The Middle-End

15-411/15-611 Compiler Design
Seth Copen Goldstein

January 29, 2026

Today

e |ab2

e Elaboration

e Static Semantics
— scope
— symbol tables

e Type Checking (in brief)
e Inference Rules

— Control Flow Checks
— Initialization checks

e Basic Blocks

15-411/611

(exp)

(inteonst)
{asop)
{(binop)

(unop)
(postop)

A e~
int main () (block) /q

{ (stmts) ¥
int | bool : M
(type; ident | (type} ident = (exp)

e | (stmt) (stmts)

(simp) ; | (control) | (block)

(lvalue) (asop) {exp} | (lvalue} (postop} | {decl) | (exp)

€ | (simp)

ident | ((lvalue))

e | else {stmt)

if ({exp)) {strnti ielseﬂti

while ((exp)) s:;tmt}

for ((simpopt) : {exp) : (simpopt)) (stmt)

feturn zexp) : —

((exp)) | (intconst) | true | false | ident

(unop) (exp) | {exp) (binop) (exp) | (exp) 7 {exp) : (exp)

o =
R N N e e N N R
-l xl 71k <l<=]>]>]==]1=

& | 1l & || <<]| >

N I

=+ | --

© 2019-21 Goldstein

Compiler Phases

Abstract syntax tree

Semantics translation

AST+symbol tables

© 2019-21 Goldstein

Elaboration X&z/

e Eliminate syntactic sugar Fa
e Simplify future analysis
e For example:
— for (init; test; incr) stmt %
—while (test) stmt
— expr && expr
— expr || exprg

— others?

for loop

»>for (init; test; 1incr) s1:rt11:3

= |
e |
e (st 2 ¢
e

for loop

for (init; test; incr) stmt

R

init;
while (test) { stmt; incr; }

X&&Y

expl && exp2 ‘;C(Cﬁ&)i
~ P
expl || exp2 c&y
= 3
t el T €L
epl £ YT AL — =X A

X&&Y

expl && exp2
—> expl ? exp2 : false
expl || exp2
—> expl ? true : exp2

When?

e \When to do elaboration?
— While parsing?

@,— new Block();
S->append(.2);
Block body=new Block();
body->append($9)
body->append(§7)

$S- >appen5(new 55, body));

; expr; simpstmt) stmt

}

— As a separate pass, after parsing?

15-411/611 © 2019-21 Goldstein

e Absolutely(for, &§&, D '\";

What?

e What about: int x =

— What would we elaborate it to?
— Why would this be good? Bad?

e Other things to keep in mind:

— line numbers

— errors

e,

'e

Now ready to goto IR?

e Many choices of IR (discussed in lecture 2)

— | chose tree-IR and Triples

e Before converting to IR: Semantic Analysis

Semantic Analysis

e Semantic analysis is a static analysis of the
program to make sure it has a meaning

e |t is a context sensitive analysis!

e At this point in the compilation we have an
AST of the input program
l.e., we know it is syntactically correct

e \WWhat kinds of checks are needed to ensure
a semantically correct program?

Semantic Analysis

e Type checks
— Is variable x declared?
— What is its type?
— Can an operator operate on a particular type?

— What is the result type of an operation?

e Control flow checks

— Is the placement of a break or continue legal?

— Is the placement of a return legal?

15-411/611 © 2019-21 Goldstein

4 -
Semantic Analysis 5%@@
RS

e Uniqueness checks \
- !
— Is a variable declared more than once? M*@

— Are the labels in a switch unique? w

— Are the labels in a procedure legal? ;
— Are the field names in a record unique? S:S(‘*’!'g')

e Matching Name checks 2

— E.g., in ada loops can have names at start and
end and they must be the same

Semantic Analysis et

. . A
e Static analysis:) ax)
— Type checks 'L/‘d‘g ’@'

— Control flow checks Y \{\f"‘ﬂf
— Uniqueness checks f..sc—g"‘/\f"’
— Matching Name checks

e As opposed to dynamic analysis: TC‘EZ

— dereferencing a null pointer
— array bounds checks
— infinite loops

e Why do we defer the static checks til now?

15-411/611

The easy cases

e Control flow checks
e Matching names
e Uniqueness?

The easy cases

e Control flow checks

— recursively walk AST keeping track of loop
depth.

— If break or continue encountered, then
depth == 0 = error.

e Matching names
e Uniqueness?

The easy cases

e Control flow checks

— recursively walk AST keeping track of loop
depth.

— If break or continue encountered, then
depth == 0 = error.

e Matching names

— recursive walk of tree keep track of “opening”
name and then match to “closing” name.

e Uniqgueness?

