

SSA (1 of 2)

15-411/15-611 Compiler Design

Seth Copen Goldstein

January 27, 2026

Today

- Trivial SSA
- φ -functions
- Dominance
- Placement & Renaming

SSA

- Static single assignment is an **intermediate representation (IR)** where every variable has only *one* definition
 - Single **static** definition
 - (Could be in a loop which is executed dynamically many times.)
- ϕ -functions used at CFG join points
- All definitions dominate uses
- Variable names don't matter; IR implementation is literally nodes in a graph that point to each other

Advantages of SSA

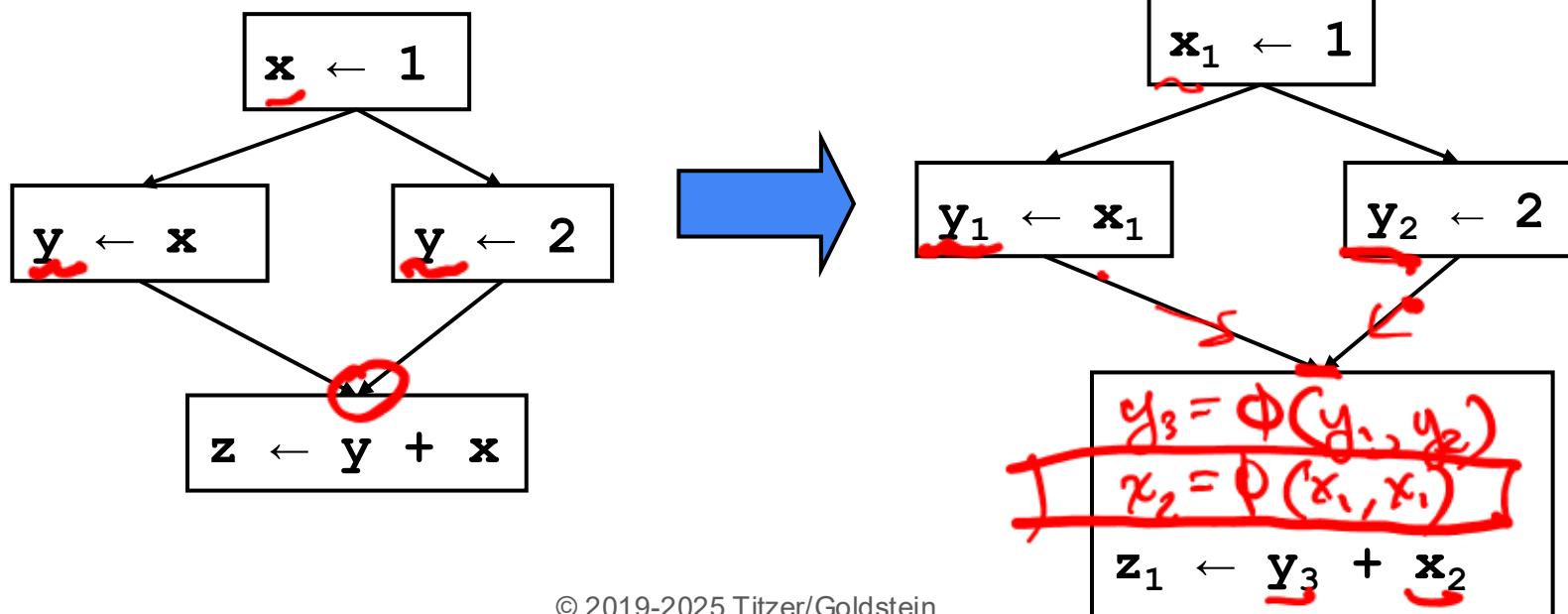
- Makes def-use-chains explicit
- Makes dataflow optimizations more *robust*
 - Easier to get right
 - Multiple optimizations can compose
 - Applies to more places
- Improves register allocation
 - Makes building interference graphs easier
 - Easier register allocation algorithm
 - Decoupling of spill, color, and coalesce
- For most programs reduces space/time requirements
 - Smaller IR, faster optimizations

Implications of single definition

- Never have to worry about a variable being overwritten
 - Before SSA, compilers had to worry about variable names and redefinitions
 - A “node” in SSA IR represents a computation, rather than a storage location
- Improves pattern-matching optimizations
 - Constant propagation ($y = 13; x + y \rightsquigarrow x + 13$)
 - Constant folding ($3 + 5 \rightsquigarrow 8$)
 - Strength reduction ($x + 0 \rightsquigarrow x$)
 - Algebraic simplification ($x + y - x \rightsquigarrow y$)
- Improves reasoning across control flow
- Think of it as a “bulk solution” to many forward dataflow problems

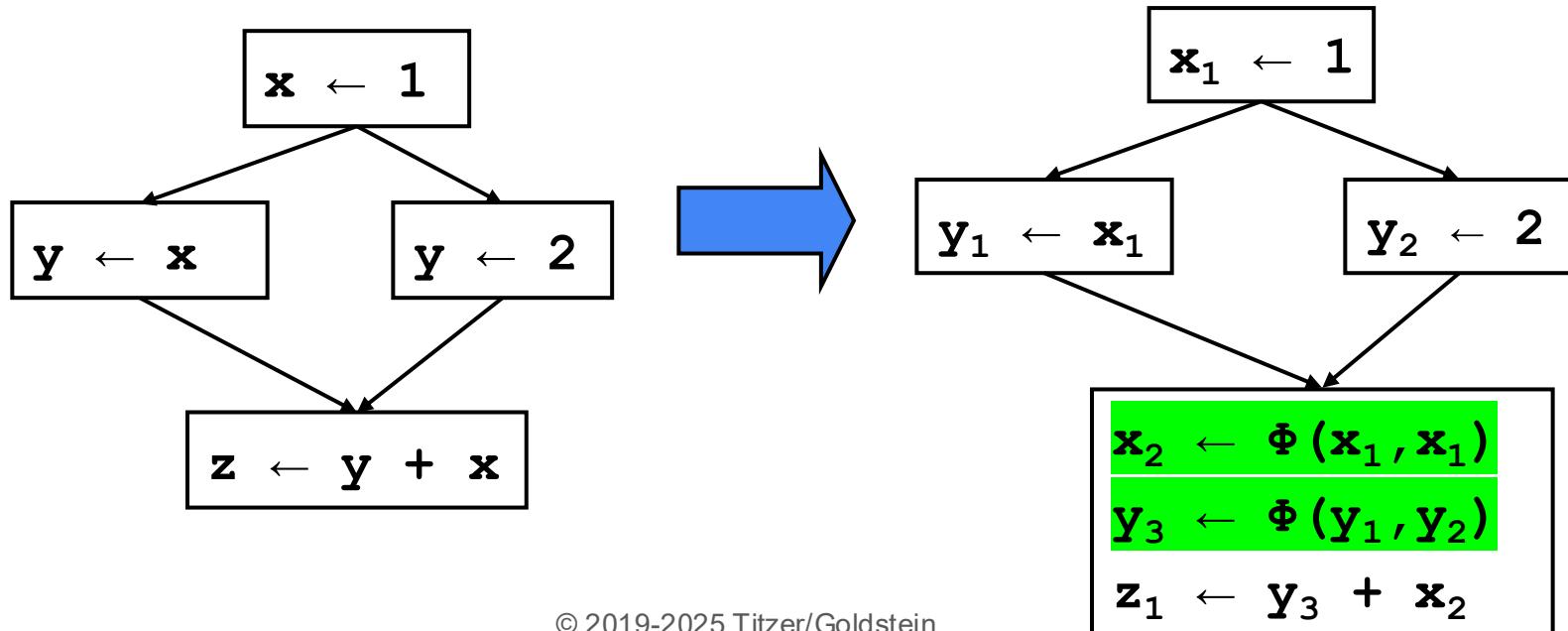
Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.



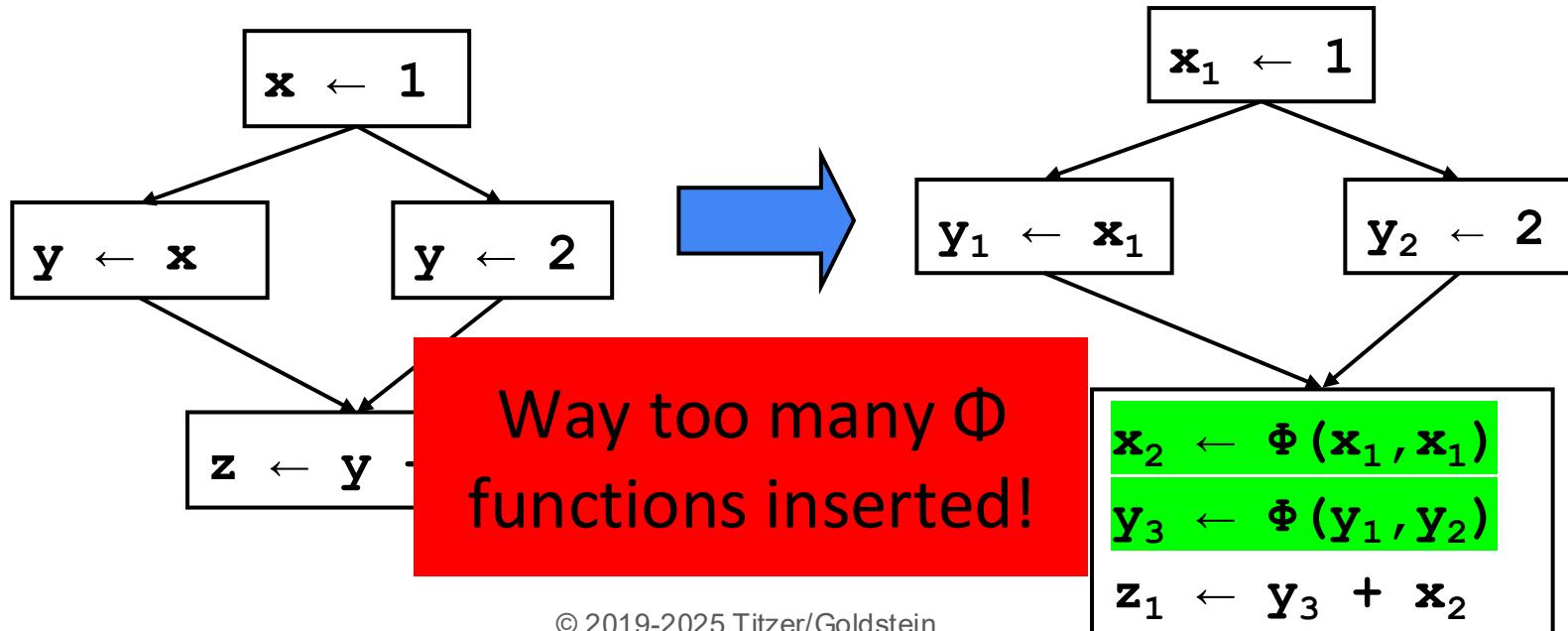
Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.



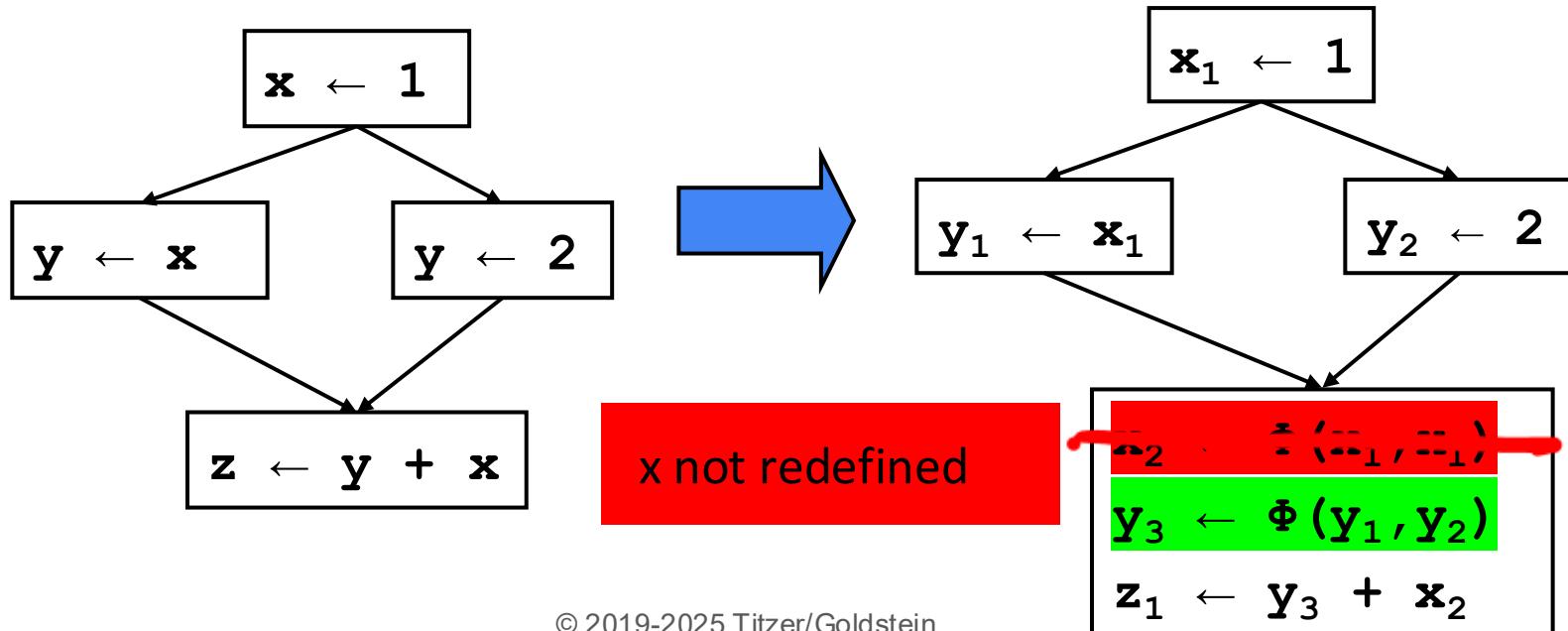
Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.



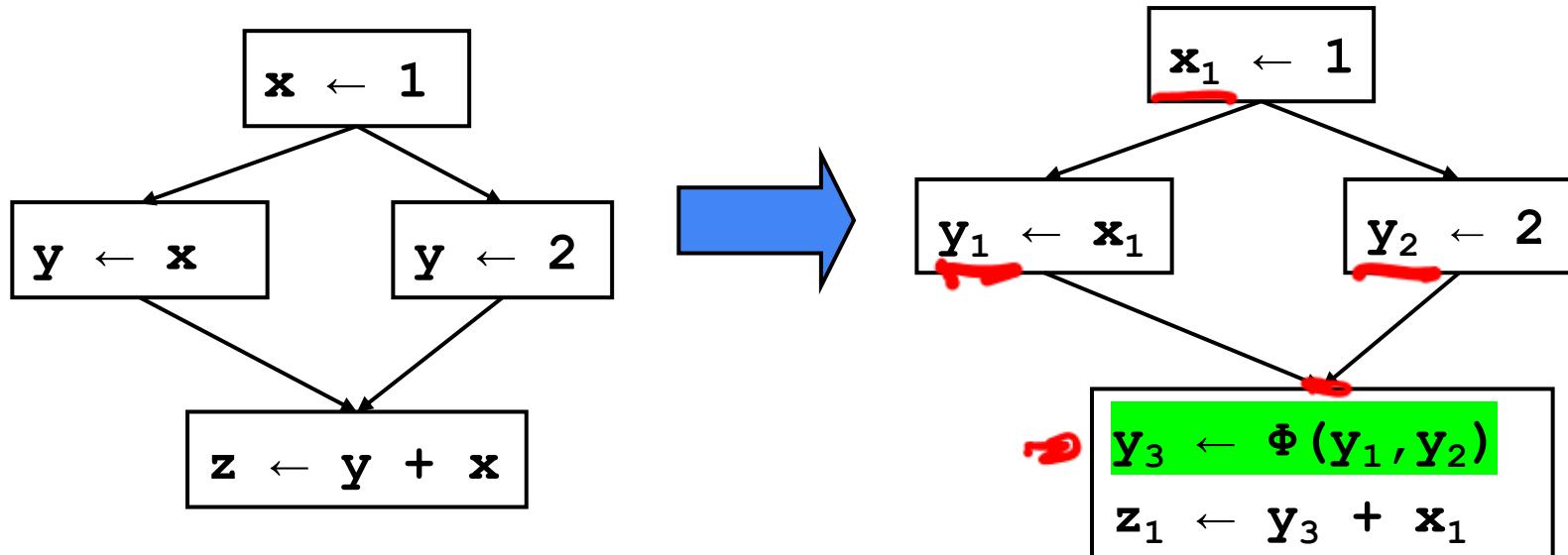
Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with **multiple outstanding defs**.



Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with **multiple outstanding defs**.



