {block}
{block} ::= { {stmts} }
{type} ::= int | bool
{decl} ::= {type} ident | {type} ident = {exp}
{stmts} ::= ϵ | {stmt} {stmts}
{stmt} ::= {simp} ; | {control} | {block}
{simp} ::= {lvalue} {asop} {exp} | {lvalue} {postop} | {decl} | {exp}
{simpopt} ::= ϵ | {simp}
{lvalue} ::= ident | ({lvalue})
{elseopt} ::= ϵ | else {stmt}
{control} ::= if ({exp}) {stmt} {elseopt}
| while ({exp}) {stmt}
| for ({simpopt} ; {exp} ; {simpopt}) {stmt}
| return {exp} ;
{exp} ::= ({exp}) | {intconst} | true | false | ident
| {unop} {exp} | {exp} {binop} {exp} | {exp} ? {exp} : {exp}
{intconst} ::= num
{asop} ::= = | += | -= | *= | /= | %= | &= | ^= | |= | <= | >= | >>= | <<= | >>
{binop} ::= + | - | * | / | % | < | <= | > | >= | == | !=
| && | || | & | ^ | | | << | >>
{unop} ::= ! | ~ | -
{postop} ::= ++ | --

{

Compiler Phases



Intermediate Representation (tree)



Code Triples

Elaboration

- Eliminate syntactic sugar
- Simplify future analysis
- For example:
 - `for (init; test; incr) stmt`
 - `while (test) stmt`
 - `expr && expr`
 - `expr || expr`
 - others?

for loop

for (init; test; incr) stmt

⇒ {
 ^{initj}
 ^{while (test)} ~~stmt~~ {
 ^{startj}
 ^{incrj}
 }
}

for loop

for (init; test; incr) stmt

⇒ {
 init;
 while (test) { stmt; incr; }
}

[

3

X && Y

exp1 && exp2

⇒

exp1 || exp2

⇒

exp1 ? true : exp2

{
if (exp1){
exp2
} else {
false
}
}

exp1 ? exp2 : false

X && Y

exp1 && exp2

$\Rightarrow \text{exp1} ? \text{exp2} : \text{false}$

exp1 || exp2

$\Rightarrow \text{exp1} ? \text{true} : \text{exp2}$

When?

- When to do elaboration?
 - While parsing?

```
stmt := for ( simpstmt ; expr; simpstmt ) stmt
      {
          $$ = new Block( );
          $$->append($3);
          Block body = new Block();
          body->append($9);
          body->append($7);
          $$->append(new While($5, body));
      }
```

- As a separate pass, after parsing?

What?

- Absolutely: **for, &&, ||**
- What about: int x = e;
 - What would we elaborate it to?
 - Why would this be good? Bad?
- Other things to keep in mind:
 - line numbers
 - errors

int x = e;
int j = 0; j

int x;
x = c;

int x = x + 1
x =

x > x + 1

Now ready to goto IR?

- Many choices of IR (discussed in lecture 2)
 - I chose tree-IR and Triples
- Before converting to IR: Semantic Analysis

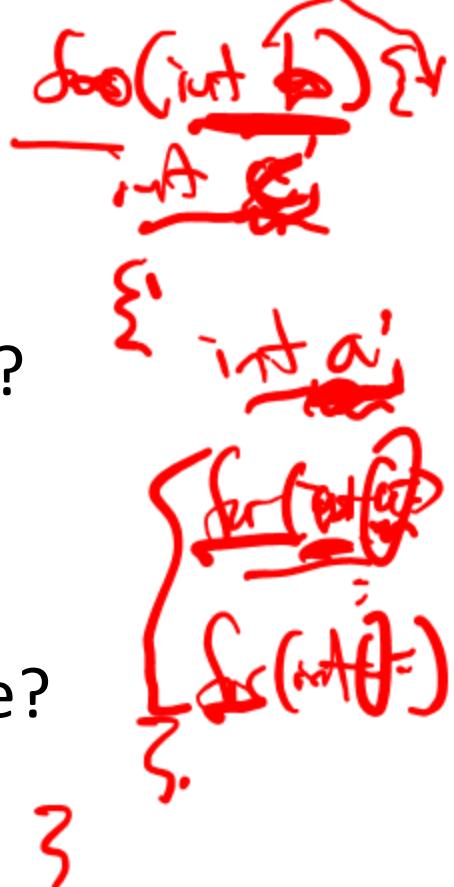
Semantic Analysis

- Semantic analysis is a **static analysis** of the program to make sure it has a meaning
- It is a context **sensitive** analysis!
- At this point in the compilation we have an AST of the input program
i.e., we know it is syntactically correct
- What kinds of checks are needed to ensure a semantically correct program?