© 2019-21 Goldstein

Uniqueness

e These questions are harder:
— Is a variable declared more than once?
— Are the labels in a switch unique?
— Are the labels in a procedure legal?
— Are the field names in a record unique?

e \When is a variable declared more than once?

int foo(int a) {
int a;
for (i=0; i<100; i++) {
int a = 1i*1i;

}

e |n checking types and declarations we must take scope
into account.

15-411/611 © 2019-21 Goldstein

15-411/611

Scope

e Declarations associate information with
names

— a variable name to its type, storage, etc.
— a type name to a particular type

— a function name to its parameter list, body,
etc.

e The scope rules of a language determine
the extent that the declaration is valid

or

e They determine which declaration applies
to a name at a given place in the program

© 2019-21 Goldstein

22

Different Kinds of Scope Rules

C like

— static/lexical scoping

— global, static, local, block (most closely nested)
Pascal

— local, block

— nested procedures

— T
Java

— global, package, file, class, method, block
Lisp

— dynamic scope

Example of nesting

int £(int b) {
b=20;
{ int b =1; int ¢ = 1;
{int b = 2; int ¢ = 2;

{int b = 3; .. ¢ ..

Dynamic V. Static Scope

void weird () {

int N =1;

void show() { a&
print (N) ; print (™ “) 1} \')

void two () {
int N = 2;

show () ;
g—

}

show(); two(); show(); two();
.——*f-#

Static scope: “1111”

Q{%?@opea—au—z]2"":&—— 2

15-411/611 © 2019-21 Goldstein

Symbol Tables) @

e Symbol tables are key data structure for
semantic analysis 5 3

e A symbol table maps identifiers to attrib

— its type

— its location on stack

— its register name if any

— storage class

— offset from base of record

D R

[

e Structure of symbol table(s) must reflect scope
of program

e |t must be efficient

e Support multiple name spaces

15-411/611

Symbol Tables

e Two main choices:

— A Stack of tables:
e entering a scope: create new table, link to parent

e leaving a scope: remove table
— Table of stacks

e one symbol table
e A stack for variables pointing to entry in table

e On leaving scope, remove all variables declared in current
scope

e Where do we store information, e.g., type, ...

15-411/611 © 2019-21 Goldstein

27

Rewrite AST

e When we insert a new entry, attach
attribute information to decl node

e When we lookup a name, point to the decl
node to which it maps.

e When we are done with this pass the
bol table is no longer needed!

Semantic Analysis

e Type checks
— Is variable x declared?
— What is its type?
— Can an operator operate on a particular type?
— What is the result type of an operation?

e Uniqueness checks
— Is a variable declared more than once?
— Are the labels in a switch unique?
— Are the labels in a procedure legal?
— Are the field namesin a record unique?

15-411/611 © 2019-21 Goldstein

29

Type Checking

e Ensures that type of an expression is valid
in the context in which it appears.

e For example:

— arguments to + are integers
— index operation is applied to arrays
— thati) applied to records

— function call has proper number of args (and
they are of proper type)

— casts are legal

Whatis a Type?

e Atype describes a class of values.
e Sofarin CO

— int: class of integers
— bool: true or false
— More coming soon

e Two kinds of declarations:

. ‘-ﬂ
— Type declarations create new types from other
types.

— Variable declarations specify that a variable will
always have a particular type.

15-411/611 © 2019-21 Goldstein

31

What does decl of x tell us

e From the type:
— Know what kinds of values are stored in x
— Know what kinds of operations are legal
° +,-,%, ...
e Function call: # of args, return type
— How big x is
e From the scope:
— Where it is stored
— How it is allocated, inited

— How long it should be kept around

© 2019-21 Goldstein

15-411/611

Type Checking

e Build up an environment which maps
— variables to type
— values to types
— expressions to types

e Given an environment and an expression
— check that it is correct
— update the environment

e Do this on entire program

e This is a syntax directed analysis, i.e.,
recursively walk ast checking types as we

go.

© 2019-21 Goldstein

33

Approaches to Semantic Analysis

e Ad hoc, e.g., tree-walk to make sure all
control-flow paths end in a return

e Attribute grammars: Use a grammar to
automatically generate an analysis pass

e Inference rules, judgements and solvers

Using Inference Rules

e Our language:

e:=n | x| el+e2 | el && e2
S

TR

if(e,sliSZ)

while (e, s)

P ———

return (e)

seq(sl,s2)

decl (x,T,s) 'ﬁ

_

T %,
S‘.