Handling cyclic control flow

- Introduce ϕ -functions to handle *joins* in CFG
- Loops have joins too!

```
x ← ...
y ← ...
while(x < 100) {
    x ← x + 1
    y ← y + 1
}
```

The diagram illustrates the transformation of a while loop into a do-while loop. On the left, a while loop is shown with its body enclosed in curly braces. A red arrow points from the end of the loop body back to the start of the loop condition. On the right, the code is transformed into a do-while loop. The word "loop:" is crossed out with a large red "X". Instead, the code begins with "if (x >= 100) goto end", followed by a label "loop:" with a red arrow pointing to it. The loop body "x ← x + 1" and "y ← y + 1" is repeated, and the original loop condition "if (x < 100) goto loop" is replaced by "if (x < 100) goto end".

```
x ← ...
y ← ...
if (x >= 100) goto end
loop:
    x ← x + 1
    y ← y + 1
    if (x < 100) goto end
```

Handling cyclic control flow

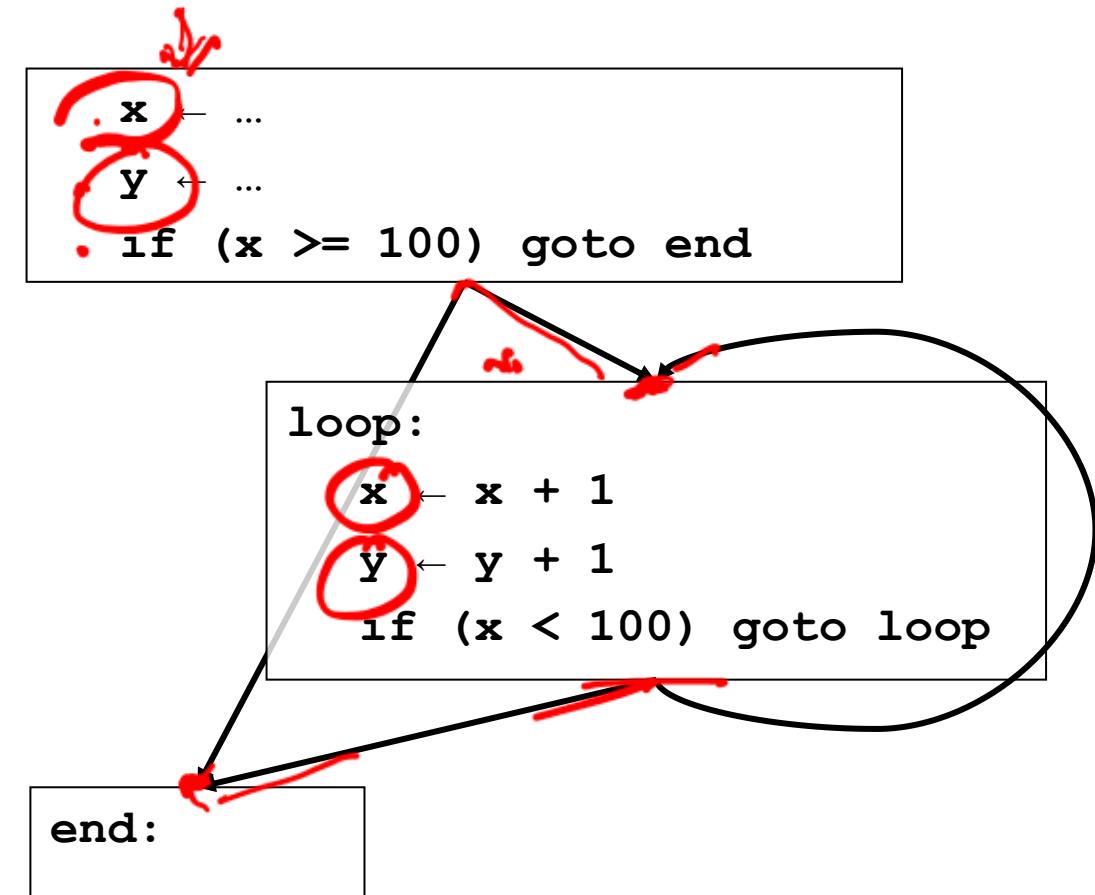
- SSA requires single definition for each use
- Introduce φ -functions to handle joins at loop headers too

```
x ← ...
y ← ...
if (x >= 100) goto end
loop:
    x ← x + 1
    y ← y + 1
    if (x < 100) goto loop
end:
```

Handling cyclic control flow

- SSA requires single definition for each use
- Introduce ϕ -functions to handle joins at loop headers too

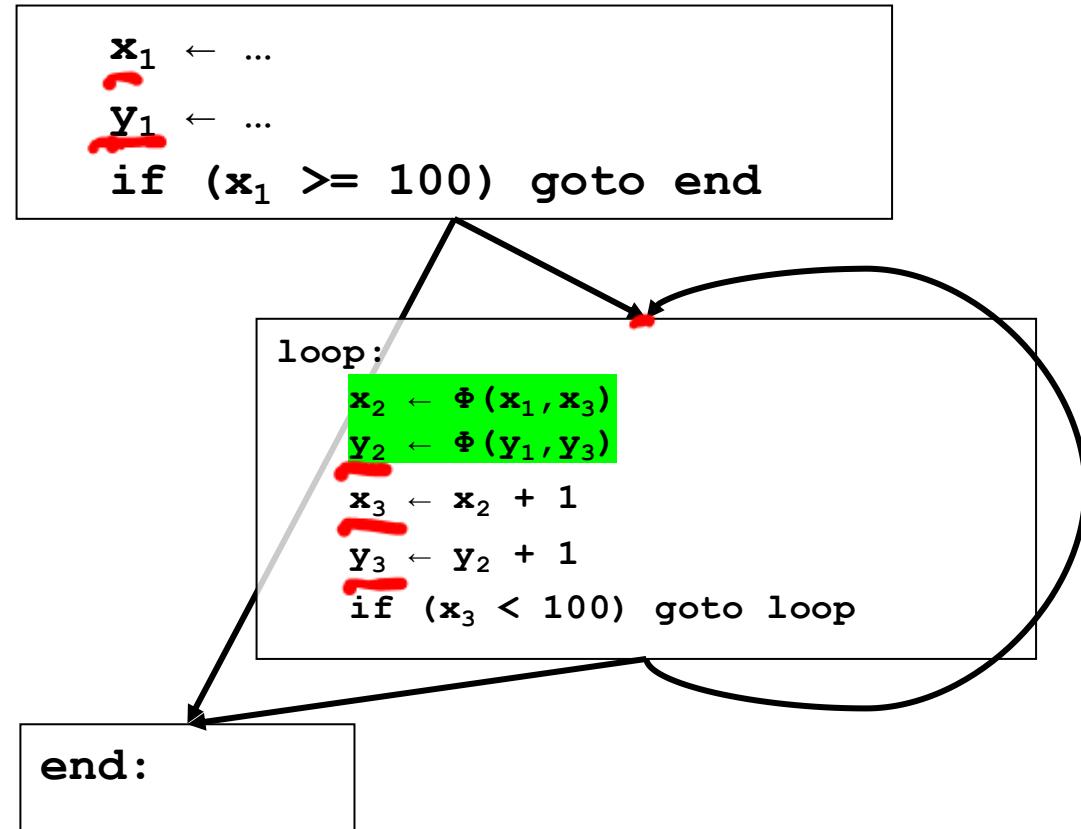
```
x ← ...
y ← ...
if (x >= 100) goto end
loop:
  x ← x + 1
  y ← y + 1
  if (x < 100) goto loop
end:
```



Handling cyclic control flow

- SSA requires single definition for each use
- Introduce φ -functions to handle joins at loop headers too

```
x ← ...
y ← ...
if (x >= 100) goto end
loop:
  x ← x + 1
  y ← y + 1
  if (x < 100) goto loop
end:
```



Handling cyclic control flow

- SSA requires single definition for each use
- Introduce φ -functions to handle joins at loop headers too

What's missing?

```
x ← ...
y ← ...
if (x >= 100) goto end
loop:
  x ← x + 1
  y ← y + 1
  if (x < 100) goto loop
end:
```

```
x1 ← ...
y1 ← ...
if (x1 >= 100) goto end
```

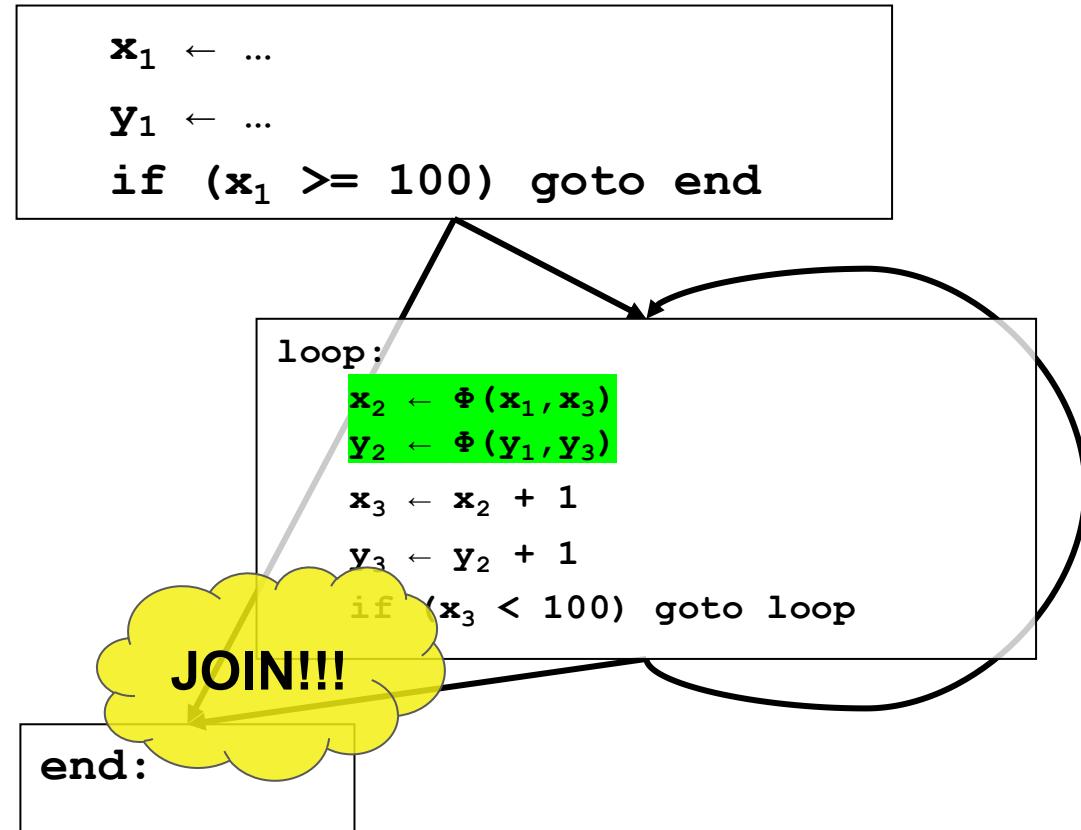
```
loop:
  x2 ←  $\Phi(x_1, x_3)$ 
  y2 ←  $\Phi(y_1, y_3)$ 
  x3 ← x2 + 1
  y3 ← y2 + 1
  if (x3 < 100) goto loop
```

end:

Handling cyclic control flow

- SSA requires single definition for each use
- Introduce φ -functions to handle joins at loop headers too

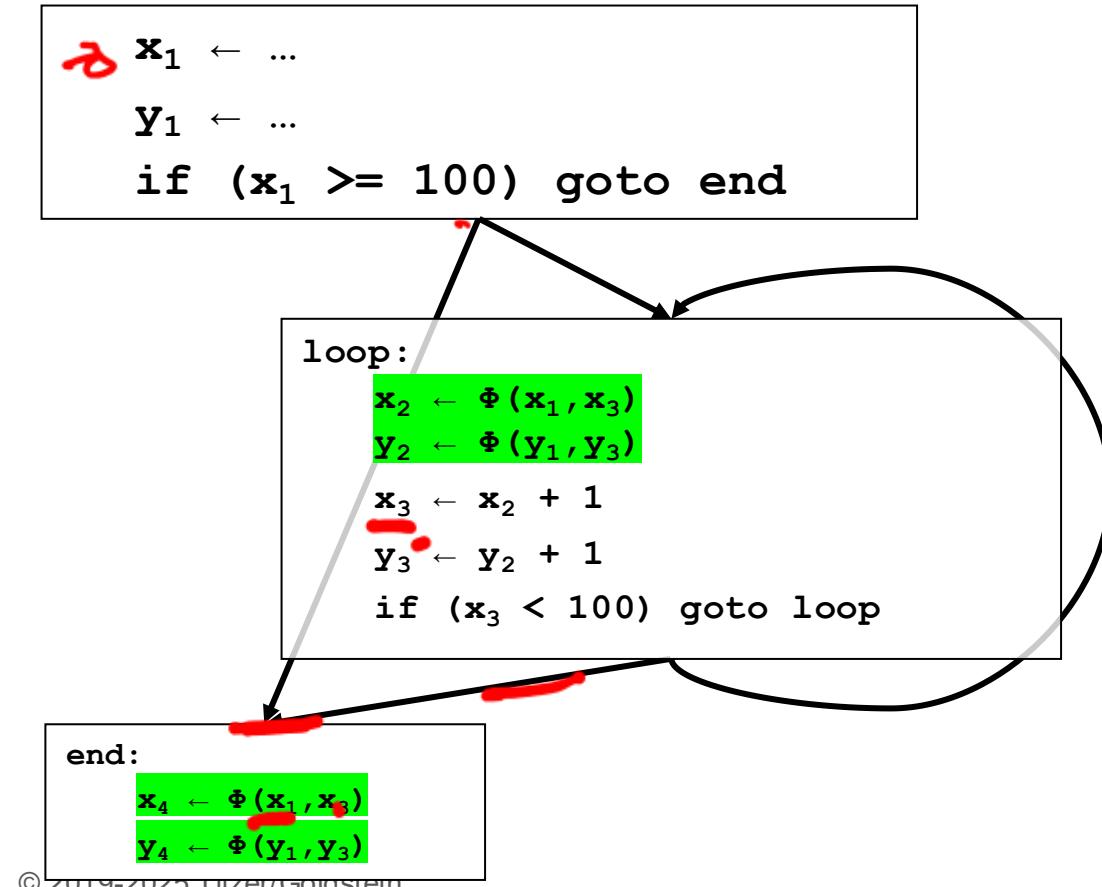
```
x ← ...
y ← ...
if (x >= 100) goto end
loop:
  x ← x + 1
  y ← y + 1
  if (x < 100) goto loop
end:
```



Handling cyclic control flow

- SSA requires single definition for each use
- Introduce φ -functions to handle joins at loop headers too

```
x ← ...
y ← ...
if (x >= 100) goto end
loop:
  x ← x + 1
  y ← y + 1
  if (x < 100) goto loop
end:
```



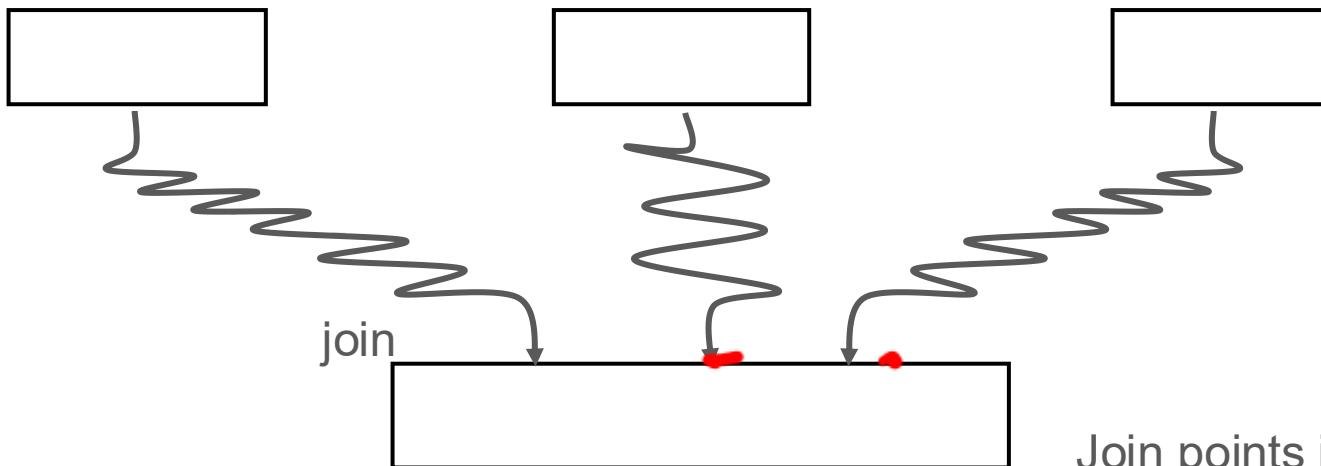
What is a Φ anyway?

- Φ is a fictional operator; it merges multiple definitions into a single definition at a join in the control flow graph.
- At a BB with p predecessors, there are p inputs to the Φ .

$$x_{\text{new}} \leftarrow \Phi(x_1, x_2, x_3, \dots, x_p)$$

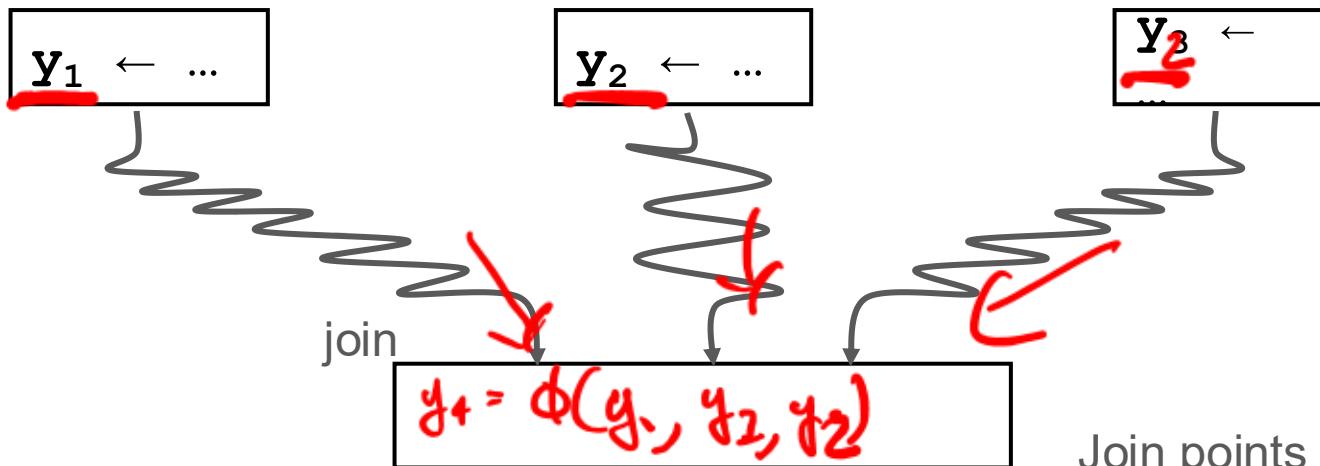
- What do the inputs to a Φ mean?
 - The inputs to φ -functions *positionally correspond* to the incoming control-flow edges.
 - They relate control flow merging and data flow merging.

What is a Φ anyway?



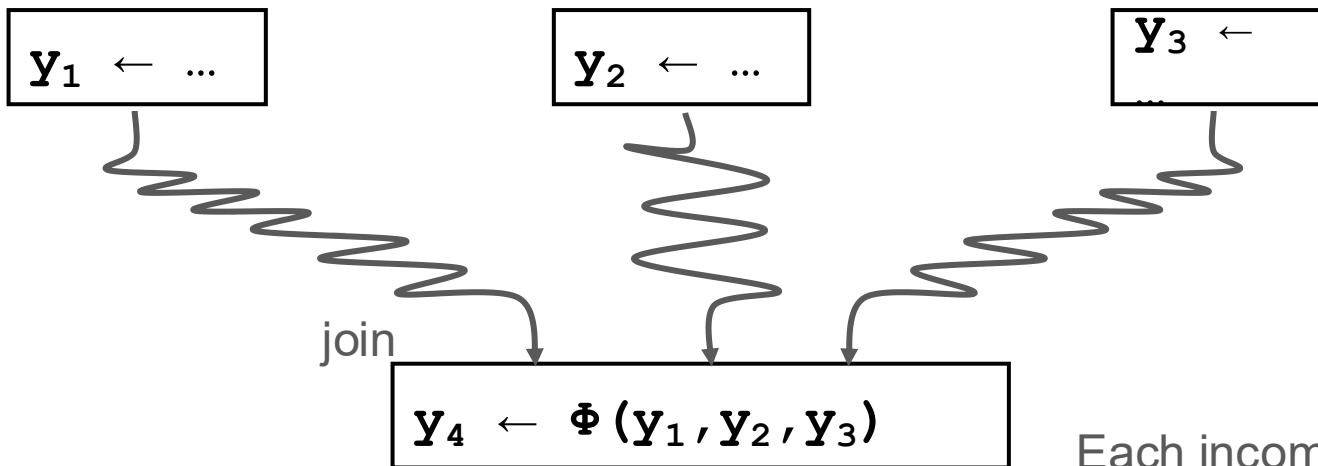
Join points in the control flow graph may require insertion of Φ functions.

What is a Φ anyway?



