
15-411/15-611 Compiler Design

Seth Copen Goldstein

The Middle-End

January 29, 2026



Today

• lab2

• Elaboration

• Static Semantics

– scope

– symbol tables

• Type Checking (in brief)

• Inference Rules

– Control Flow Checks

– Initialization checks

• Basic Blocks
15-411/611 © 2019-21 Goldstein 2



L2

15-411/611 © 2019-21 Goldstein 3



Compiler Phases

Lex Parse Semantics translation

instruction 

selection

register 

allocation

code 

generation
optimization

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

source
code

15-411/611 © 2019-21 Goldstein 5



Elaboration

• Eliminate syntactic sugar

• Simplify future analysis

• For example:
– for (init; test; incr) stmt

– while (test) stmt

– expr && expr 

– expr || expr

– others?

15-411/611 © 2019-21 Goldstein 6



for loop

for (init; test; incr) stmt 

⇒  { 

}

15-411/611 © 2019-21 Goldstein 7



for loop

for (init; test; incr) stmt 

  { 

  init; 

  while (test) { stmt; incr; }

}

15-411/611 © 2019-21 Goldstein 8



X && Y

exp1 && exp2 

  

exp1 || exp2

  

15-411/611 © 2019-21 Goldstein 9



X && Y

exp1 && exp2 

  exp1 ? exp2 : false

exp1 || exp2

  exp1 ? true : exp2

15-411/611 © 2019-21 Goldstein 10



When?

• When to do elaboration?

– While parsing? 

– As a separate pass, after parsing?

15-411/611 © 2019-21 Goldstein 11

stmt := for ( simpstmt ; expr; simpstmt ) stmt 
{
 $$ = new Block( );
 $$->append($3);
 Block body = new Block();
 body->append($9);
 body->append($7);
 $$->append(new While($5, body));
}



What?

• Absolutely: for, &&, ||

• What about: int x = e;

– What would we elaborate it to?

– Why would this be good? Bad?

• Other things to keep in mind:

– line numbers

– errors

15-411/611 © 2019-21 Goldstein 12



Now ready to goto IR?

• Many choices of IR (discussed in lecture 2)

– I chose tree-IR and Triples

• Before converting to IR: Semantic Analysis

15-411/611 © 2019-21 Goldstein 13



15-411/611 © 2019-21 Goldstein 14

Semantic Analysis

• Semantic analysis is a static analysis of the 
program to make sure it has a meaning

• It is a context sensitive analysis!

• At this point in the compilation we have an 
AST of the input program
i.e., we know it is syntactically correct

• What kinds of checks are needed to ensure 
a semantically correct program?



15-411/611 © 2019-21 Goldstein 15

Semantic Analysis

• Type checks

– Is variable x declared?

– What is its type?

– Can an operator operate on a particular type?

– What is the result type of an operation?

• Control flow checks

– Is the placement of a break or continue legal?

– Is the placement of a return legal?



15-411/611 © 2019-21 Goldstein 16

Semantic Analysis

• Uniqueness checks

– Is a variable declared more than once?

– Are the labels in a switch unique?

– Are the labels in a procedure legal?

– Are the field names in a record unique?

• Matching Name checks

– E.g., in ada loops can have names at start and 
end and they must be the same



15-411/611 © 2019-21 Goldstein 17

Semantic Analysis

• Static analysis:

– Type checks

– Control flow checks

– Uniqueness checks

– Matching Name checks

• As opposed to dynamic analysis:

– dereferencing a null pointer

– array bounds checks

– infinite loops

• Why do we defer the static checks til now?



15-411/611 © 2019-21 Goldstein 18

The easy cases

• Control flow checks

• Matching names

• Uniqueness?



15-411/611 © 2019-21 Goldstein 19

The easy cases

• Control flow checks

– recursively walk AST keeping track of loop 
depth.

– If break or continue encountered, then
depth == 0  error.

• Matching names

• Uniqueness?