Semantic Analysis

- Type checks
 - Is variable **x** declared?
 - What is its type?
 - Can an operator operate on a particular type?
 - What is the result type of an operation?
- Control flow checks
 - Is the placement of a **break** or **continue** legal?
 - Is the placement of a **return** legal?

Semantic Analysis



- Uniqueness checks
 - Is a variable declared more than once?
 - Are the labels in a switch unique?
 - Are the labels in a procedure legal?
 - Are the field names in a record unique?
- Matching Name checks
 - E.g., in ada loops can have names at start and end and they must be the same

Semantic Analysis

- Static analysis:
 - Type checks
 - Control flow checks
 - Uniqueness checks
 - Matching Name checks
- As opposed to dynamic analysis:
 - dereferencing a null pointer
 - array bounds checks
 - infinite loops
- Why do we defer the static checks til now?

~~Y/0j~~ ^{→ Know exactly}
~~int y, 0j;~~ ^{at 1}
~~int~~ ^{at 2}
~~int z = n~~ ^{YES}

The easy cases

- Control flow checks
- Matching names
- Uniqueness?

The easy cases

- Control flow checks
 - recursively walk AST keeping track of loop depth.
 - If break or continue encountered, then $\text{depth} == 0 \Rightarrow \text{error}$.
- Matching names
- Uniqueness?

The easy cases

- Control flow checks
 - recursively walk AST keeping track of loop depth.
 - If break or continue encountered, then $\text{depth} == 0 \Rightarrow \text{error}$.
- Matching names
 - recursive walk of tree keep track of “opening” name and then match to “closing” name.
- Uniqueness?

Uniqueness

- These questions are harder:
 - Is a variable declared more than once?
 - Are the labels in a switch unique?
 - Are the labels in a procedure legal?
 - Are the field names in a record unique?
- When is a variable declared more than once?

```
int foo(int a) {  
    int a;  
    for (i=0; i<100; i++) {  
        int a = i*i;  
        ...  
    }  
}
```

- In checking types and declarations we must take scope into account.

Scope

- Declarations associate information with names
 - a variable name to its type, storage, etc.
 - a type name to a particular type
 - a function name to its parameter list, body, etc.
- The scope rules of a language determine the extent that the declaration is valid
 - or
- They determine which declaration applies to a name at a given place in the program

Different Kinds of Scope Rules

- C like
 - static/lexical scoping
 - global, static, local, block (most closely nested)
- Pascal
 - local, block
 - nested procedures
- Java
 - global, package, file, class, method, block
- Lisp
 - dynamic scope

Example of nesting

```
int f(int b) {  
    b = 0;  
    { int b = 1; int c = 1;  
        {int b = 2; int c = 2;  
            ...  
        }  
        {int b = 3; ... c ...  
        }  
        ...  
    }  
    ...  
}
```

Not legal c0!