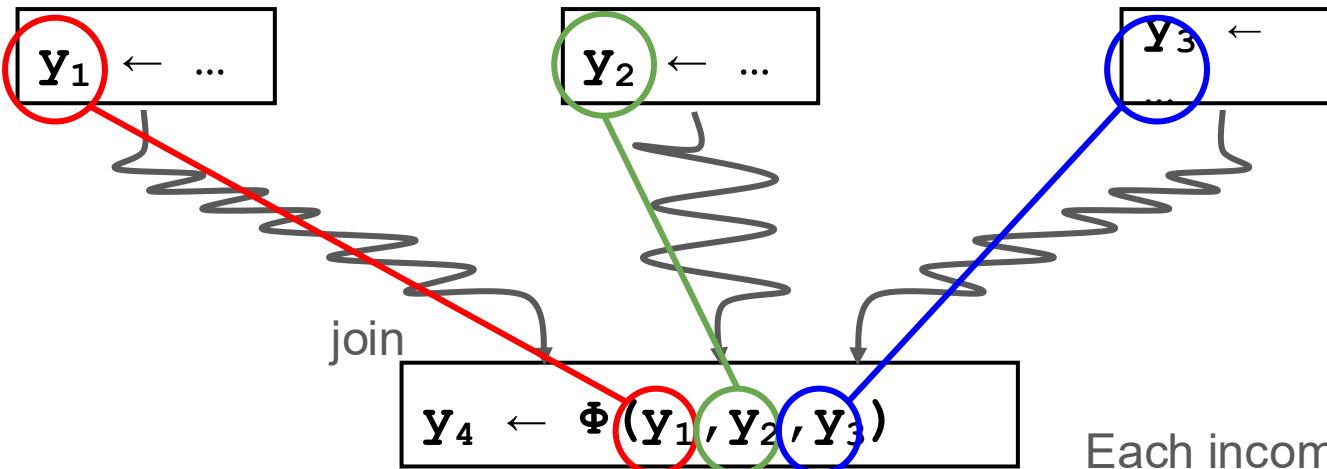
Join points in the control flow graph may require insertion of Φ functions, *if there are different versions of the variable arriving.*

What is a Φ anyway?



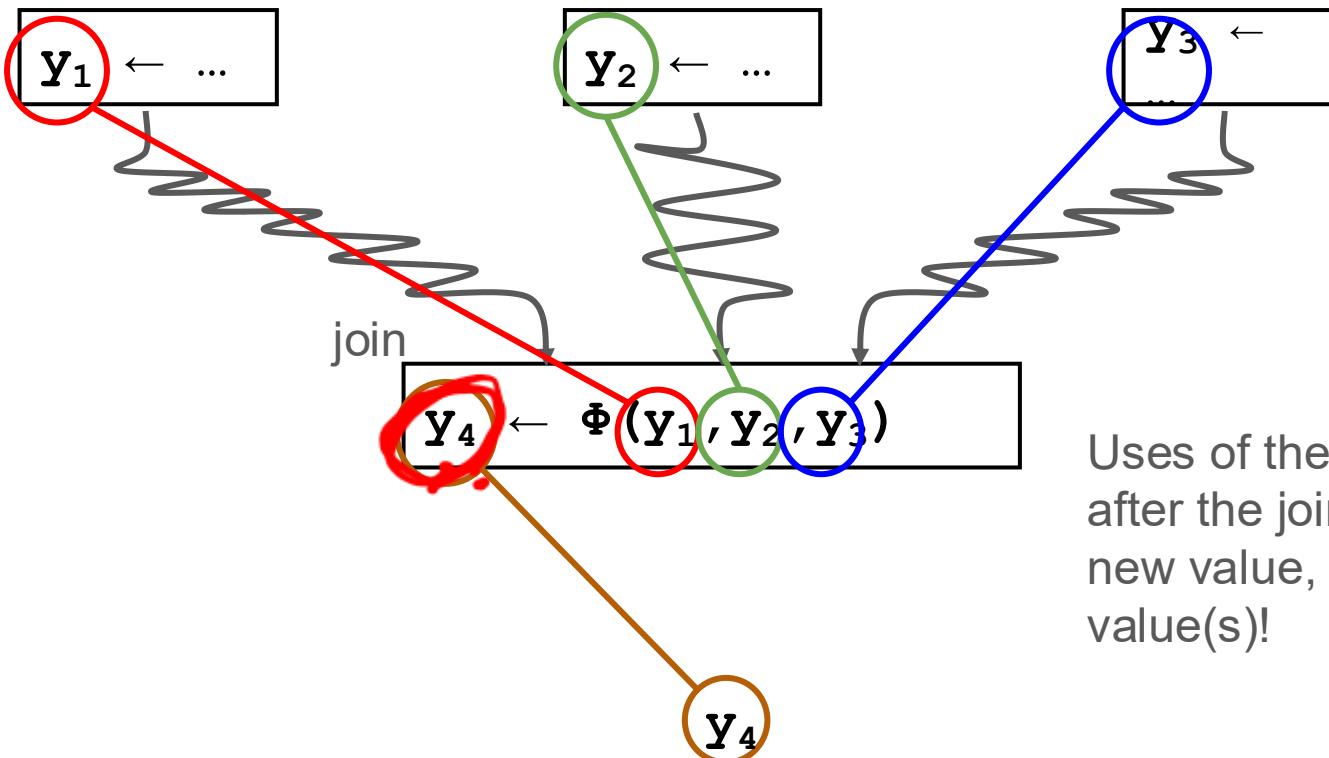
Each incoming control edge supplies a corresponding data value for the Φ from the predecessor.

What is a Φ anyway?



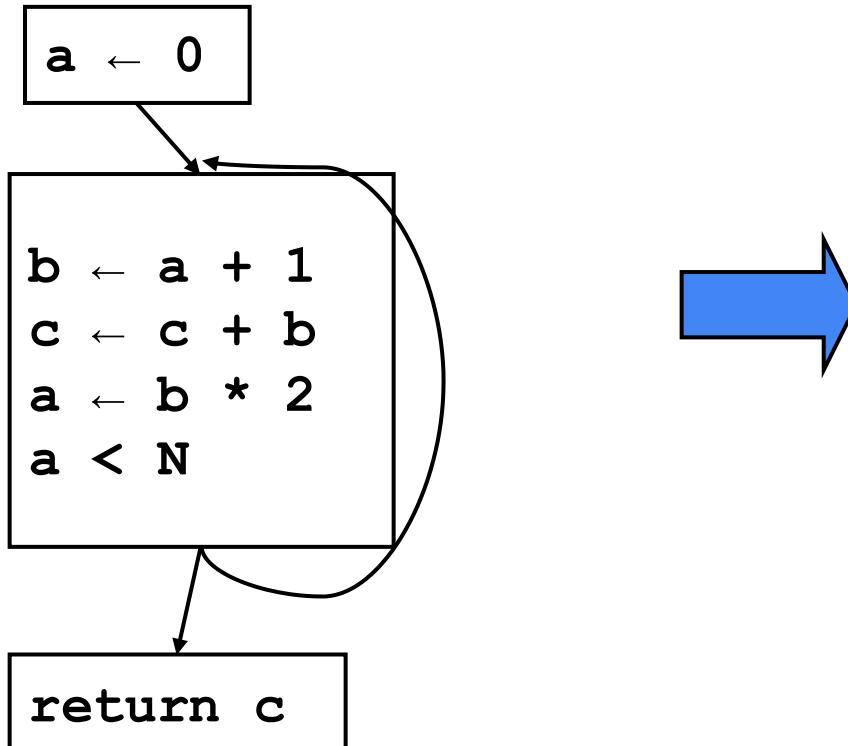
Each incoming control edge supplies a corresponding data value for the Φ from the predecessor.

What is a Φ anyway?



Uses of the variable after the join get the new value, not the old value(s)!

Another Loop Example



Another Loop Example

$b_1 \leftarrow ?$
 $c_1 \leftarrow ?$

$a \leftarrow 0$

```
b ← a + 1  
c ← c + b  
a ← b * 2  
a < N
```

return c

Notice $c_{1..3}$ are
recursively
defined!

$a_1 \leftarrow 0$

$a_3 \leftarrow \Phi(a_1, a_2)$

$c_3 \leftarrow \Phi(c_1, c_2)$

$b_2 \leftarrow a_3 + 1$

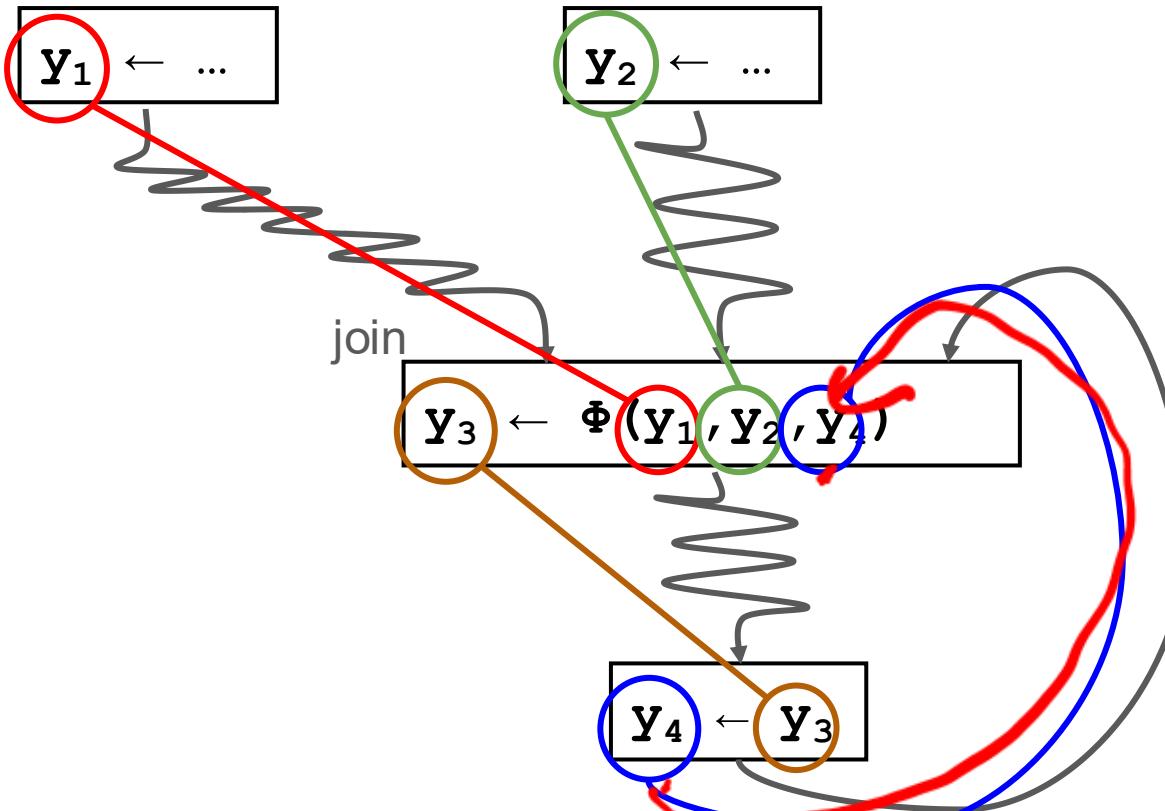
$c_2 \leftarrow c_3 + b_2$

$a_2 \leftarrow b_2 * 2$

$a_2 < N$

return c_2

What is a Φ (for a loop) anyway?

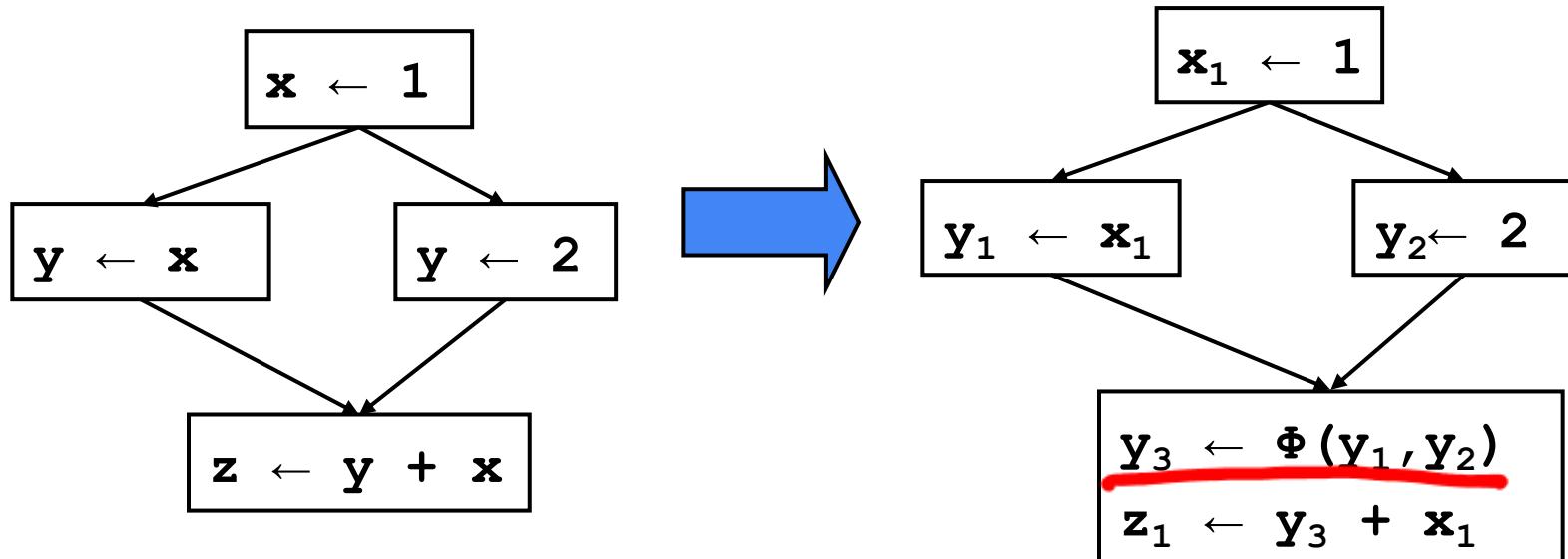


Φ s at loop headers relate the dataflow on a loop backedge with the control flow.

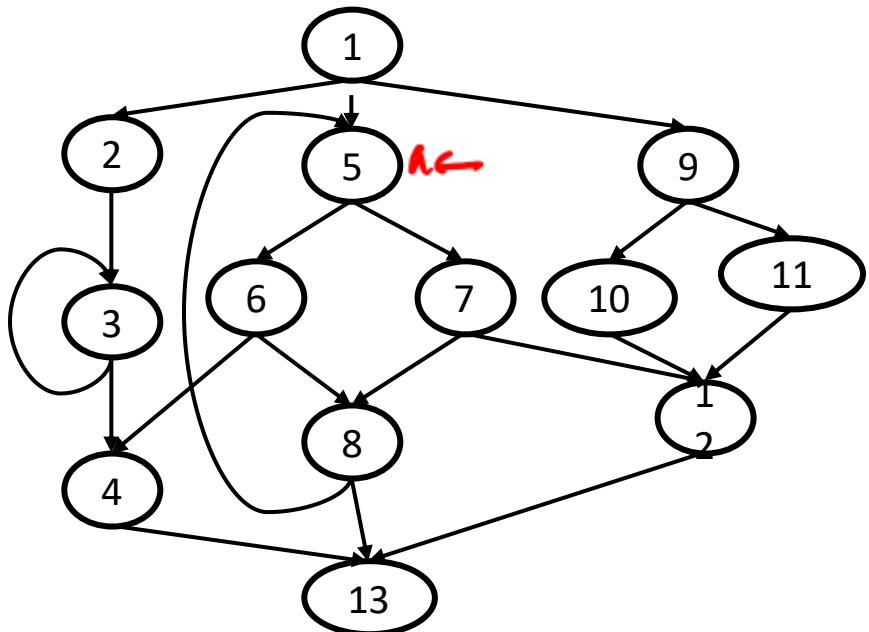
Allows finding induction variables really easily.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with **multiple outstanding defs**.



When do we insert Φ ?



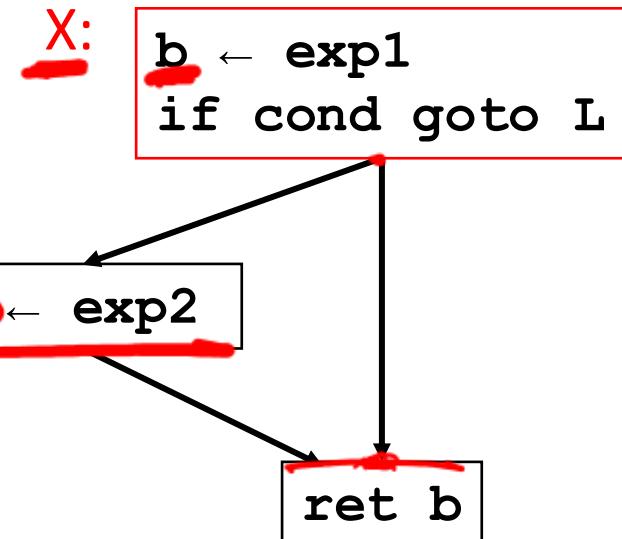
CFG

If there is a def of **a** in block 5, which nodes need a $\Phi()$?

When do we insert Φ ?

Require a Φ -function for variable b at node z of the flow graph:

- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



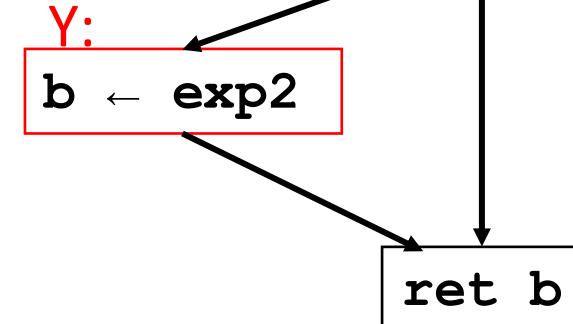
When do we insert Φ ?

Require a Φ -function for variable b at node z of the flow graph:

- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

X:

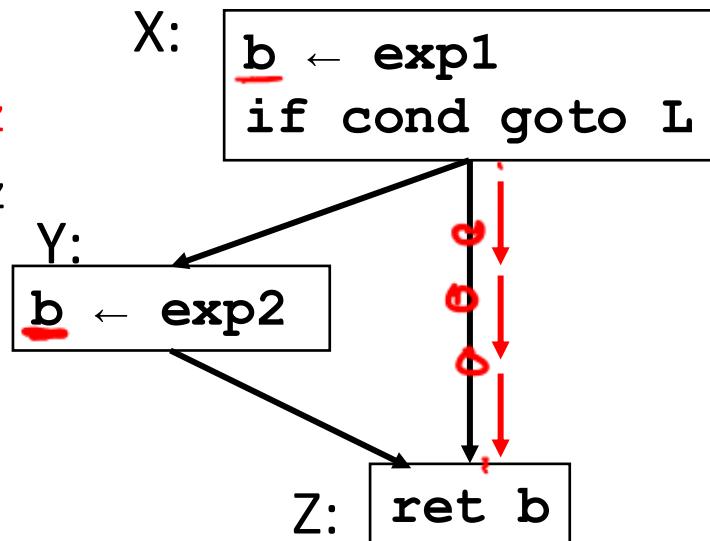
```
b ← exp1
if cond goto L
```



When do we insert Φ ?