15-411/611 © 2019-21 Goldstein 20

The easy cases

• Control flow checks

– recursively walk AST keeping track of loop 
depth.

– If break or continue encountered, then
depth == 0  error.

• Matching names

– recursive walk of tree keep track of “opening” 
name and then match to “closing” name.

• Uniqueness?



15-411/611 © 2019-21 Goldstein 21

Uniqueness
• These questions are harder:

– Is a variable declared more than once?
– Are the labels in a switch unique?
– Are the labels in a procedure legal?
– Are the field names in a record unique?

• When is a variable declared more than once?
 int foo(int a) { 

  int a; 

  for (i=0; i<100; i++) {

   int a = i*i;

   … 

  }

 } 

• In checking types and declarations we must take scope 
into account.



15-411/611 © 2019-21 Goldstein 22

Scope

• Declarations associate information with 
names

– a variable name to its type, storage, etc.

– a type name to a particular type

– a function name to its parameter list, body, 
etc.

• The scope rules of a language determine 
the extent that the declaration is valid

or

• They determine which declaration applies 
to a name at a given place in the program



15-411/611 © 2019-21 Goldstein 23

Different Kinds of Scope Rules

• C like

– static/lexical scoping

– global, static, local, block (most closely nested)

• Pascal

– local, block

– nested procedures

• Java

– global, package, file, class, method, block

• Lisp

– dynamic scope



15-411/611 © 2019-21 Goldstein 24

Example of nesting

int f(int b) {

 b = 0;

 { int b = 1; int c = 1;

  {int b = 2; int c = 2;

   …

  }

  {int b = 3; … c …

  }

  …

 }

  …

} Not legal c0!



15-411/611 © 2019-21 Goldstein 25

Dynamic V. Static Scope
void weird() {

     int N = 1;

 void  show() {

   print(N); print(“ “)  }

 void two() {

  int N = 2;

  show();

 }

 show(); two(); show(); two();

}
Static scope: “1 1 1 1 ”

Dynamic scope: “1        Dynamic scope: “1 2     Dynamic scope: “1 2 1 2 ”



15-411/611 © 2019-21 Goldstein 26

Symbol Tables

• Symbol tables are key data structure for 
semantic analysis

• A symbol table maps identifiers to attributes
– its type

– its location on stack

– its register name if any

– storage class

– offset from base of record

– etc.

• Structure of symbol table(s) must reflect scope 
of program

• It must be efficient

• Support multiple name spaces



15-411/611 © 2019-21 Goldstein 27

Symbol Tables

• Two main choices:
– A Stack of tables:

• entering a scope: create new table, link to parent

• leaving a scope: remove table

– Table of stacks
• one symbol table

• A stack for variables pointing to entry in table

• On leaving scope, remove all variables declared in current 
scope

• Where do we store information, e.g., type, …



15-411/611 © 2019-21 Goldstein 28

Rewrite AST

• When we insert a new entry, attach 
attribute information to decl node

• When we lookup a name, point to the decl 
node to which it maps.

• When we are done with this pass the 
symbol table is no longer needed!



15-411/611 © 2019-21 Goldstein 29

Semantic Analysis

• Type checks

– Is variable x declared?

– What is its type?

– Can an operator operate on a particular type?

– What is the result type of an operation?

• Control flow checks

• Uniqueness checks

– Is a variable declared more than once?

– Are the labels in a switch unique?

– Are the labels in a procedure legal?

– Are the field names in a record unique?

• Matching Name checks



15-411/611 © 2019-21 Goldstein 30

Type Checking

• Ensures that type of an expression is valid 
in the context in which it appears.

• For example:
– arguments to + are integers

– index operation is applied to arrays

– that ‘.’ is applied to records

– function call has proper number of args (and 
they are of proper type)

– casts are legal



15-411/611 © 2019-21 Goldstein 31

What is a Type?

• A type describes a class of values.

• So far in C0
– int: class of integers

– bool: true or false

– More coming soon

• Two kinds of declarations:
– Type declarations create new types from other 

types.