Check for Proper Returns

hasret(return (e)) ’W@@@fg}
At — (

hasret(s1) hasret(s2)
hasret(seq (sl ,h s2)) hasret(seqg(sl,s2))

decl? hc‘c"gCSD "\’\.asrjt SQi/} .
if? \LM\{' Qe_) SU-TZB)

while?
nop?
assign?

Check for Proper Returns

hasret(return (e))

hasret(s1)
hasret(seq (s_i!_. , s?))

hasret(s)

hasret(decl (x,1,s))
——— — o~ <

hasret(s2)

hasret(seq(sl,s2))

hasret(sl) hasret(s2)

hasret(if (e,sl,s2))

L

hasret(return (e))

hasret(s1)
hasret(seqg(sl,s2))

hasret(s2)
hasret(seq(sl,s2))

hasret(s)

‘ hasret(decl (x,1,s))

hasret(sl) hasret(s2)

‘ hasret(if (e,sl,s2))

15-411/611

Iplementation

A recursive treewalk using
judgements as cases.

hasret(return(e)) =true

hasret(seq(s1,s2)) = hasret(sl)|| hasret(s2)
hasret(decl(x,t,s)) = hasret(s)
hasret(if(e,s1,s2)) = hasret(s1l)&&hasret(s2)
hasret(while(e,s)) = false

© 2019-21 Goldstein

38

Initialization Checking

e How do we make sure all variables are
initialized before they are used?

e:=n | x | el+e2 | el && e2
S =X&e

nop

if (e,sl,s2)

while (e, s)

return (e)

seq(sl,s2)

decl (x, T, s)

Initialization Checking

e How do we make sure all variables are
initialized before they are used?
e:=n | x | el+e2 | el && e2
S =X&e

nop

1f (e,sl,s2) If variable is live at point of
while (e, s) declaration, then we have
an errofr.

return (e)

seq(sl,s2)

decl (x, T, s)

© 2019-21 Goldstein

Plan for Veritying Proper Init

e |f variable is live at point of
declaration, then we have an
error.

— Determine if a variable is live at a statement

— Will depend on whether there is a use of a
variable in an expression

— Determine if a statement will define a variable

— Put it all together in a predicate to check for
proper initialization.

the init predicate

init(s1) init(s2)

E

If variable is live at point of declaration, then we have an error.

15-411/611

© 2019-21 Goldstein

42

Plan for Veritying Proper Init

e |f variable is live at point of
declaration, then we have an
error.

— Determine if a variable is live at a statement

— Will depend on whether there is a use of a
variable in an expression

— Determine if a statement will define a variable

— Put it all together in a predicate to check for
proper initialization.

live predicate (take 1)

HSE! e. .17

live(assign(y\d). =)
- .

Plan for Veritying Proper Init

e |f variable is live at point of
declaration, then we have an
error.

— Determine if a variable is live at a statement

— Will depend on whether there is a use of a
variable in an expression

— Determine if a statement will q_efine a variable

— Put it all together in a predicate to check for
proper initialization.

the use predicate

no rule for no rule for

use(z._ T) use(x, r) use(y,z),y # x_

< T
use&bﬂ:) use(es,)

RN A R
use(eq & e,) use(ey & eg,)
'ﬂ d
use(ey,) use(es,)
use(e; && e, x) use(ey && ez,)

Pﬂ

15-411/611

use(e, x) is a Wno guarantee x will be used, but it may be used.

© 2019-21 Goldstein

46

15-411/611

live predicate

use(e,)

(take 2)

live(assign(y.), x)
H

use(e,) live(sy,x)

live(if

(

_ e 00000000

[
E

live(sa, x)

2, 81, 892),) live(if (e, s1, 52), o) live(if(e, s1,82),)

use(e, x) Iiue: s, It)

live(while(e, s),) Iive(while(e@)

use(&)

no rule for
live(return(e), x) live(nop, x)
live(sq,x) —d

live(x,s) y+#x

live(decl(y, 7, 5), =)

ef(sy,x) live(sq,x)

live(seq(sy, S2),)

© 2019-21 Goldstein

live(seq(sy, s2), x)

47

live predicate (take 2)

use(e,)

live(assign(y.), x)

use(e, x) live(sy,x) live(sa, x)

live(if(e, s1,82), x) live(if (e, s1, 52), o) live(if(e, s1,52), x)

use(e, x) live(s, x)

live(while(e, s),) live(while(e, s), x) \

use(e, x) no rule for live(x, 3) U %ﬁ
live(return(e), x) live(nop, x) Iive(declg T,5), 1)
T

T

live(sq,x) —def(sy,x) live(sy, x)

live(seq(sy, S2),) live(seq(sy, s2), x)

live predicate (take 2)

use(e,)

live(assign(y.), x)

use(e, x) live(sy,x) live(sa, x)

live(if(e, s1,82), x) live(if (e, s1, 52), o) live(if(e, s1,52), x)

use(e, x) live(s, x)

live(while(e, s),) live(while(e, s), x)

use(e, x) live(x,s) y+#x

no rule for
live(return(e), x) live(nop, x) live(decl(y, 7, 5), =)

Iive(.;a_i._)

live(seq(sy, S2),)

1

Plan for Veritying Proper Init

e |f variable is live at point of
declaration, then we have an
error.