Require a Φ -function for variable b at node z of the flow graph:

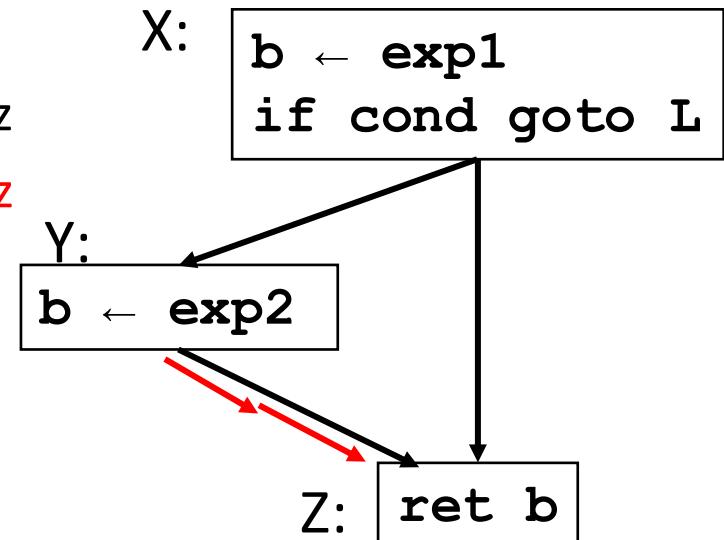
- There is a block x containing a def of b
- There is a block y \neq x containing a def of b
- **There is a nonempty path P_{xz} of edges from x to z**
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



When do we insert Φ ?

Require a Φ -function for variable b at node z of the flow graph:

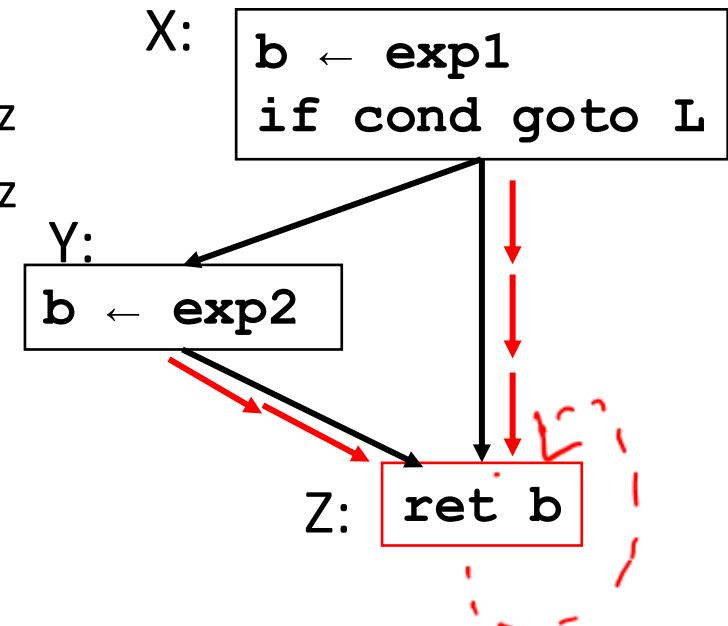
- There is a block x containing a def of b
- There is a block y \neq x containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- **There is a nonempty path P_{yz} of edges from y to z**
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



When do we insert Φ ?

Require a Φ -function for variable b at node z of the flow graph:

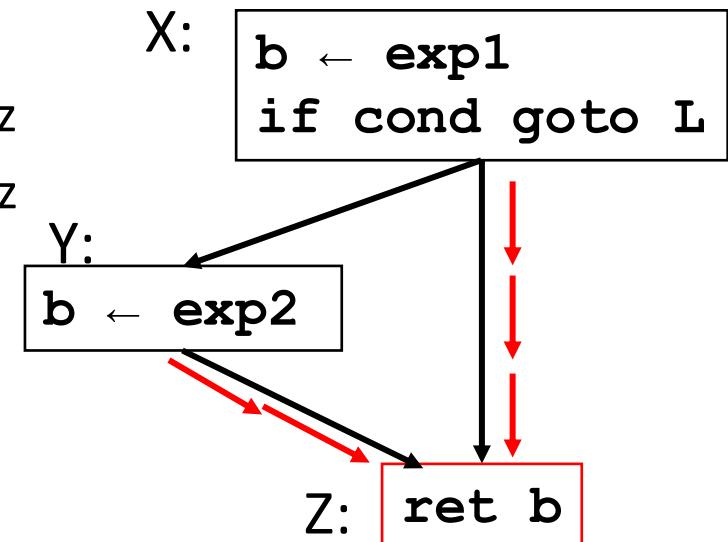
- There is a block x containing a def of b
- There is a block y \neq x containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



When do we insert Φ ?

Require a Φ -function for variable b at node z of the flow graph:

- There is a block x containing a def of b
- There is a block y \neq x containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.



Iterative Insertion

- Implicit def of every variable in start node
- Inserting Φ -function creates new definition
- While there $\exists \underline{x, y, z}$ that
 - satisfy path-convergence criteria
 - and z does not contain Φ -function for b
- do
 - insert $b \leftarrow \Phi(b, b, b, \dots, b_n)$ at node z , z having n predecessors.

Dominance Property of SSA

- In SSA **definitions dominate uses***.
 - If x_i is used in $x \leftarrow \Phi(\dots, x_i, \dots)$, then
 $BB(x_i)$ dominates i^{th} predecessor of $BB(\Phi)$
 - If x is used in $y \leftarrow \dots x \dots$,
then $BB(x)$ dominates $BB(y)$
- We can use this for an efficient algorithm to convert to SSA

Dominance Property of SSA

- In SSA definitions dominate uses*.
 - If x_i is used in $x \leftarrow \Phi(\dots, x_i, \dots)$, then
 $BB(x_i)$ dominates i^{th} predecessor of $BB(\Phi)$
 - If x is used in $y \leftarrow \dots x \dots$,
then $BB(x)$ dominates $BB(y)$
- We can use this for an efficient algorithm to convert to SSA

**well actually, this only true for strict SSA*,
where all variables are defined before they are used.*

Dominance Property of SSA

- In SSA **definitions dominate uses***.
 - If x_i is used in $x \leftarrow \Phi(\dots, x_i, \dots)$, then
BB(x_i) dominates i^{th} predecessor of BB(Φ)
 - If x is used in $y \leftarrow \dots x \dots$,
then BB(x) dominates BB(y)
- We can use this for an efficient algorithm to convert to SSA

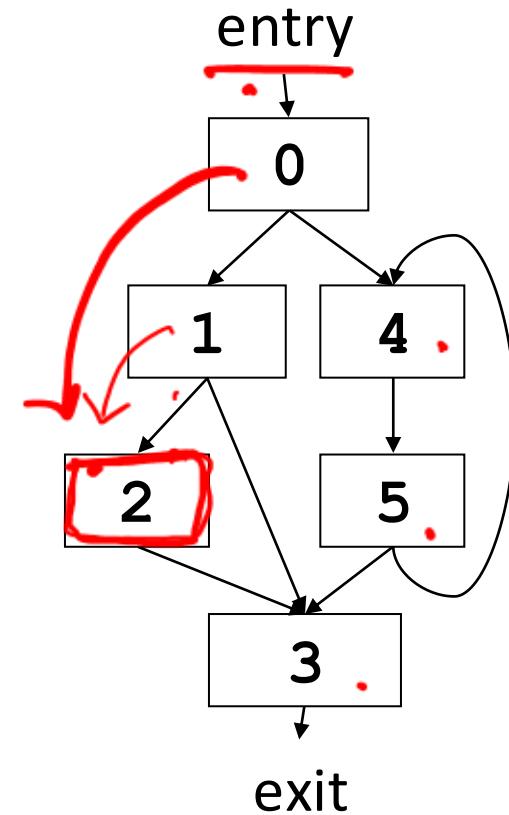
***well akshully**, this only true for strict SSA**,
where all variables are defined before they are used.
****well double akshully**, we can insert assignments to
convert any program to strict SSA

Side trip: Dominators

Dominators

- $a \text{ dom } b$

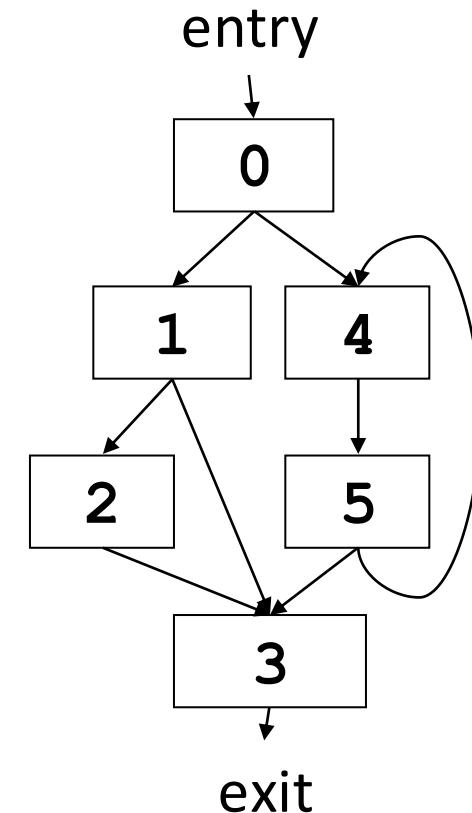
- block a **dominates** block b if every possible execution path from *entry* to b includes a



Dominators

- $a \text{ dom } b$

- block a **dominates** block b if every possible execution path from *entry* to b includes a

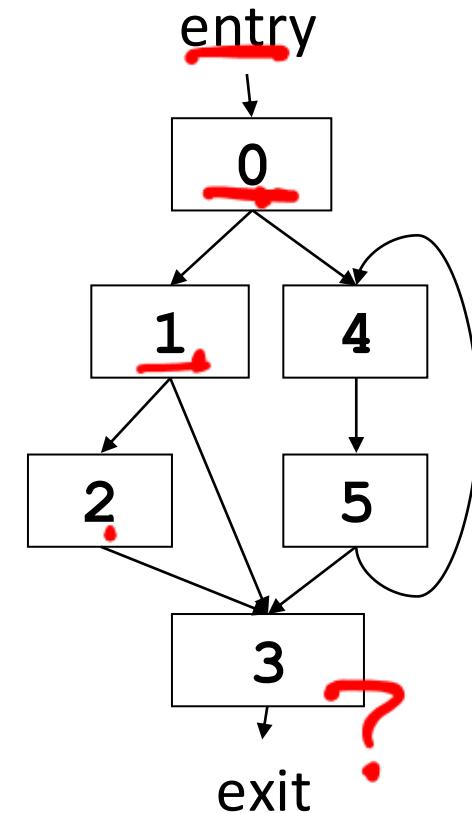


Dominators

- $a \text{ dom } b$

- block a **dominates** block b if every possible execution path from **entry** to b includes a

- **entry** dominates everything
- 0 dominates everything but **entry**
- 1 dominates 2 and 1



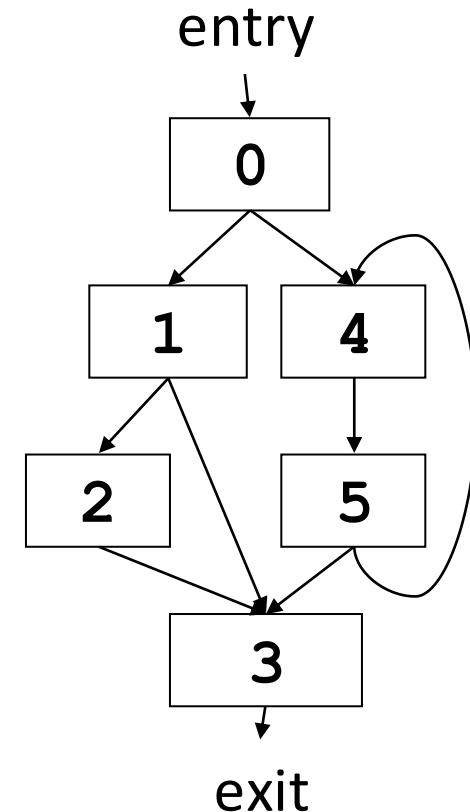
Dominators

- $a \text{ dom } b$

- block a **dominates** block b if every possible execution path from *entry* to b includes a

Dominators are useful in:

- *Dataflow analysis*
- *Constructing SSA*
- *Identifying “natural” loops*
- *Code motion*
- ...



Definitions

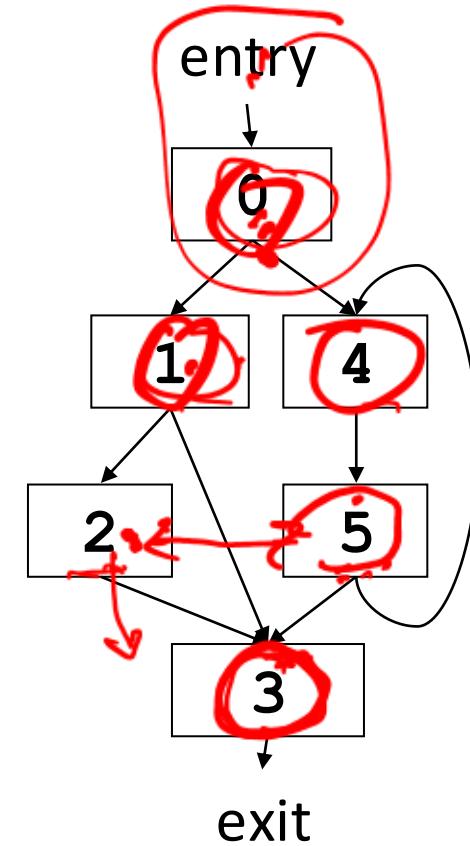
- $a \text{ sdom } b$

If a and b are different blocks and $a \text{ dom } b$, we say that a *strictly dominates* b

- $a \text{ idom } b$

If $a \text{ sdom } b$, and there is no c such that $a \text{ sdom } c$ and $c \text{ sdom } b$, we say that a is the *immediate dominator* of b

entry, $\text{p}, 3$



Properties of Dom

- Dominance is a partial order on the blocks of the flow graph, i.e.,
 - 1. Reflexivity: $a \text{ dom } a$ for all a
 - 2. Anti-symmetry: $a \text{ dom } b$ and $b \text{ dom } a$ implies $a = b$
 - 3. Transitivity: $a \text{ dom } b$ and $b \text{ dom } c$ implies $a \text{ dom } c$
- NOTE: there may be blocks a and b such that neither $a \text{ dom } b$ or $b \text{ dom } a$ holds.
- The dominators of each node n are linearly ordered by the dom relation. The dominators of n appear in this linear order on any path from the initial node to n .

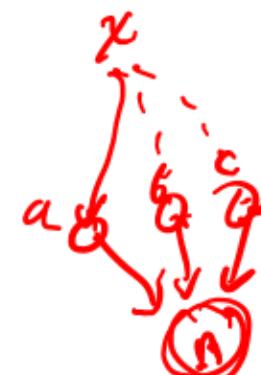
Computing dominators

- We want to compute $D[n]$, the set of blocks that dominate n

Initialize each $D[n]$ (except $D[\text{entry}]$) to be the set of all blocks, and then iterate until no $D[n]$ changes:

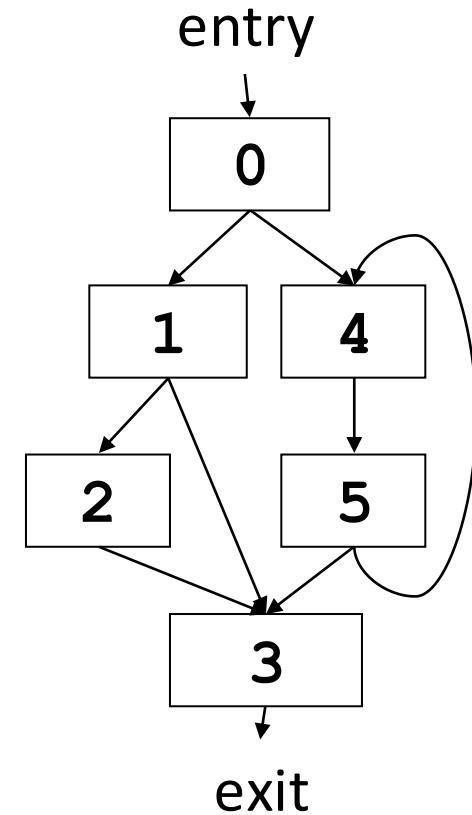
$$D[\text{entry}] = \{\text{entry}\}$$

$$D[n] = \{n\} \cup \left(\bigcap_{p \in \text{pred}(n)} D[p] \right), \quad \text{for } n \neq \text{entry}$$



Example

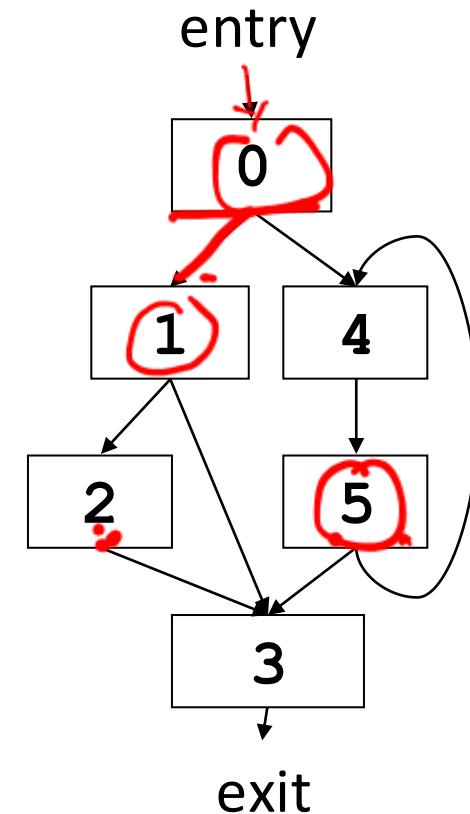
block	Initialization $D[n]$
entry	{entry}
0	{entry,0,1,2,3,4,5,exit}
1	{entry,0,1,2,3,4,5,exit}
2	{entry,0,1,2,3,4,5,exit}
3	{entry,0,1,2,3,4,5,exit}
4	{entry,0,1,2,3,4,5,exit}
5	{entry,0,1,2,3,4,5,exit}
exit	{entry,0,1,2,3,4,5,exit}



Example

block	Initialization $D[n]$	First Pass $D[n]$
entry	$\{entry\}$	$\{entry\}$
0	$\{entry, 0, 1, 2, 3, 4, 5, exit\}$	$\{0, entry\}$
1	$\{entry, 0, 1, 2, 3, 4, 5, exit\}$	$\{1, 0, entry\}$
2	$\{entry, 0, 1, 2, 3, 4, 5, exit\}$	$\{2, 1, 0, entry\}$
3	$\{entry, 0, 1, 2, 3, 4, 5, exit\}$	$\{3, 1, 0, entry\}$
4	$\{entry, 0, 1, 2, 3, 4, 5, exit\}$	$\{4, 0, entry\}$
5	$\{entry, 0, 1, 2, 3, 4, 5, exit\}$	$\{5, 4, 0, entry\}$
exit	$\{entry, 0, 1, 2, 3, 4, 5, exit\}$	$\{exit, 3, 1, 0, entry\}$

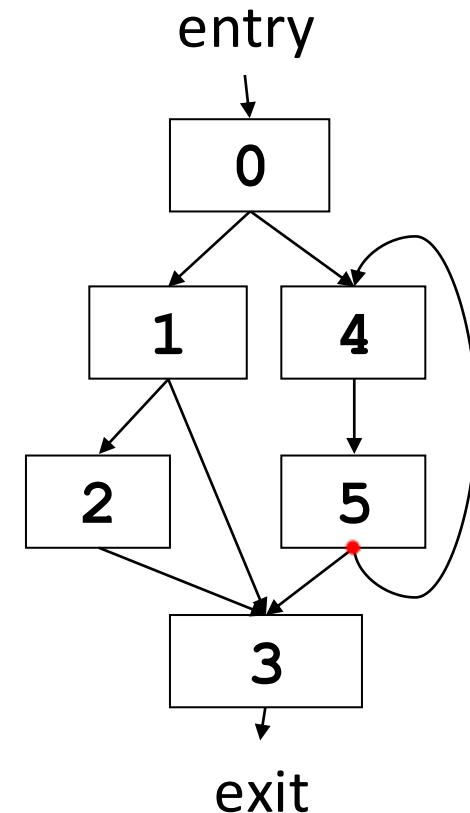
Update rule:
$$D[n] = \{n\} \cup \left(\bigcap_{p \in \text{pred}(n)} D[p] \right).$$