– Variable declarations specify that a variable will 
always have a particular type.



15-411/611 © 2019-21 Goldstein 32

What does decl of x tell us

• From the type:

– Know what kinds of values are stored in x

– Know what kinds of operations are legal

• +,-,*, …

• Function call: # of args, return type

– How big x is

• From the scope:

– Where it is stored

– How it is allocated, inited

– How long it should be kept around



15-411/611 © 2019-21 Goldstein 33

Type Checking

• Build up an environment which maps

– variables to type

– values to types

– expressions to types

• Given an environment and an expression

– check that it is correct

– update the environment

• Do this on entire program

• This is a syntax directed analysis, i.e., 
recursively walk ast checking types as we 
go.



Approaches to Semantic Analysis

• Ad hoc, e.g., tree-walk to make sure all 
control-flow paths end in a return

• Attribute grammars: Use a grammar to 
automatically generate an analysis pass

• Inference rules, judgements and solvers

15-411/611 © 2019-21 Goldstein 34



Using Inference Rules

• Our language:
e := n | x | e1+e2 | e1 && e2

s := xe 

 | if(e,s1,s2)

 | while(e,s)

 | return(e)

 | seq(s1,s2)

 | decl(x,,s)

15-411/611 © 2019-21 Goldstein 35



Check for Proper Returns

15-411/611 © 2019-21 Goldstein 36

hasret(s1)
hasret(seq(s1,s2))

hasret(return(e))

hasret(s2)
hasret(seq(s1,s2))

decl? 
if?
while?
nop?
assign?



Check for Proper Returns

15-411/611 © 2019-21 Goldstein 37

hasret(s1)
hasret(seq(s1,s2))

hasret(return(e))

hasret(s2)
hasret(seq(s1,s2))

hasret(s)
hasret(decl(x,,s))

hasret(s1)  hasret(s2)
hasret(if(e,s1,s2))



Iplementation

15-411/611 © 2019-21 Goldstein 38

hasret(s1)
hasret(seq(s1,s2))

hasret(return(e))

hasret(s2)
hasret(seq(s1,s2))

hasret(s)
hasret(decl(x,,s))

hasret(s1)  hasret(s2)
hasret(if(e,s1,s2))

hasret(return(e)) = true
hasret(seq(s1,s2)) = hasret(s1)|| hasret(s2)
hasret(decl(x,,s)) = hasret(s)
hasret(if(e,s1,s2)) = hasret(s1)&&hasret(s2)
hasret(while(e,s)) = false
….

A recursive treewalk using 
judgements as cases.



Initialization Checking

• How do we make sure all variables are 
initialized before they are used?

e := n | x | e1+e2 | e1 && e2

s := xe 

 | nop

 | if(e,s1,s2)

 | while(e,s)

 | return(e)

 | seq(s1,s2)

 | decl(x,,s)

15-411/611 © 2019-21 Goldstein 39



Initialization Checking

• How do we make sure all variables are 
initialized before they are used?

e := n | x | e1+e2 | e1 && e2

s := xe 

 | nop

 | if(e,s1,s2)

 | while(e,s)

 | return(e)

 | seq(s1,s2)

 | decl(x,,s)

15-411/611 © 2019-21 Goldstein 40

If variable is live at point of 
declaration, then we have 
an error.



Plan for Verifying Proper Init

• If variable is live at point of 
declaration, then we have an 
error.
– Determine if a variable is live at a statement

– Will depend on whether there is a use of a 
variable in an expression

– Determine if a statement will define a variable

– Put it all together in a predicate to check for 
proper initialization.

15-411/611 © 2019-21 Goldstein 41



the init predicate

15-411/611 © 2019-21 Goldstein 42

If variable is live at point of declaration, then we have an error.



Plan for Verifying Proper Init

• If variable is live at point of 
declaration, then we have an 
error.
– Determine if a variable is live at a statement

– Will depend on whether there is a use of a 
variable in an expression

– Determine if a statement will define a variable

– Put it all together in a predicate to check for 
proper initialization.