Dynamic V. Static Scope

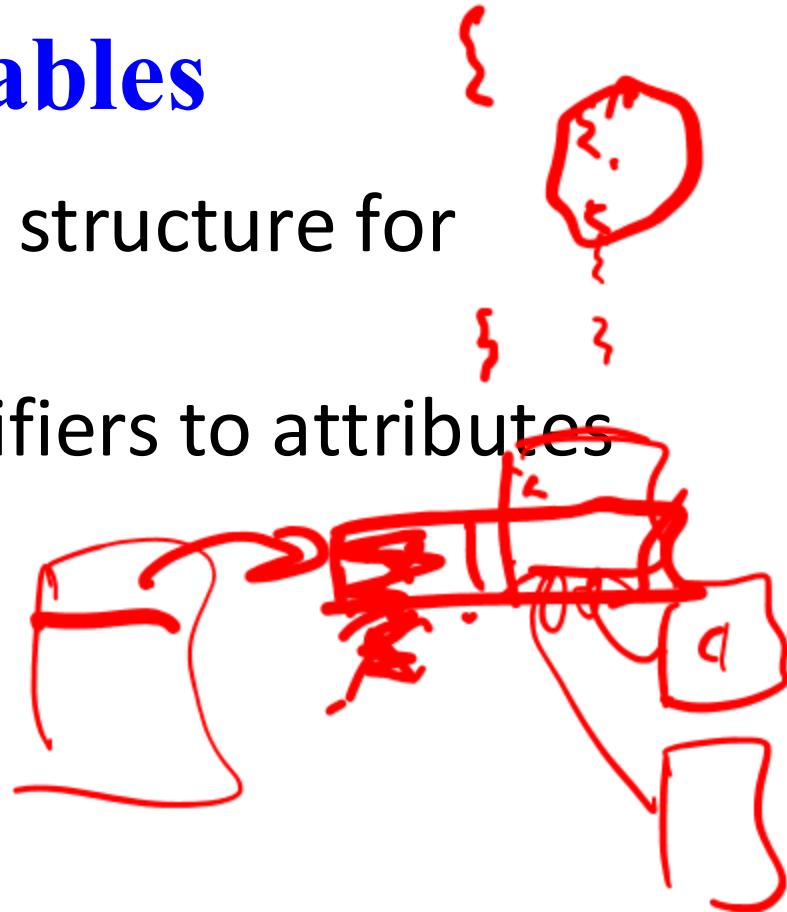
```
void weird() {  
    int N = 1;  
  
    void show() {  
        print(N); print(" ")    }  
  
    void two() {  
        int N = 2;  
  
        show();  
    }  
  
    show(); two(); show(); two();  
}
```


Static scope: "1 1 1 1"

~~Dynamic scope: 1 2 1 2~~

Symbol Tables

- Symbol tables are key data structure for semantic analysis
- A symbol table maps identifiers to attributes
 - its type
 - its location on stack
 - its register name if any
 - storage class
 - offset from base of record
 - etc.
- Structure of symbol table(s) must reflect scope of program
- It must be efficient
- Support multiple name spaces

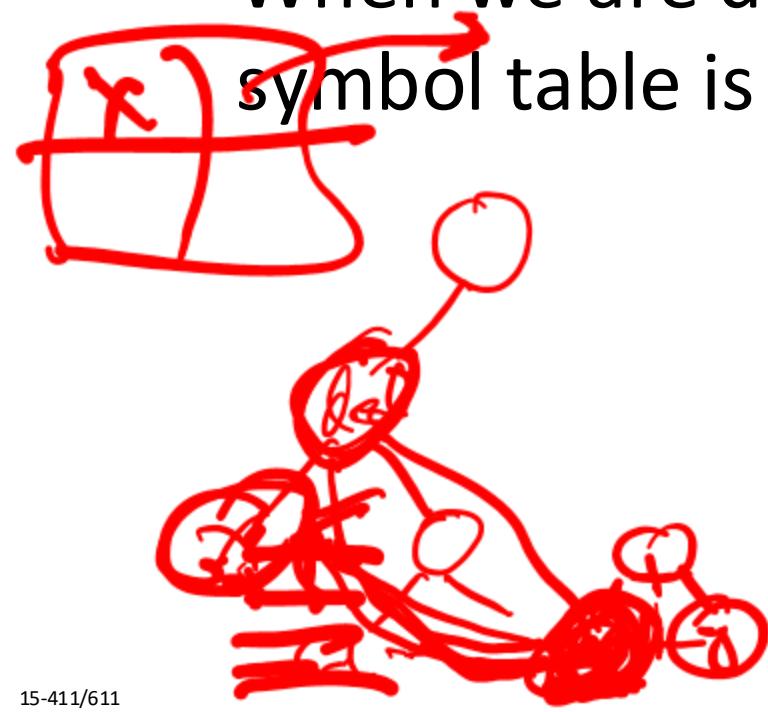


Symbol Tables

- Two main choices:
 - A Stack of tables:
 - entering a scope: create new table, link to parent
 - leaving a scope: remove table
 - Table of stacks
 - one symbol table
 - A stack for variables pointing to entry in table
 - On leaving scope, remove all variables declared in current scope
- Where do we store information, e.g., type, ...