Example

block	First Pass $D[n]$	Second Pass $D[n]$
entry	$\{entry\}$	$\{entry\}$
0	$\{0, entry\}$	$\{0, entry\}$
1	$\{1, 0, entry\}$	$\{1, 0, entry\}$
2	$\{2, 1, 0, entry\}$	$\{2, 1, 0, entry\}$
3	$\{3, 1, 0, entry\}$	$\{3, 0, entry\}$
4	$\{4, 0, entry\}$	$\{4, 0, entry\}$
5	$\{5, 4, 0, entry\}$	$\{5, 4, 0, entry\}$
exit	$\{exit, 3, 1, 0, entry\}$	$\{exit, 3, 0, entry\}$

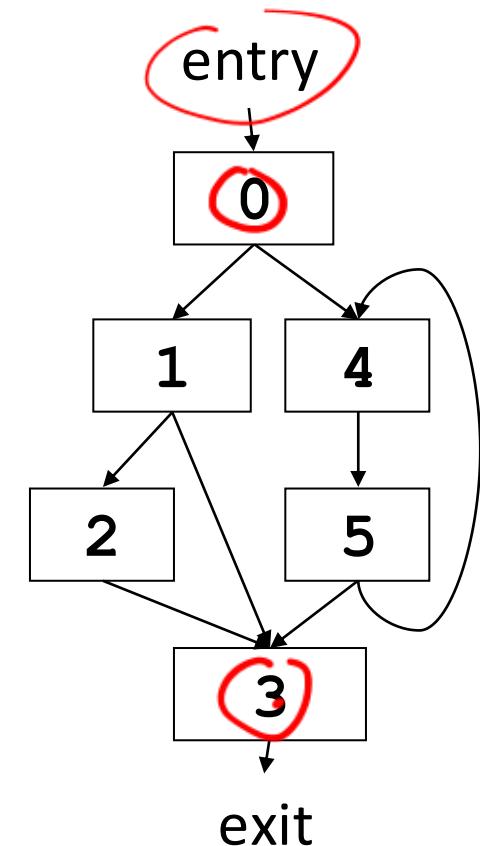
Update rule: $D[n] = \{n\} \cup \left(\bigcap_{p \in \text{pred}(n)} D[p] \right)$



Example

block	Second Pass $D[n]$	Third Pass $D[n]$
entry	$\{entry\}$	$\{entry\}$
0	$\{0, entry\}$	$\{0, entry\}$
1	$\{1, 0, entry\}$	$\{1, 0, entry\}$
2	$\{2, 1, 0, entry\}$	$\{2, 1, 0, entry\}$
3	$\{3, 0, entry\}$	$\{3, 0, entry\}$
4	$\{4, 0, entry\}$	$\{4, 0, entry\}$
5	$\{5, 4, 0, entry\}$	$\{5, 4, 0, entry\}$
exit	$\{exit, 3, 0, entry\}$	$\{exit, 3, 0, entry\}$

Update rule: $D[n] = \{n\} \cup \left(\bigcap_{p \in \text{pred}(n)} D[p] \right)$



Computing dominators

- Iterative algorithm is $O(n^2e)$
 - assuming bit vector set
 - choosing a good iteration order matters
- More efficient algorithm due to Lengauer and Tarjan
 - $O(e \cdot \alpha(e, n))$ $\alpha(e, n)$ is *inverse Ackermann*
 - much more complicated
 - Books provide simple algorithms that are fast in practice
(faster than Tarjan algorithm for realistic CFGs)
 - For a clever algorithm see:
["A Simple, Fast Dominance Algorithm" by Cooper, Harvey, and Kennedy](#)

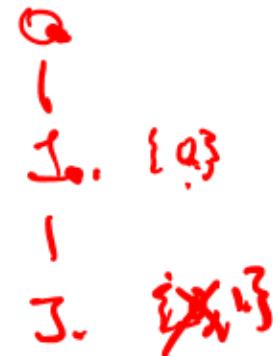
Immediate dominators

- Let $sD[n]$ be the set of blocks that strictly dominate n , then

$$\underline{sD[n]} = \underline{D[n]} - \underline{\{n\}}$$

- To compute $iD[n]$, the set of blocks (size ≤ 1) that immediately dominate n
- Set $\underline{iD[n]} = \underline{sD[n]}$
- Repeat until no $iD[n]$ changes:

$$\underline{iD[n]} = \underline{iD[n]} - \bigcup_{d \in iD[n]} \underline{sD[d]}$$

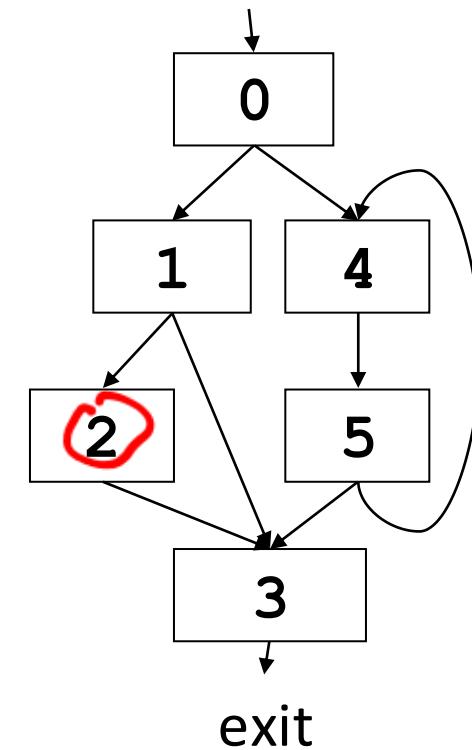


Example

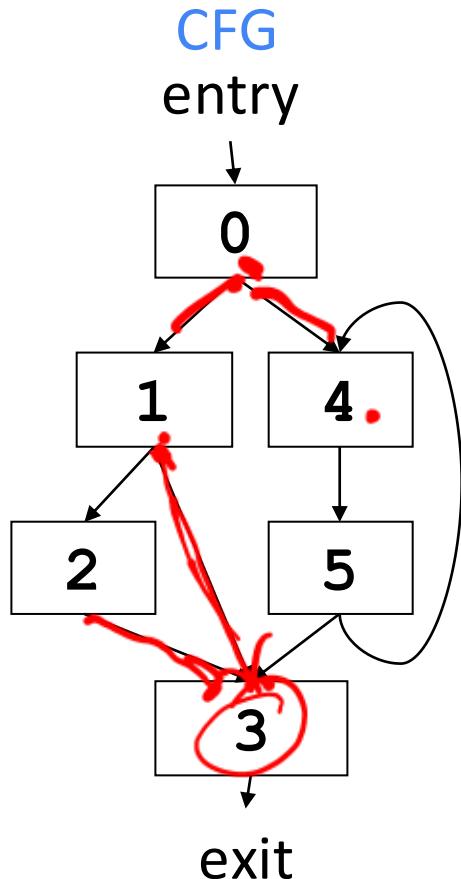
block	Initialization $iD[n] = sD[n]$	First Pass $iD[n]$
entry	$\{\}$	$\{\}$
0	$\{\text{entry}\}$	$\{\text{entry}\}$
1	$\{0, \text{entry}\}$	$\{0\}$
2	$\{1, 0, \text{entry}\}$	$\{1\}$
3	$\{0, \text{entry}\}$	$\{0\}$
4	$\{0, \text{entry}\}$	$\{0\}$
5	$\{4, 0, \text{entry}\}$	$\{4\}$
exit	$\{3, 0, \text{entry}\}$	$\{3\}$

Update rule: $iD[n] = iD[n] - \bigcup_{d \in iD[n]} (sD[d])$

CFG
entry

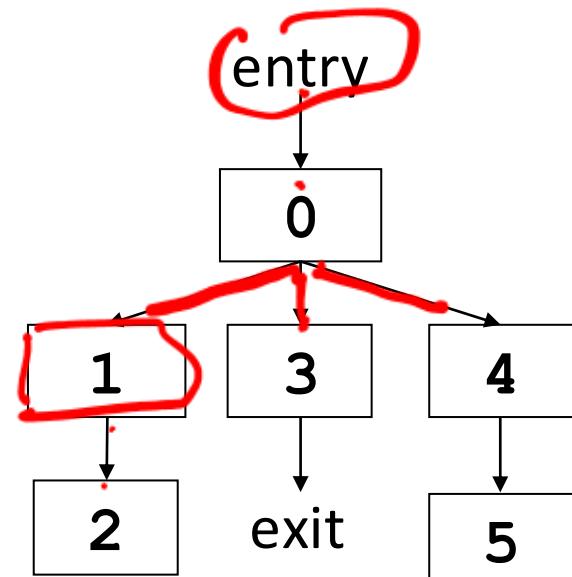


Dominator Tree



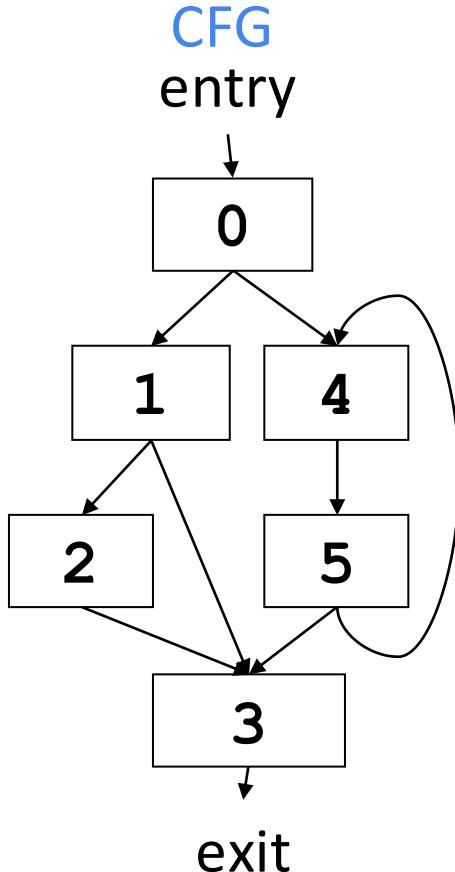
In the *dominator tree* the initial node is the entry block, and the parent of each other node is its **immediate dominator**.

block	iD[n]
entry	{}
0	{entry}
1	{0}
2	{1}
3	{0}
4	{0}
5	{4}
exit	{3}



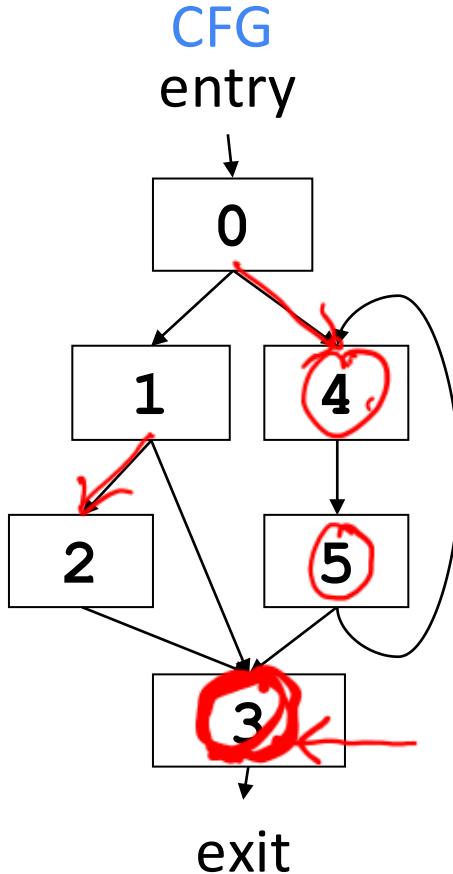
Dominator Tree

Dominance Frontier



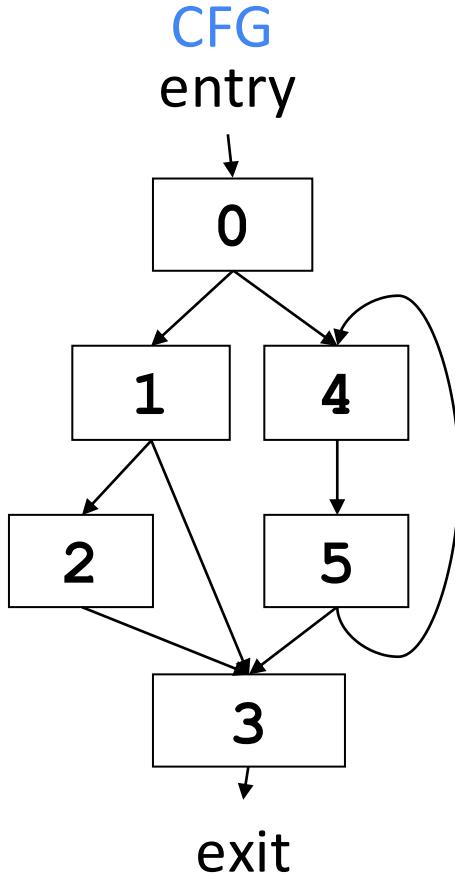
- z is in the dominance frontier of x If z is the first node we encounter on the path from x which x does not *strictly* dominate.
 - For some path from node x to z ,
 $x \rightarrow \dots \rightarrow y \rightarrow z$
where $x \text{ dom } y$ but not $x \text{ sdom } z$.
 - Intuitively, the dominance frontier consists of nodes “just outside the dominator tree”

Dominance Frontier



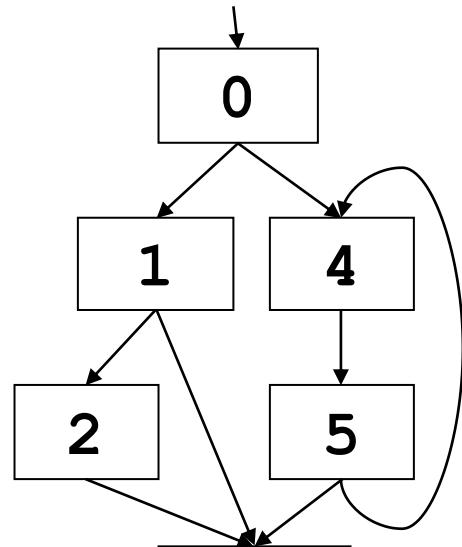
- z is in the dominance frontier of x If z is the first node we encounter on the path from x which x does not *strictly* dominate.
- For some path from node x to z ,
 $x \rightarrow \dots \rightarrow y \rightarrow z$
where $x \text{ dom } y$ but not $x \text{ sdom } z$.
- Dominance frontier of 1?
- Dominance frontier of 2?
- Dominance frontier of 4?

Dominance Frontier



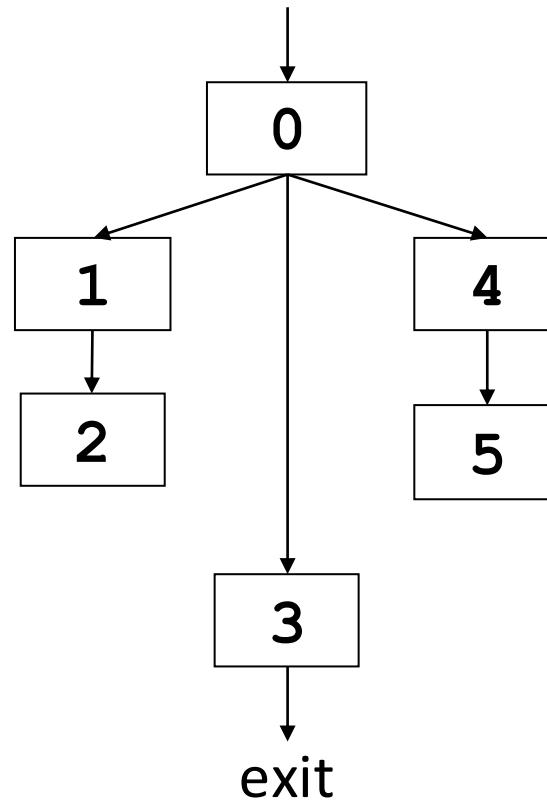
- z is in the dominance frontier of x If z is the first node we encounter on the path from x which x does not *strictly* dominate.
- For some path from node x to z ,
 $x \rightarrow \dots \rightarrow y \rightarrow z$
where $x \text{ dom } y$ but not $x \text{ sdom } z$.
- Dominance frontier of 1? {3}
- Dominance frontier of 2? {3}
- Dominance frontier of 4? {3,4}