— Determine if a variable is live at a statement

— Will depend on whether there is a use of a
variable in an expression

— Determine if a statement will define a variable

— Put it all together in a predicate to check for
proper initialization.

15-411/611

the def predicate

no rule for
def (assign(x.e),) def(assign(y.e).x).y # x
def(sy,x) def(sy,x) no rule for

def(if (e, s1,82),) def(while(e, s), x)

no rule for def(s1,z) def(s2, z)

def(nop,) def(seq(s1. s2),) def (seq(s1, s2).x)

def(s,z) y#=x
def (decl(y. 1. s).)

def(return(e), x)

© 2019-21 Goldstein

51

the def predicate

no rule for
def (assign(x.e),) def(assign(y.e).x).y # x

def(sy,z) def(sz,z) e for

def(if (e, s1,82),) def(while(e, s), x)

no rule for def(s1,z) def(s2, z)

def(nop,) def(seq(s1. s2),) def (seq(s1, s2).x)

def(s,z) y#=x
def (decl(y. 1. s).)

def(return(e), x)

sisin scope of y

15-411/611 © 2019-21 Goldstein

52

15-411/611

the def predicate

no rule for
def (assign(x.e),) def(assign(y.e).x).y # x
def(sy,x) def(sy,x) no rule for

def(if (e, s1,82),) def(while(e, s), x)

no rule for def(s1,z) def(s2, z)

def(nop,) def(seq(s1. s2),) def (seq(s1, s2).x)

def(s,z) y#=x

def (decl(y. 1. s).)

def(return(e), x)

© 2019-21 Goldstein

53

the init predicate

init(s1) init(s2)

init(nop) init(seq(sy,s2))

init(s) —live(s,x)

init(decl(x, 7, s))

After Static Semantics ...

e Translate AST to IR

e Then (or simultaneously) create Basic
Blocks and CFG

Basic Blocks

Each basic block starts with a “leader”
— function entry

— |abel

Ends with return or jmp
Only 1 entry, only 1 exit

If last statement is conditional jump, two
possible successors in control flow graph

	Slide 1
	Slide 2: Today
	Slide 3: L2
	Slide 5: Compiler Phases
	Slide 6: Elaboration
	Slide 7: for loop
	Slide 8: for loop
	Slide 9: X && Y
	Slide 10: X && Y
	Slide 11: When?
	Slide 12: What?
	Slide 13: Now ready to goto IR?
	Slide 14: Semantic Analysis
	Slide 15: Semantic Analysis
	Slide 16: Semantic Analysis
	Slide 17: Semantic Analysis
	Slide 18: The easy cases
	Slide 19: The easy cases
	Slide 20: The easy cases
	Slide 21: Uniqueness
	Slide 22: Scope
	Slide 23: Different Kinds of Scope Rules
	Slide 24: Example of nesting
	Slide 25: Dynamic V. Static Scope
	Slide 26: Symbol Tables
	Slide 27: Symbol Tables
	Slide 28: Rewrite AST
	Slide 29: Semantic Analysis
	Slide 30: Type Checking
	Slide 31: What is a Type?
	Slide 32: What does decl of x tell us
	Slide 33: Type Checking
	Slide 34: Approaches to Semantic Analysis
	Slide 35: Using Inference Rules
	Slide 36: Check for Proper Returns
	Slide 37: Check for Proper Returns
	Slide 38: Iplementation
	Slide 39: Initialization Checking
	Slide 40: Initialization Checking
	Slide 41: Plan for Verifying Proper Init
	Slide 42: the init predicate
	Slide 43: Plan for Verifying Proper Init
	Slide 44: live predicate (take 1)
	Slide 45: Plan for Verifying Proper Init
	Slide 46: the use predicate
	Slide 47: live predicate (take 2)
	Slide 48: live predicate (take 2)
	Slide 49: live predicate (take 2)
	Slide 50: Plan for Verifying Proper Init
	Slide 51: the def predicate
	Slide 52: the def predicate
	Slide 53: the def predicate
	Slide 54: the init predicate
	Slide 55: After Static Semantics …
	Slide 56: Basic Blocks