Rewrite AST

- When we insert a new entry, attach attribute information to decl node
- When we lookup a name, point to the decl node to which it maps.
- When we are done with this pass the symbol table is no longer needed!



Semantic Analysis

- Type checks
 - Is variable **x** declared?
 - What is its type?
 - Can an operator operate on a particular type?
 - What is the result type of an operation?
- Control flow checks
- Uniqueness checks
 - Is a variable declared more than once?
 - Are the labels in a switch unique?
 - Are the labels in a procedure legal?
 - Are the field names in a record unique?
- Matching Name checks

Type Checking

- Ensures that type of an expression is valid in the context in which it appears.
- For example:
 - arguments to + are integers
 - index operation is applied to arrays
 - that ‘.’ is applied to records
 - function call has proper number of args (and they are of proper type)
 - casts are legal

What is a Type?

- A type describes a class of values.
- So far in C0
 - int: class of integers
 - bool: true or false
 - More coming soon
- Two kinds of declarations:
 - Type declarations create new types from other types.
 - Variable declarations specify that a variable will always have a particular type.

What does decl of x tell us

- From the type:
 - Know what kinds of values are stored in x
 - Know what kinds of operations are legal
 - $+, -, *, \dots$
 - Function call: # of args, return type
 - How big x is
- From the scope:
 - Where it is stored
 - How it is allocated, initied
 - How long it should be kept around

Type Checking

- Build up an environment which maps
 - variables to type
 - values to types
 - expressions to types
- Given an environment and an expression
 - check that it is correct
 - update the environment
- Do this on entire program
- This is a syntax directed analysis, i.e., recursively walk ast checking types as we go.

Approaches to Semantic Analysis

- Ad hoc, e.g., tree-walk to make sure all control-flow paths end in a return
- Attribute grammars: Use a grammar to automatically generate an analysis pass
- Inference rules, judgements and solvers

Using Inference Rules

- Our language:

```
e := n | x | e1+e2 | e1 && e2  
s := x←e  
| if(e,s1,s2)  
| while(e,s)  
| return(e)  
| seq(s1,s2)  
| decl(x,τ,s)
```

Σ
 τ x_j
 s_j

Check for Proper Returns

$$\frac{}{\text{hasret}(\text{return}(\mathbf{e}))}$$

return (e)

$$\frac{\text{while}(\mathbf{e}, \mathbf{s})}{\text{hasret}(\text{while}(\mathbf{e}, \mathbf{s}))}$$

while (e, s)

$$\frac{\text{hasret}(\mathbf{s}_1)}{\text{hasret}(\text{seq}(\mathbf{s}_1, \mathbf{s}_2))}$$

hasret (s1)

$$\frac{\text{hasret}(\mathbf{s}_2)}{\text{hasret}(\text{seq}(\mathbf{s}_1, \mathbf{s}_2))}$$

hasret (s2)

decl?

if?

while?

nop?

assign?

$$\frac{\text{hasret}(\mathbf{s}_1) \quad \text{hasret}(\mathbf{s}_2)}{\text{hasret}(\text{if}(\mathbf{e}, \mathbf{s}_1, \mathbf{s}_2))}$$

hasret (s1) hasret (s2)

Check for Proper Returns

$$\frac{}{\text{hasret}(\text{return}(\mathbf{e}))}$$

$$\frac{\text{hasret}(\mathbf{s1})}{\text{hasret}(\text{seq}(\mathbf{s1}, \mathbf{s2}))}$$

$$\frac{\text{hasret}(\mathbf{s})}{\text{hasret}(\text{decl}(\mathbf{x}, \tau, \mathbf{s}))}$$

$$\frac{\text{hasret}(\mathbf{s2})}{\text{hasret}(\text{seq}(\mathbf{s1}, \mathbf{s2}))}$$

$$\frac{\text{hasret}(\mathbf{s1}) \text{ hasret}(\mathbf{s2})}{\text{hasret}(\text{if}(\mathbf{e}, \mathbf{s1}, \mathbf{s2}))}$$