CFG
entry



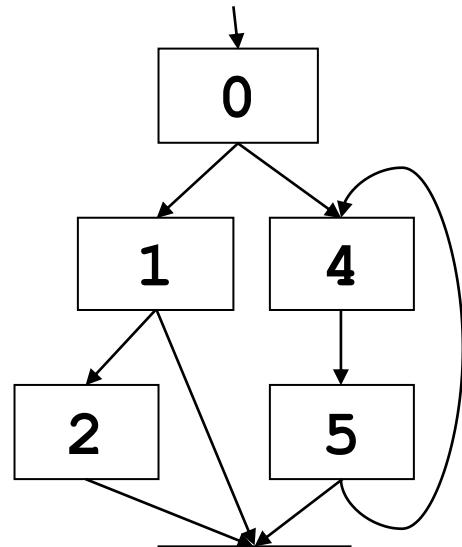
exit

idom
entry



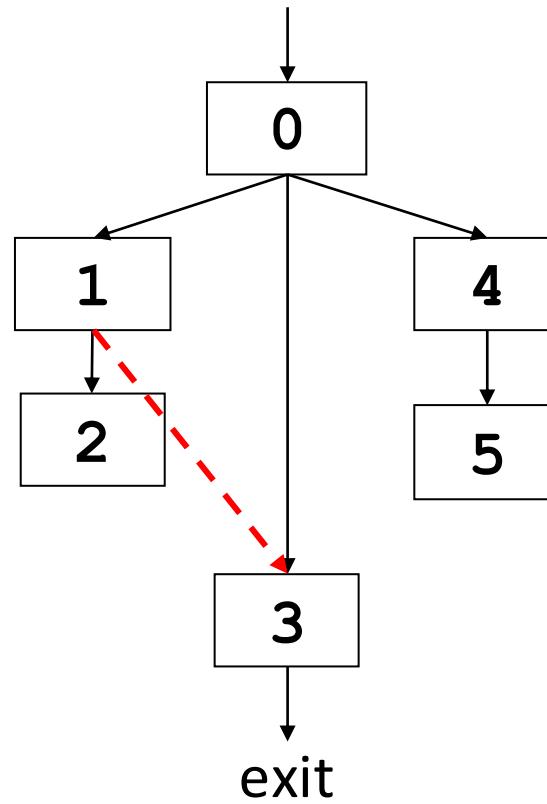
exit

CFG
entry



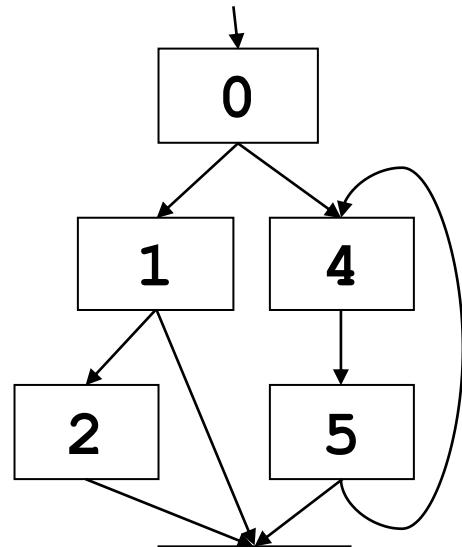
exit

idom
entry



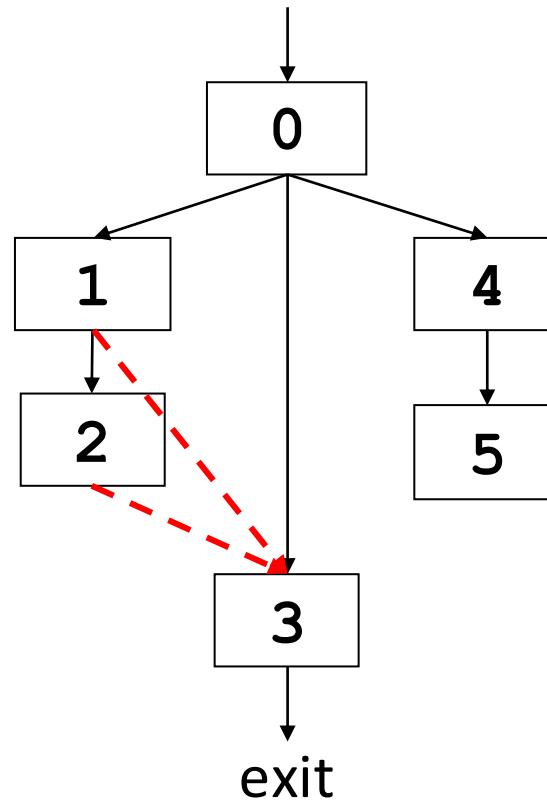
exit

CFG
entry



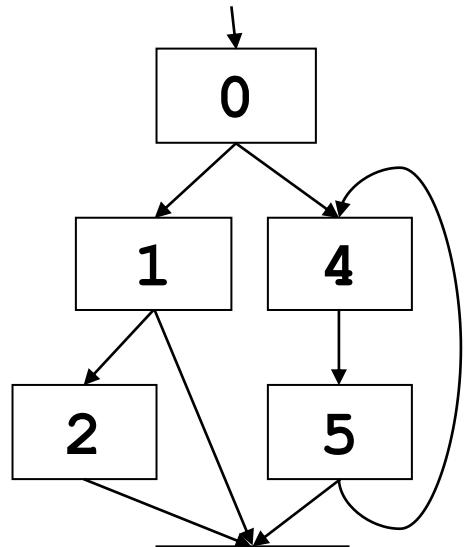
exit

idom
entry



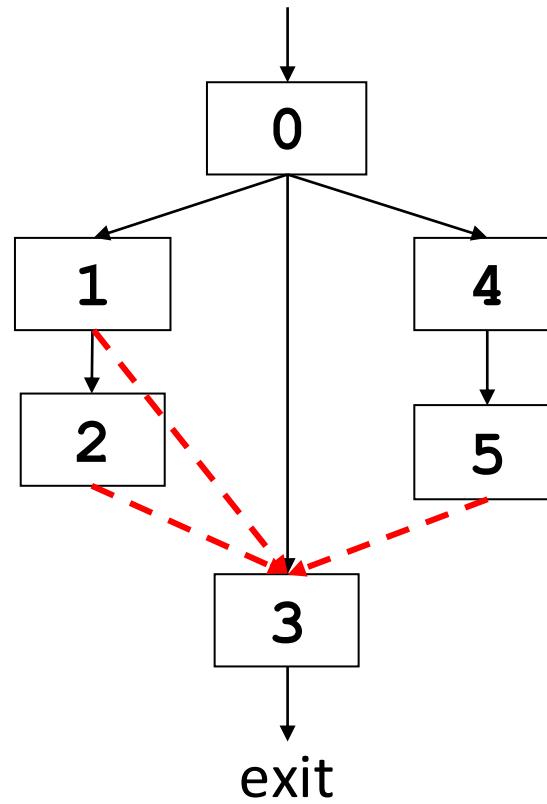
exit

CFG
entry



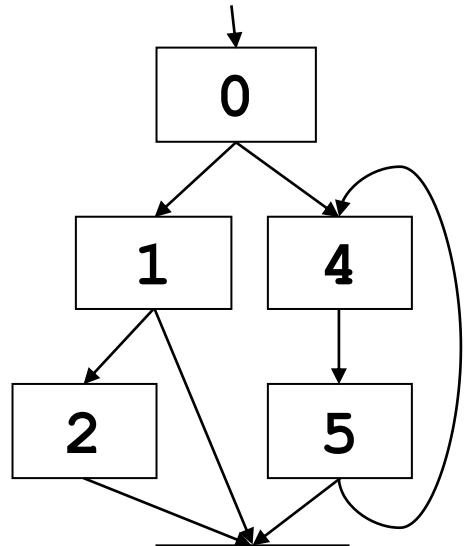
exit

idom
entry



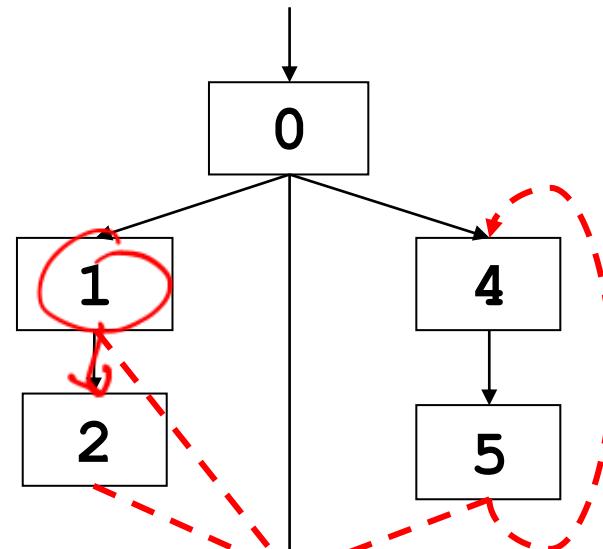
exit

CFG
entry



exit

idom
entry



exit

Calculating the Dominance Frontier

- Let $dominates[n]$ be the set of all blocks which block n dominates
 - subtree of dominator tree with n as the root
- The dominance frontier of n , $DF[n]$ is

$$DF[n] = \bigcup_{s \in dominates[n]} succ(s) - dominates[n] - \{n\}$$

Recap

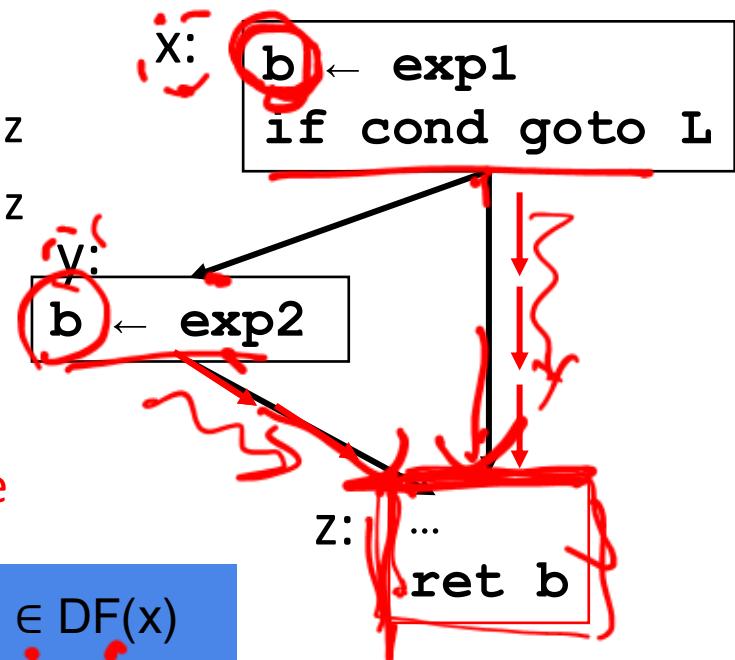
- $a \text{ dom } b$
 - every possible execution path from *entry* to b includes a
- $a \text{ sdom } b$
 - $a \text{ dom } b$ and $a \neq b$
- $a \text{ idom } b$
 - a is “closest” dominator of b
- $a \text{ pdom } b$
 - every path from a to the exit block includes b
- Dominator trees
- Dominance frontier

Back to inserting Φ s

Require a Φ -function for variable \underline{b} at node \underline{z} of the flow graph:

- There is a block x containing a def of b
- There is a block $y \neq x$ containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z , and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

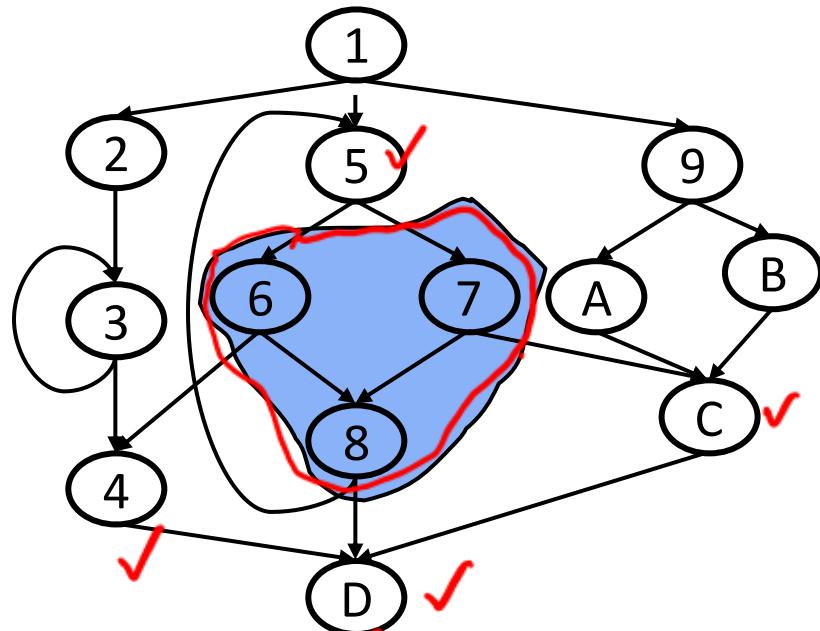
In other words, $z \in \text{DF}(x)$



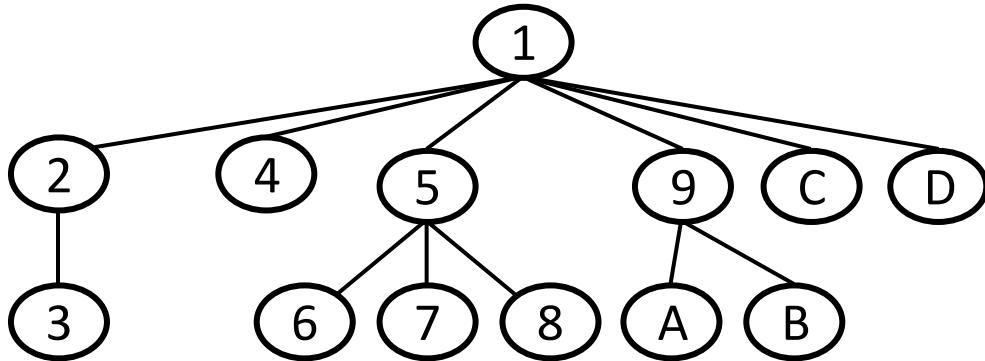
Using Dominance for SSA Construction

- **Dominance-Frontier Criterion:** Whenever node x contains a definition of some variable a , then any node $z \in DF(x)$, z needs a Φ -function for a .
- **Iterated dominance frontier:** since a Φ -function itself is a definition, we must iterate the dominance-frontier criterion until there are no nodes that need Φ -functions.

Dominance



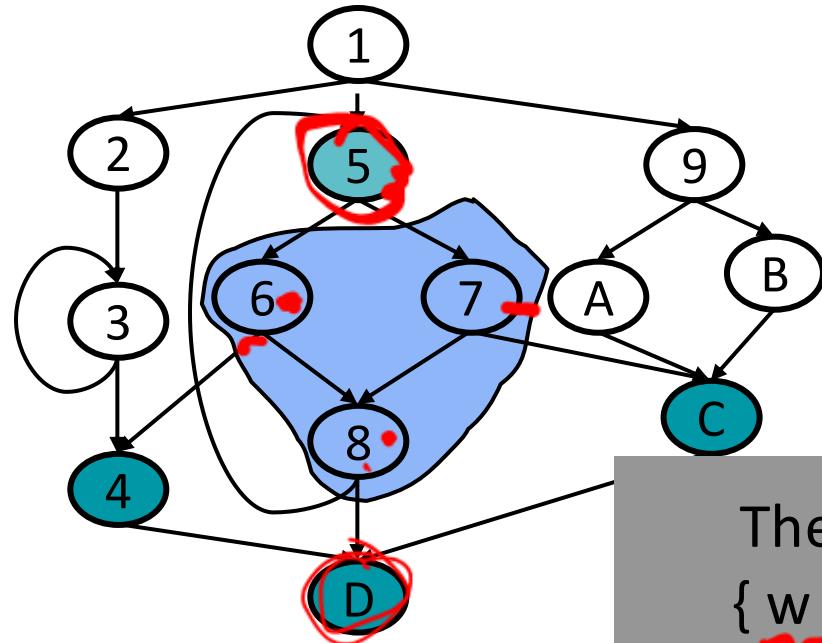
CFG



D-Tree

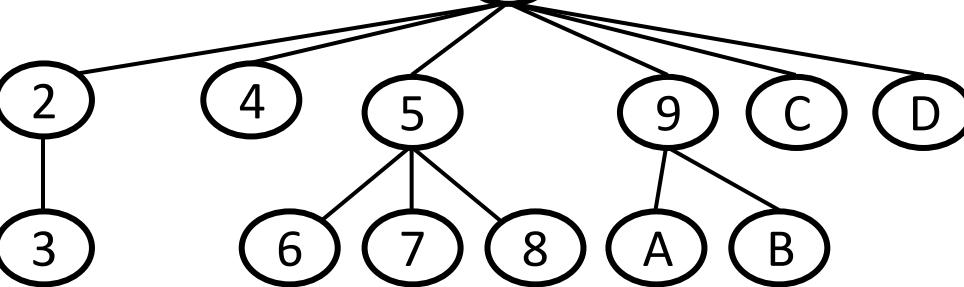
If there is a def of a in block 5, which nodes need a $\Phi()$?

Dominance Frontier



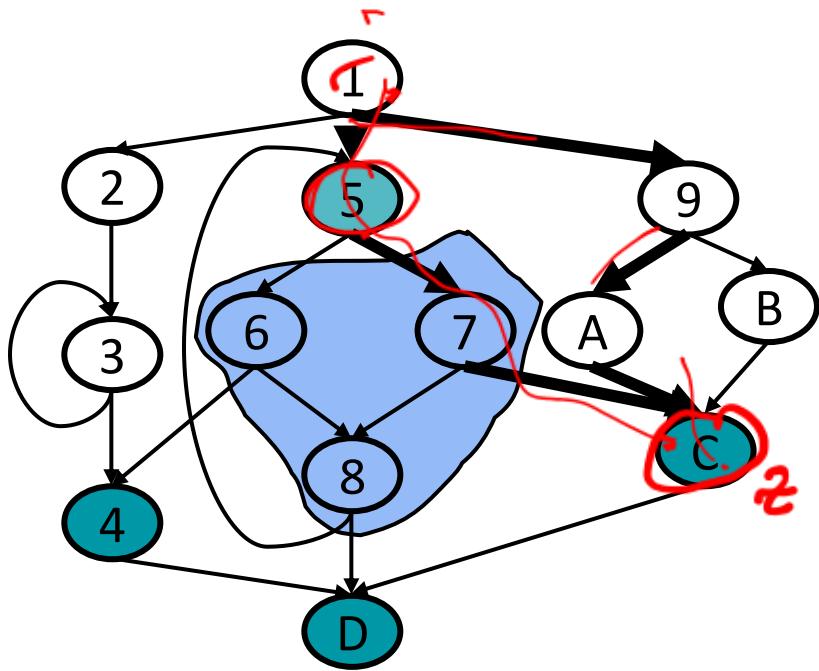
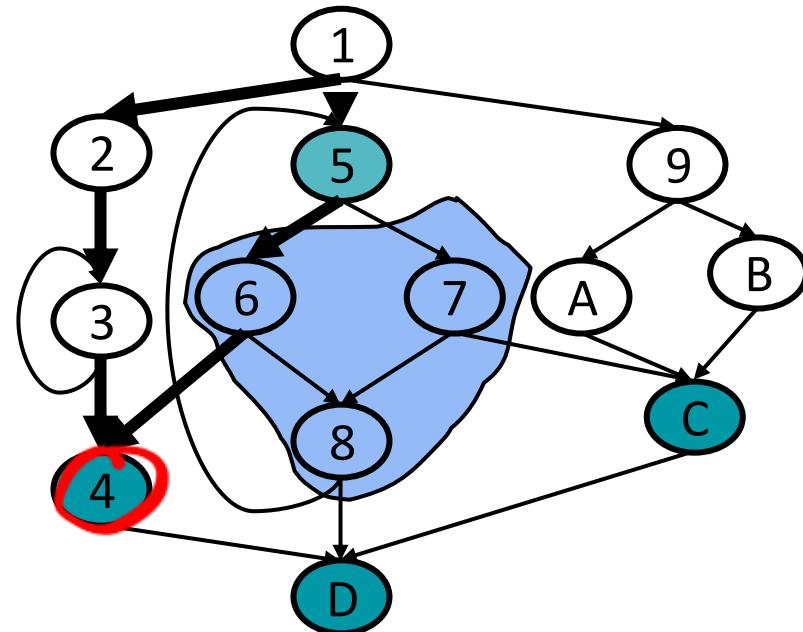
CFG

The dominance Frontier of a node x =
 $\{ w \mid x \text{ dom pred}(w) \text{ AND } !(x \text{ sdom } w) \}$