15-411/611 © 2019-21 Goldstein 43



live predicate (take 1)

15-411/611 © 2019-21 Goldstein 44



Plan for Verifying Proper Init

• If variable is live at point of 
declaration, then we have an 
error.
– Determine if a variable is live at a statement

– Will depend on whether there is a use of a 
variable in an expression

– Determine if a statement will define a variable

– Put it all together in a predicate to check for 
proper initialization.

15-411/611 © 2019-21 Goldstein 45



the use predicate

15-411/611 © 2019-21 Goldstein 46

use(e, x) is a may-property: no guarantee x will be used, but it may be used. 



live predicate (take 2)

15-411/611 © 2019-21 Goldstein 47



live predicate (take 2)

15-411/611 © 2019-21 Goldstein 48



live predicate (take 2)

15-411/611 © 2019-21 Goldstein 49



Plan for Verifying Proper Init

• If variable is live at point of 
declaration, then we have an 
error.
– Determine if a variable is live at a statement

– Will depend on whether there is a use of a 
variable in an expression

– Determine if a statement will define a variable

– Put it all together in a predicate to check for 
proper initialization.

15-411/611 © 2019-21 Goldstein 50



the def predicate

15-411/611 © 2019-21 Goldstein 51



the def predicate

15-411/611 © 2019-21 Goldstein 52

s is in scope of y



the def predicate

15-411/611 © 2019-21 Goldstein 53



the init predicate

15-411/611 © 2019-21 Goldstein 54



After Static Semantics …

• Translate AST to IR

• Then (or simultaneously) create Basic 
Blocks and CFG

15-411/611 © 2019-21 Goldstein 55



Basic Blocks

• Each basic block starts with a “leader”

– function entry

– label

• Ends with return or jmp

• Only 1 entry, only 1 exit

• If last statement is conditional jump, two 
possible successors in control flow graph

15-411/611 © 2019-21 Goldstein 56


	Slide 1
	Slide 2: Today
	Slide 3: L2
	Slide 5: Compiler Phases
	Slide 6: Elaboration
	Slide 7: for loop
	Slide 8: for loop
	Slide 9: X && Y
	Slide 10: X && Y
	Slide 11: When?
	Slide 12: What?
	Slide 13: Now ready to goto IR?
	Slide 14: Semantic Analysis
	Slide 15: Semantic Analysis
	Slide 16: Semantic Analysis
	Slide 17: Semantic Analysis
	Slide 18: The easy cases
	Slide 19: The easy cases
	Slide 20: The easy cases
	Slide 21: Uniqueness
	Slide 22: Scope
	Slide 23: Different Kinds of Scope Rules
	Slide 24: Example of nesting
	Slide 25: Dynamic V. Static Scope
	Slide 26: Symbol Tables
	Slide 27: Symbol Tables
	Slide 28: Rewrite AST
	Slide 29: Semantic Analysis
	Slide 30: Type Checking
	Slide 31: What is a Type?
	Slide 32: What does decl of x tell us
	Slide 33: Type Checking
	Slide 34: Approaches to Semantic Analysis
	Slide 35: Using Inference Rules
	Slide 36: Check for Proper Returns
	Slide 37: Check for Proper Returns
	Slide 38: Iplementation
	Slide 39: Initialization Checking
	Slide 40: Initialization Checking
	Slide 41: Plan for Verifying Proper Init
	Slide 42: the init predicate
	Slide 43: Plan for Verifying Proper Init
	Slide 44: live predicate (take 1)
	Slide 45: Plan for Verifying Proper Init
	Slide 46: the use predicate
	Slide 47: live predicate (take 2)
	Slide 48: live predicate (take 2)
	Slide 49: live predicate (take 2)
	Slide 50: Plan for Verifying Proper Init
	Slide 51: the def predicate
	Slide 52: the def predicate
	Slide 53: the def predicate
	Slide 54: the init predicate
	Slide 55: After Static Semantics …
	Slide 56: Basic Blocks