Implementation

$$\frac{}{\text{hasret}(\text{return}(e))}$$

$$\frac{}{\text{hasret}(s1)}$$

$$\frac{}{\text{hasret}(\text{seq}(s1, s2))}$$

$$\frac{}{\text{hasret}(s2)}$$

$$\frac{}{\text{hasret}(\text{seq}(s1, s2))}$$

$$\frac{}{\text{hasret}(s)}$$

$$\frac{}{\text{hasret}(\text{decl}(x, \tau, s))}$$

$$\frac{\text{hasret}(s1) \text{ hasret}(s2)}{\text{hasret}(\text{if}(e, s1, s2))}$$

....

A recursive treewalk using judgements as cases.

$\text{hasret}(\text{return}(e)) = \text{true}$

$\text{hasret}(\text{seq}(s1, s2)) = \text{hasret}(s1) \mid\mid \text{hasret}(s2)$

$\text{hasret}(\text{decl}(x, \tau, s)) = \text{hasret}(s)$

$\text{hasret}(\text{if}(e, s1, s2)) = \text{hasret}(s1) \&\& \text{hasret}(s2)$

$\text{hasret}(\text{while}(e, s)) = \text{false}$

Initialization Checking

- How do we make sure all variables are initialized before they are used?

```
e := n | x | e1+e2 | e1 && e2  
s := x←e  
| nop  
| if(e,s1,s2)  
| while(e,s)  
| return(e)  
| seq(s1,s2)  
| decl(x,τ,s)
```

Initialization Checking

- How do we make sure all variables are initialized before they are used?

e := n | x | e1+e2 | e1 && e2

s := x ← e

| **nop**

| **if (e, s1, s2)**

| **while (e, s)**

| **return (e)**

| **seq (s1, s2)**

| **decl (x, τ, s)**

If variable is live at point of declaration, then we have an error.

Plan for Verifying Proper Init

- If variable is live at point of declaration, then we have an error.
 - Determine if a variable is **live** at a statement
 - Will depend on whether there is a **use** of a variable in an expression
 - Determine if a statement will **define** a variable
 - Put it all together in a predicate to check for proper **init**ialization.

the init predicate

$$\frac{}{\text{init}(\text{nop})}$$
$$\frac{\text{init}(s_1) \quad \text{init}(s_2)}{\text{init}(\text{seq}(s_1, s_2))}$$
$$\frac{\text{init}(s) \quad \neg \text{live}(s, x)}{\text{init}(\text{decl}(x, \tau, s))}$$

If variable is live at point of declaration, then we have an error.

Plan for Verifying Proper Init

- If variable is live at point of declaration, then we have an error.
 - Determine if a variable is **live** at a statement
 - Will depend on whether there is a **use** of a variable in an expression
 - Determine if a statement will **define** a variable
 - Put it all together in a predicate to check for proper **init**ialization.

live predicate (take 1)

$$\frac{\text{use}(e, x)}{\text{live}(\text{assign}(y, e), x)}$$

Plan for Verifying Proper Init

- If variable is live at point of declaration, then we have an error.
 - Determine if a variable is **live** at a statement
 - Will depend on whether there is a **use** of a variable in an expression
 - Determine if a statement will **define** a variable
 - Put it all together in a predicate to check for proper **init**ialization.

the use predicate

no rule for

$\text{use}(n, x)$

$\frac{}{\text{use}(x, x)}$

no rule for

$\text{use}(y, x), y \neq x$

$\frac{\text{use}(e_1, x)}{\text{use}(e_1 \oplus e_2, x)}$

$\frac{\text{use}(e_2, x)}{\text{use}(e_1 \oplus e_2, x)}$

$\frac{\text{use}(e_1, x)}{\text{use}(e_1 \&& e_2, x)}$

$\frac{\text{use}(e_2, x)}{\text{use}(e_1 \&& e_2, x)}$

use(e, x) is a **may-property**. no guarantee x will be used, but it may be used.