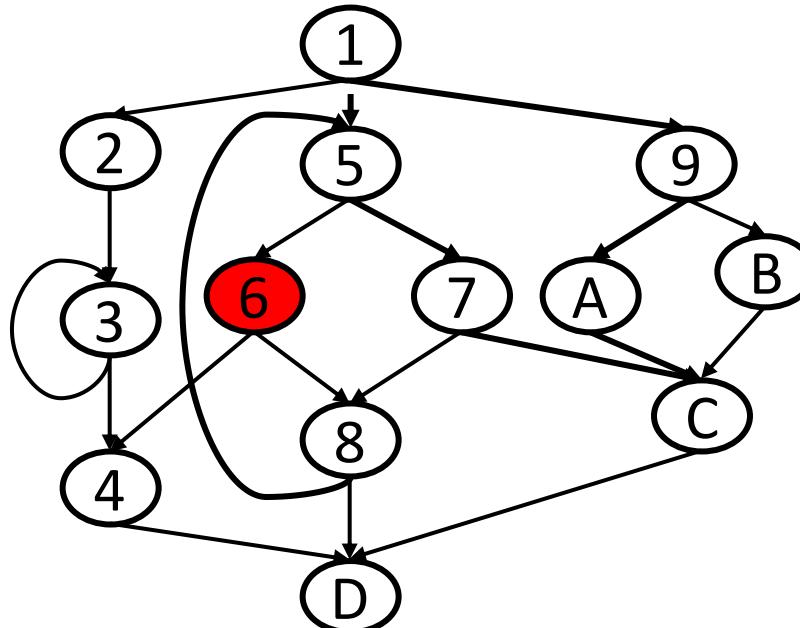


D-Tree

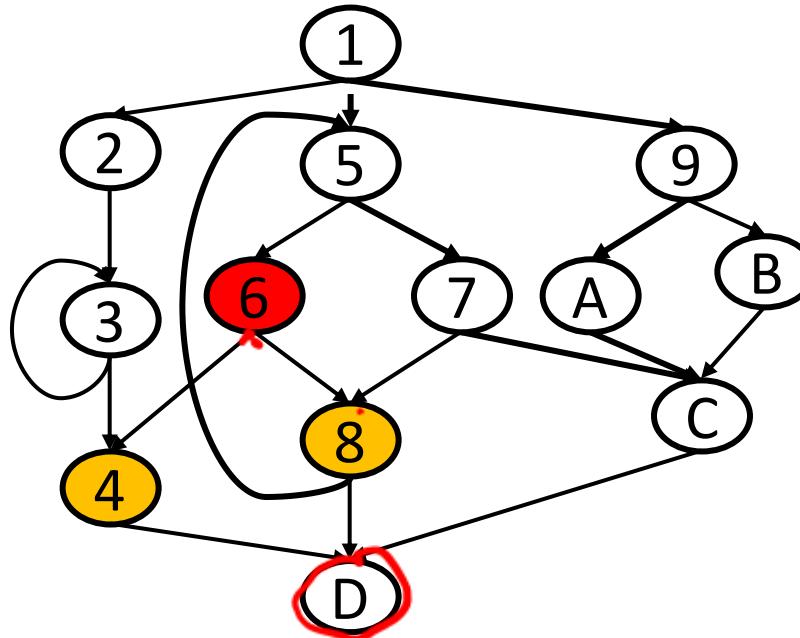
Dominance Frontier & path-convergence



Dominance Frontier Criterion



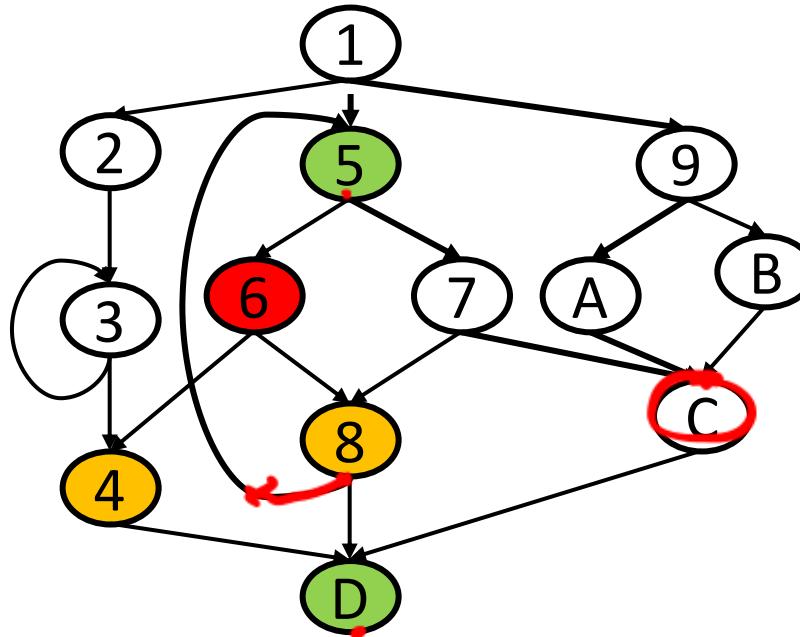
Dominance Frontier Criterion



And, Iterating

©2019-2025 Titze/Goldstein

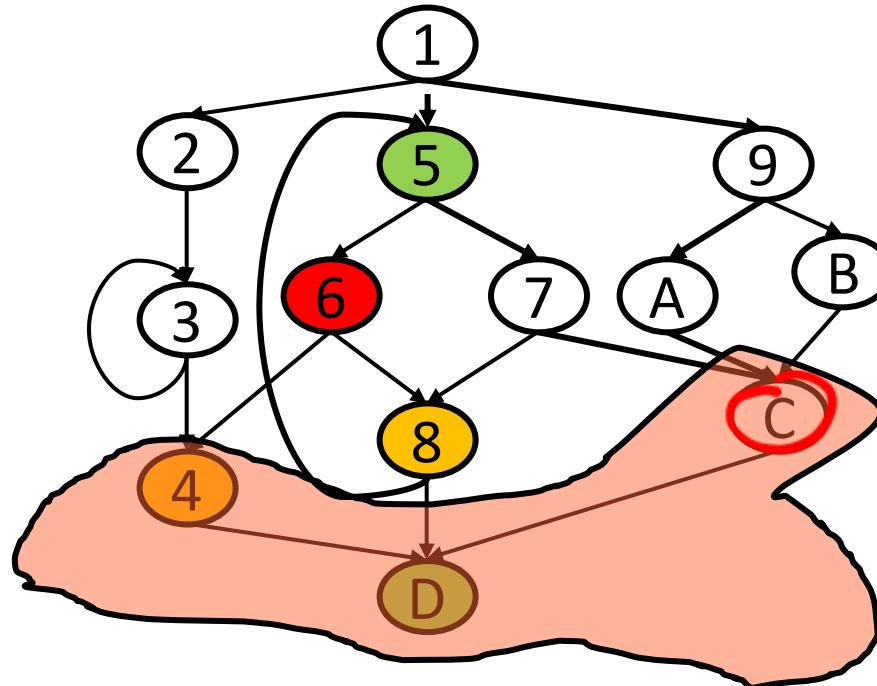
Dominance Frontier Criterion



And, Iterating

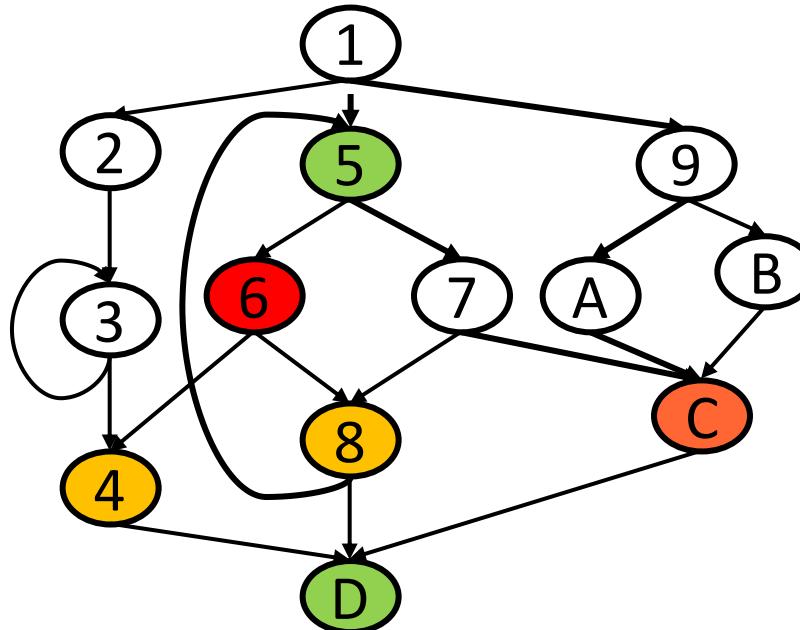
©2019-2025 Titze/Goldstein

Dominance Frontier Criterion



And, Iterating

Dominance Frontier Criterion



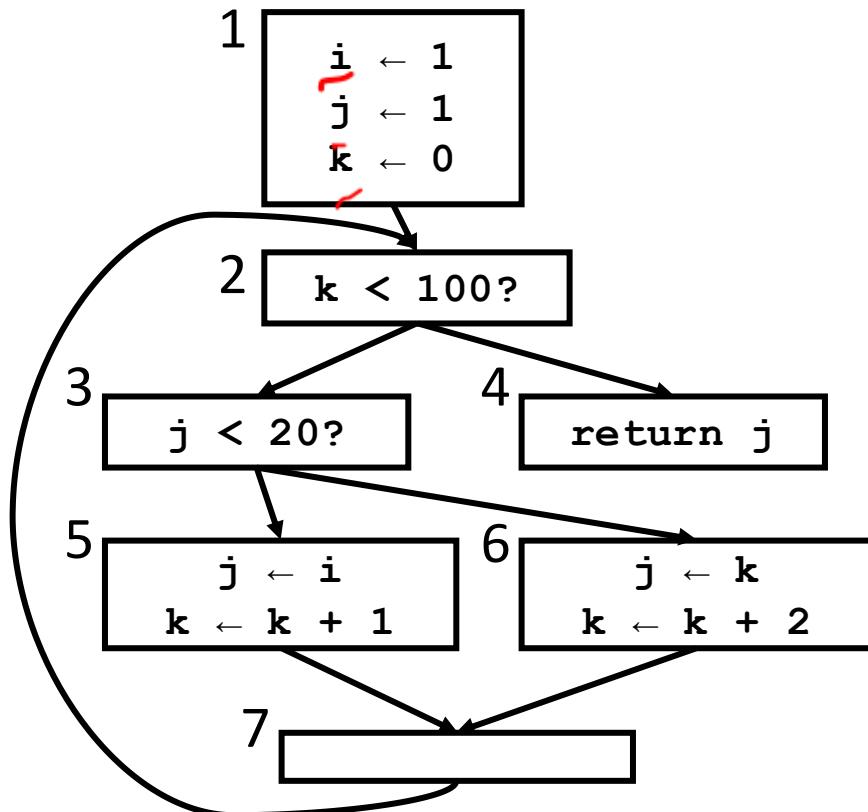
Using DF to Place $\Phi()$

- Gather all the defsites of every variable
- Then, for every variable
 - foreach defsite
 - foreach node in DF(defsite)
 - if we haven't put $\Phi()$ in node put one in
 - If this node didn't define the variable before: add this node to the defsites
 - This essentially computes the Iterated Dominance Frontier on the fly, creating minimal SSA

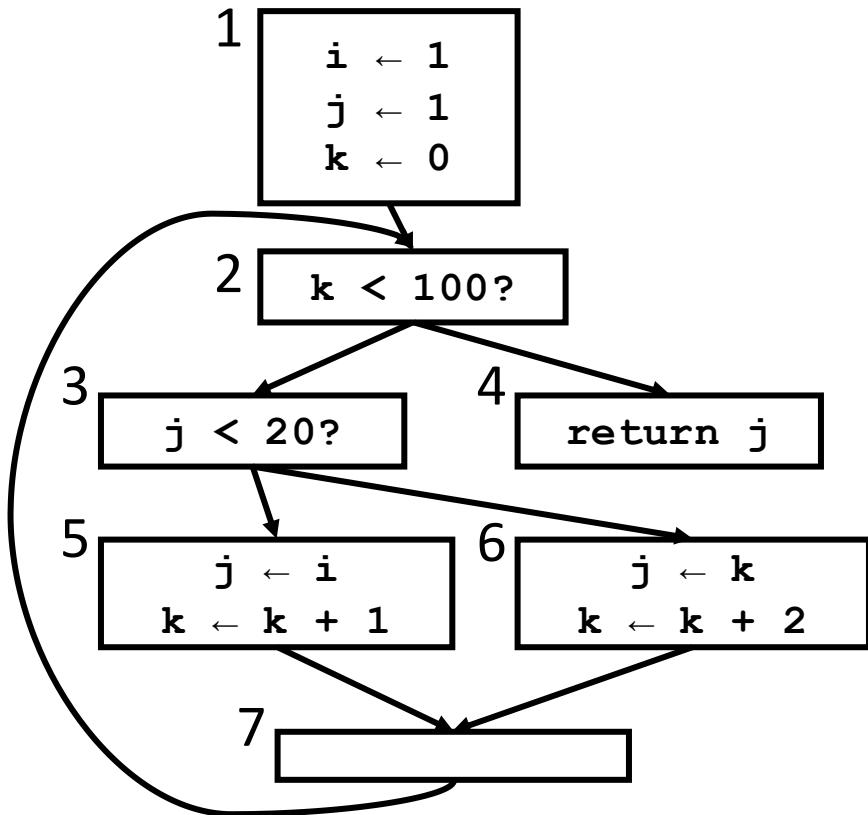
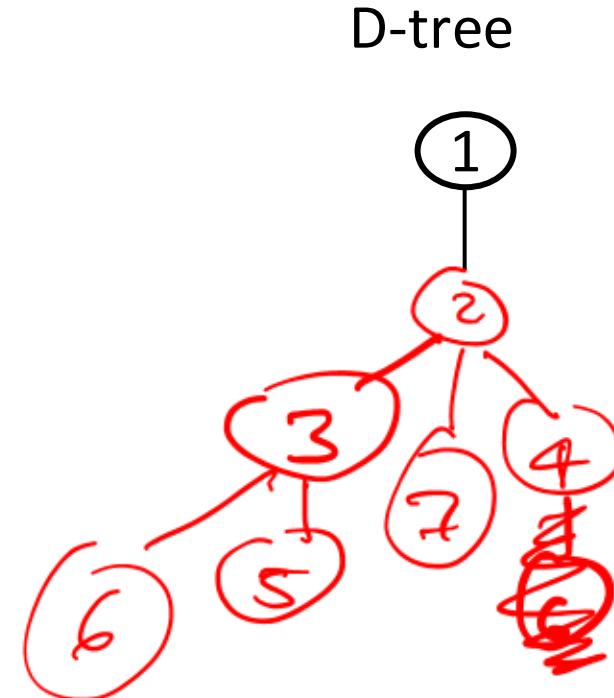
Using DF to Place $\Phi()$

```
foreach node n {  
    foreach variable v defined in n {  
        orig[n] U= {v}  
        defsites[v] U= {n}  
    }  
    foreach variable v {  
        W = defsites[v]  
        while W not empty {  
            foreach y in DF[n]  
            if y  $\notin$  PHI[v] {  
                insert "v  $\leftarrow$   $\Phi(v, v, \dots)$ " at top of y  
                PHI[v] = PHI[v] U {y}  
                if v  $\notin$  orig[y]: W = W U {y}  
            }  
        }  
    }  
}
```

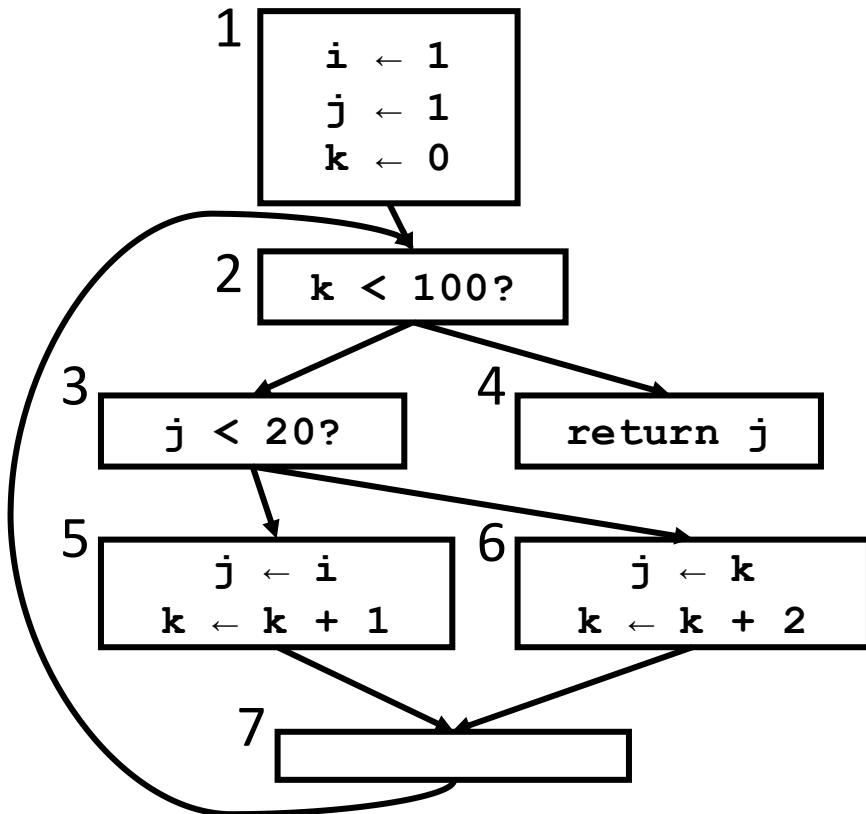
Computing SSA



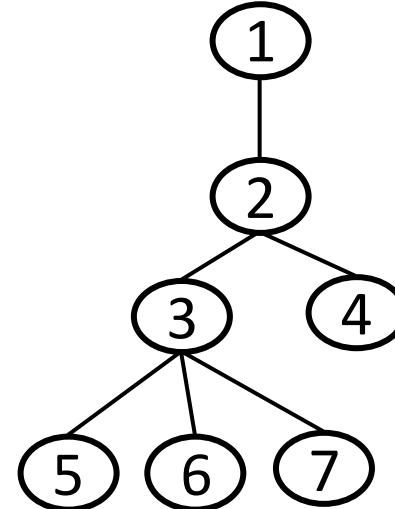
Compute D-tree



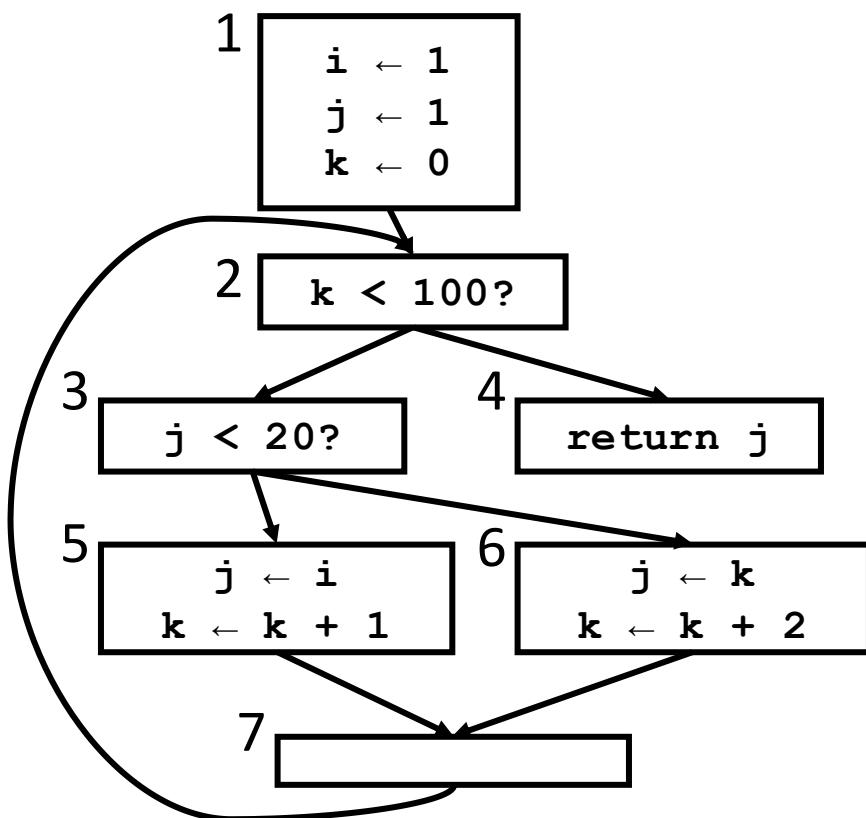
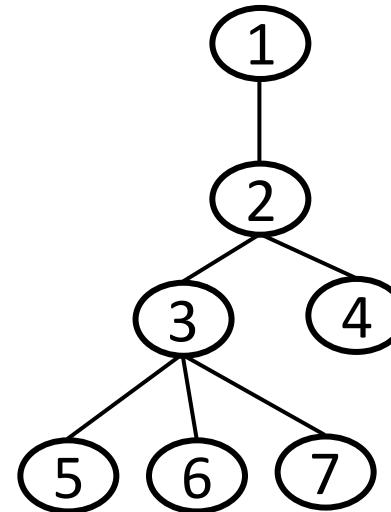
Compute D-tree