live predicate (take 2)

$$\frac{\text{use}(e, x)}{\text{live}(\text{assign}(y, e), x)}$$

$$\frac{\text{use}(e, x)}{\text{live}(\text{if}(e, s_1, s_2), x)}$$

$$\frac{\text{live}(s_1, x)}{\text{live}(\text{if}(e, s_1, s_2), x)}$$

$$\frac{\text{live}(s_2, x)}{\text{live}(\text{if}(e, s_1, s_2), x)}$$

$$\frac{\text{use}(e, x)}{\text{live}(\text{while}(e, s), x)}$$

$$\frac{\text{live}(s, x)}{\text{live}(\text{while}(e, s), x)}$$

$$\frac{\text{use}(e, x)}{\text{live}(\text{return}(e), x)}$$

no rule for
live(nop, x)

$$\frac{\text{live}(x, s) \quad y \neq x}{\text{live}(\text{decl}(y, \tau, s), x)}$$

$$\frac{\text{live}(s_1, x)}{\text{live}(\text{seq}(s_1, s_2), x)}$$

$$\frac{\neg \text{def}(s_1, x) \quad \text{live}(s_2, x)}{\text{live}(\text{seq}(s_1, s_2), x)}$$

live predicate (take 2)

$$\frac{\text{use}(e, x)}{\text{live}(\text{assign}(y, e), x)}$$

$$\frac{\text{use}(e, x)}{\text{live}(\text{if}(e, s_1, s_2), x)} \quad \frac{\text{live}(s_1, x)}{\text{live}(\text{if}(e, s_1, s_2), x)} \quad \frac{\text{live}(s_2, x)}{\text{live}(\text{if}(e, s_1, s_2), x)}$$

$$\frac{\text{use}(e, x)}{\text{live}(\text{while}(e, s), x)} \quad \frac{\text{live}(s, x)}{\text{live}(\text{while}(e, s), x)}$$

use(e, x) live(s, x)

$$\frac{\text{use}(e, x)}{\text{live}(\text{return}(e), x)} \quad \text{no rule for} \quad \frac{\text{live}(x, s)}{\text{live}(\text{decl}(y, \tau, s), x)}$$

live(return(e), x) live(nop, x) live(x, s) $y \neq x$

live(decl(y, τ , s), x)

live(x, s) $y \neq x$

live(decl(y, τ , s), x)

$$\frac{\text{live}(s_1, x)}{\text{live}(\text{seq}(s_1, s_2), x)} \quad \frac{\neg \text{def}(s_1, x) \quad \text{live}(s_2, x)}{\text{live}(\text{seq}(s_1, s_2), x)}$$

live predicate (take 2)

$$\frac{\text{use}(e, x)}{\text{live}(\text{assign}(y, e), x)}$$

$$\frac{\text{use}(e, x)}{\text{live}(\text{if}(e, s_1, s_2), x)} \quad \frac{\text{live}(s_1, x)}{\text{live}(\text{if}(e, s_1, s_2), x)} \quad \frac{\text{live}(s_2, x)}{\text{live}(\text{if}(e, s_1, s_2), x)}$$

$$\frac{\text{use}(e, x)}{\text{live}(\text{while}(e, s), x)} \quad \frac{\text{live}(s, x)}{\text{live}(\text{while}(e, s), x)}$$

$$\frac{\text{use}(e, x)}{\text{live}(\text{return}(e), x)} \quad \text{no rule for } \text{live}(\text{nop}, x) \quad \frac{\text{live}(x, s) \quad y \neq x}{\text{live}(\text{decl}(y, \tau, s), x)}$$

$$\frac{\text{live}(s_1, x)}{\text{live}(\text{seq}(s_1, s_2), x)}$$

$$\frac{\text{def}(s_1, x) \quad \text{live}(s_2, x)}{\text{live}(\text{seq}(s_1, s_2), x)}$$

Plan for Verifying Proper Init

- If variable is live at point of declaration, then we have an error.
 - Determine if a variable is **live** at a statement
 - Will depend on whether there is a **use** of a variable in an expression
 - Determine if a statement will **define** a variable
 - Put it all together in a predicate to check for proper **init**ialization.

the def predicate

$$\frac{}{\text{def}(\text{assign}(x, e), x)} \quad \begin{array}{l} \text{no rule for} \\ \text{def}(\text{assign}(y, e), x), y \neq x \end{array}$$

$$\frac{\text{def}(s_1, x) \quad \text{def}(s_2, x)}{\text{def}(\text{if}(e, s_1, s_2), x)} \quad \begin{array}{l} \text{no rule for} \\ \text{def}(\text{while}(e, s), x) \end{array}$$

$$\begin{array}{l} \text{no rule for} \\ \text{def}(\text{nop}, x) \end{array} \quad \frac{\text{def}(s_1, x)}{\text{def}(\text{seq}(s_1, s_2), x)} \quad \frac{\text{def}(s_2, x)}{\text{def}(\text{seq}(s_1, s_2), x)}$$

$$\frac{\text{def}(s, x) \quad y \neq x}{\text{def}(\text{decl}(y, \tau, s), x)} \quad \frac{}{\text{def}(\text{return}(e), x)}$$

the def predicate

$$\frac{}{\text{def}(\text{assign}(x, e), x)} \quad \begin{array}{l} \text{no rule for} \\ \text{def}(\text{assign}(y, e), x), y \neq x \end{array}$$

$$\frac{\text{def}(s_1, x) \quad \text{def}(s_2, x)}{\text{def}(\text{if}(e, s_1, s_2), x)} \quad \begin{array}{l} \text{no rule for} \\ \text{def}(\text{while}(e, s), x) \end{array}$$

$$\begin{array}{l} \text{no rule for} \\ \text{def}(\text{nop}, x) \end{array} \quad \frac{\text{def}(s_1, x)}{\text{def}(\text{seq}(s_1, s_2), x)} \quad \frac{\text{def}(s_2, x)}{\text{def}(\text{seq}(s_1, s_2), x)}$$

$$\frac{\text{def}(s, x) \quad y \neq x}{\text{def}(\text{decl}(y, \tau, s), x)}$$

$$\frac{}{\text{def}(\text{return}(e), x)}$$

s is in scope of y

the def predicate

$$\frac{}{\text{def}(\text{assign}(x, e), x)} \quad \begin{array}{l} \text{no rule for} \\ \text{def}(\text{assign}(y, e), x), y \neq x \end{array}$$

$$\frac{\text{def}(s_1, x) \quad \text{def}(s_2, x)}{\text{def}(\text{if}(e, s_1, s_2), x)} \quad \begin{array}{l} \text{no rule for} \\ \text{def}(\text{while}(e, s), x) \end{array}$$

$$\begin{array}{l} \text{no rule for} \\ \text{def}(\text{nop}, x) \end{array} \quad \frac{\text{def}(s_1, x)}{\text{def}(\text{seq}(s_1, s_2), x)} \quad \frac{\text{def}(s_2, x)}{\text{def}(\text{seq}(s_1, s_2), x)}$$

$$\frac{\text{def}(s, x) \quad y \neq x}{\text{def}(\text{decl}(y, \tau, s), x)}$$

$$\frac{}{\text{def}(\text{return}(e), x)}$$

the init predicate

$$\frac{}{\text{init}(\text{nop})} \qquad \frac{\text{init}(s_1) \quad \text{init}(s_2)}{\text{init}(\text{seq}(s_1, s_2))}$$

$$\frac{\text{init}(s) \quad \neg \text{live}(s, x)}{\text{init}(\text{decl}(x, \tau, s))}$$

After Static Semantics ...

- Translate AST to IR
- Then (or simultaneously) create Basic Blocks and CFG

Basic Blocks

- Each basic block starts with a “leader”
 - function entry
 - label
- Ends with **return** or **jmp**
- Only 1 entry, only 1 exit
- If last statement is conditional jump, two possible successors in control flow graph