D-tree



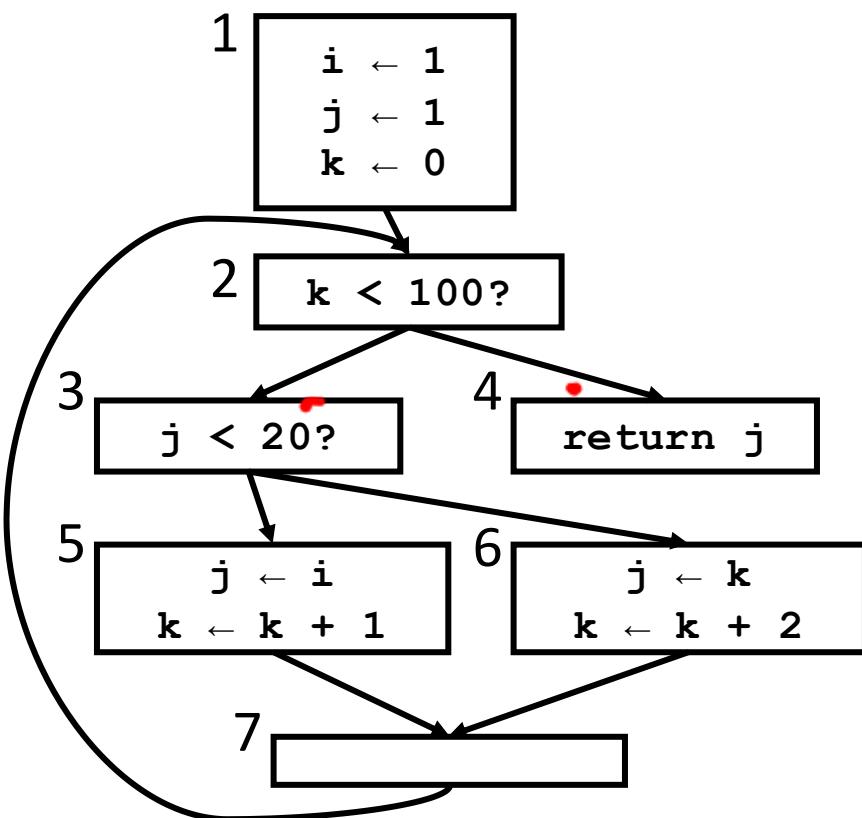
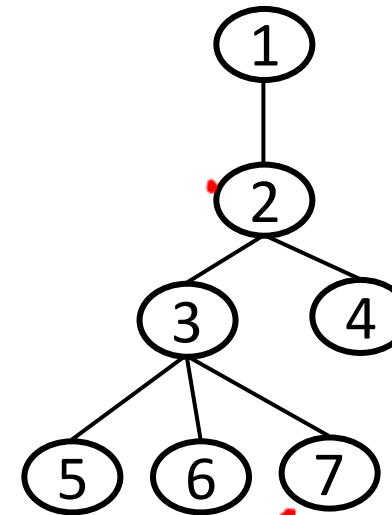
Compute Dominance Frontier (DFs)



DFs

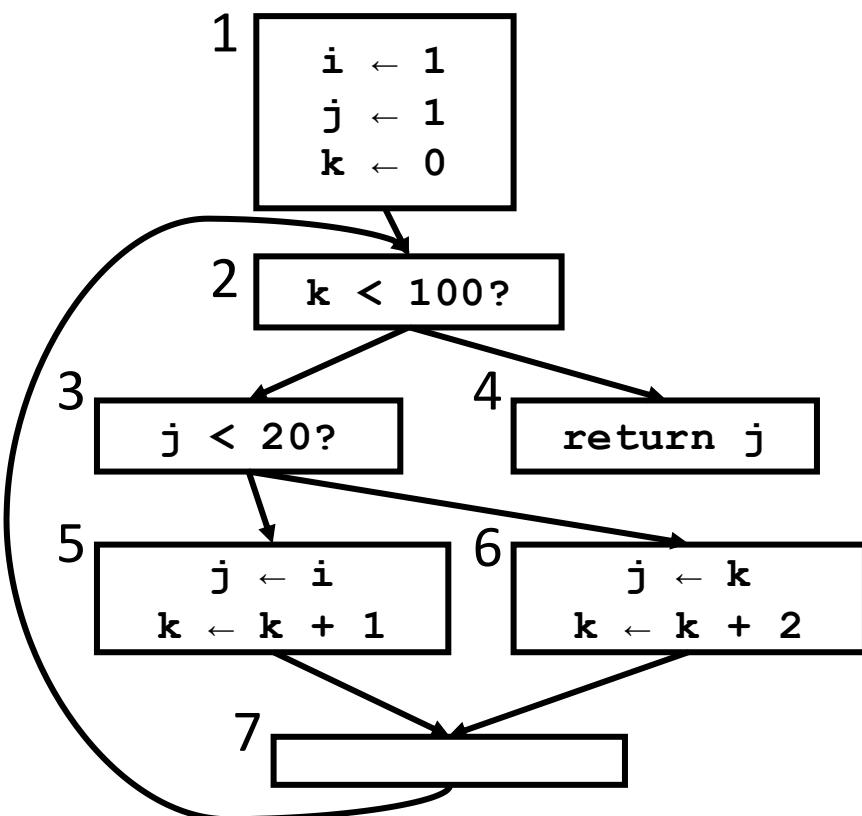
1
2
3
4
5
6
7

Compute Dominance Frontier (DFs)



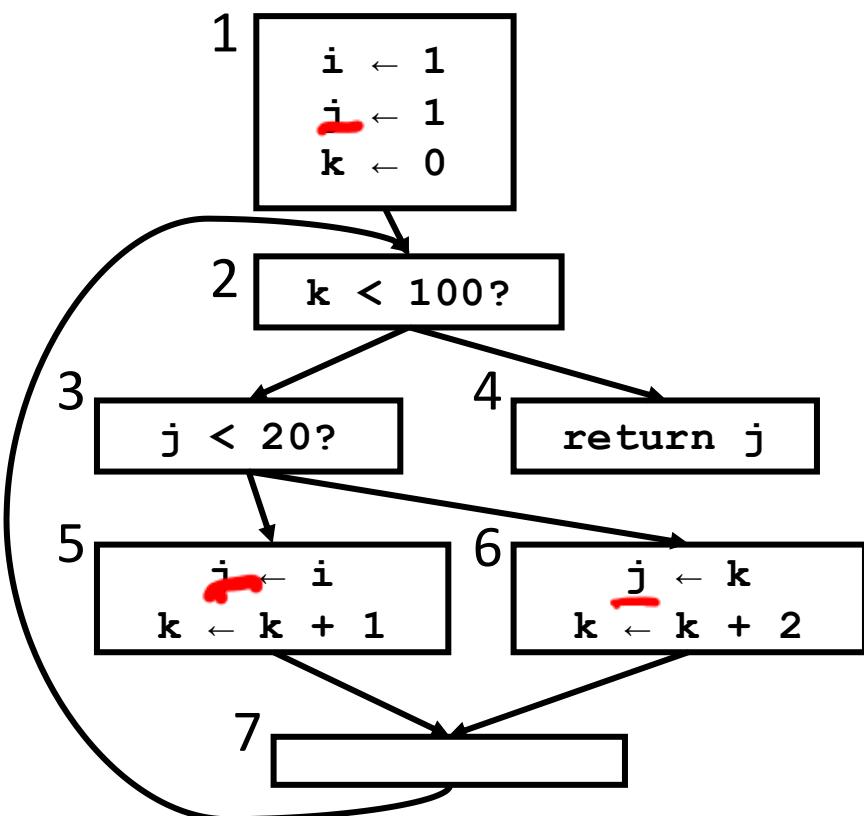
DFs
1 $\{\}$
2 $\{2\}$
3 $\{2\}$
4 $\{\}$
5 $\{7\}$
6 $\{7\}$
7 $\{2\}$

Compute defsites



	DFs	orig[n]	defsites[v]
1	{}	1 { <u>i,j,k</u> }	<u>i</u> {1}
2	{2}	2 { }	j {1,5,6}
3	{2}	3 { }	<u>k</u> {1,5,6}
4	{}	4 { }	-
5	{7}	5 {j,k}	-
6	{7}	6 {j,k}	-
7	{2}	7 { }	-

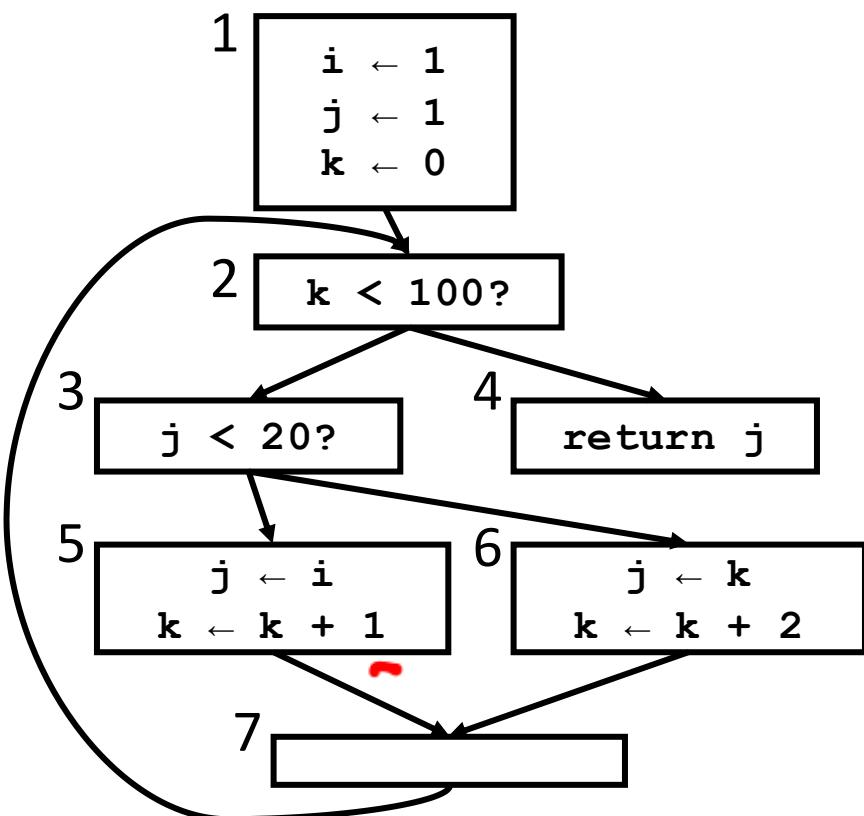
Inspect variables



	DFs	orig[n]	defsites[v]
1	{}	1 { i,j,k}	i {1}
2	{2}	2 { }	j {1,5,6}
3	{2}	3 { }	k {1,5,6}
4	{}	4 { }	
5	{7}	5 {j,k}	
6	{7}	6 {j,k}	
7	{2}	7 { }	

var j: W={1,5,6}

Insert ϕ for j

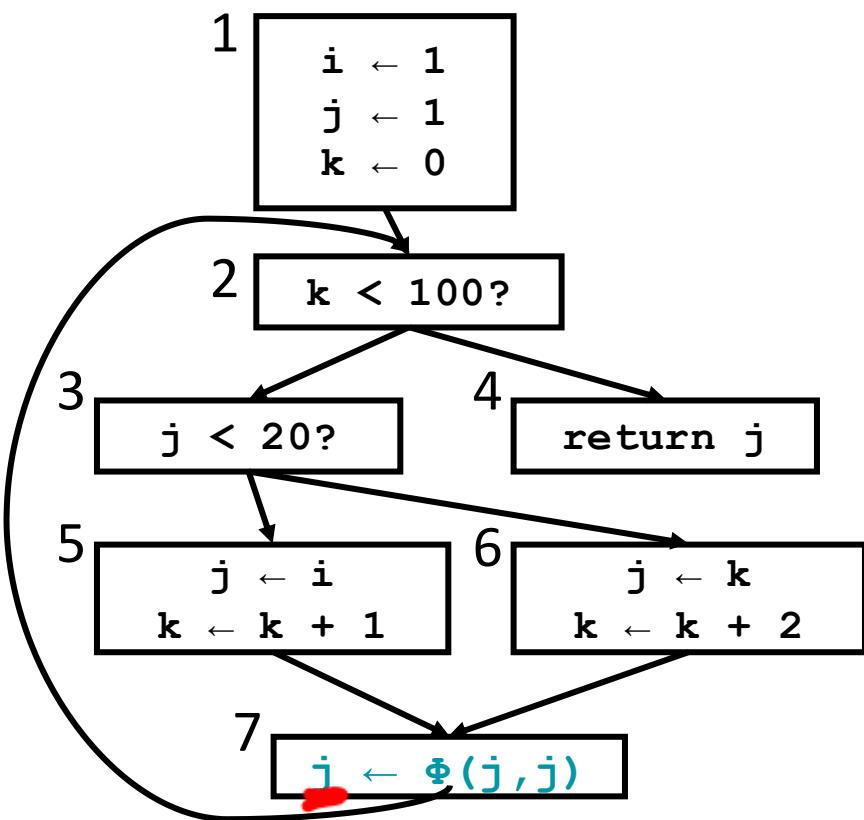


	DFs	orig[n]	defsites[v]
1	{}	1 { i,j,k }	i {1}
2	{2}	2 { }	j {1,5,6}
3	{2}	3 { }	k {1,5,6}
4	{}	4 { }	
5	{7}	5 {j,k}	
6	{7}	6 {j,k}	
7	{2}	7 { }	

var j: W={1,5,6}

DF[1] \cup DF[5] \cup DF[6] = {7}

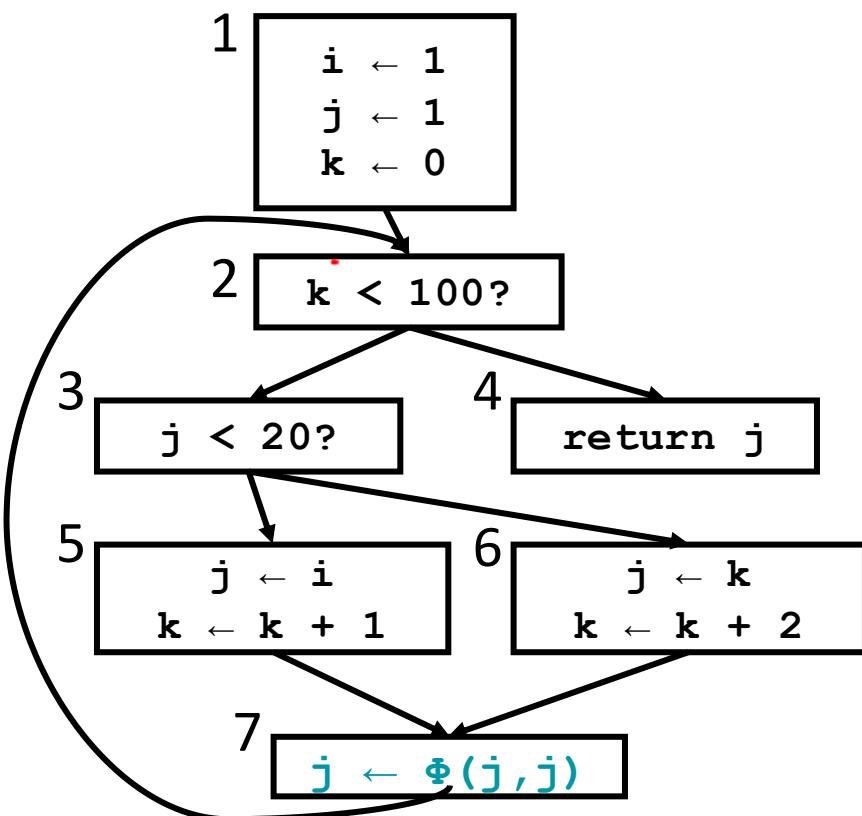
Insert ϕ for j



	DFs	orig[n]	defsites[v]
1	{}	1 { i,j,k }	i {1}
2	{2}	2 { }	j {1,5,6}
3	{2}	3 { }	k {1,5,6}
4	{}	4 { }	
5	{7}	5 {j,k}	
6	{7}	6 {j,k}	
7	{2}	7 { }	

var j: W={1,5,6}

Handle new write for j

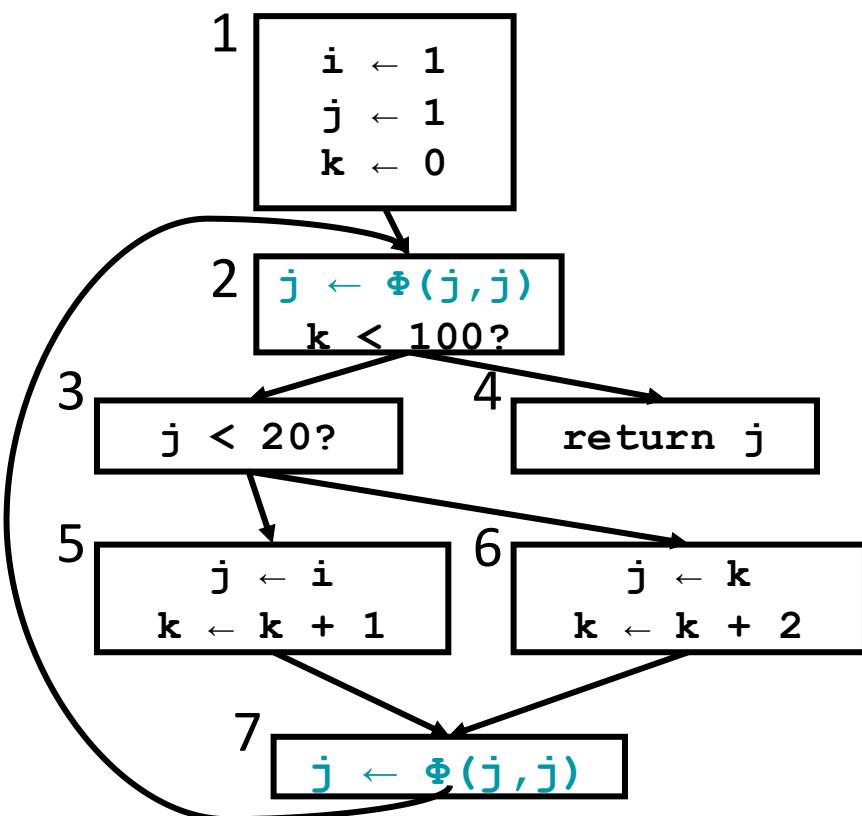


	DFs	orig[n]	defsites[v]
1	{}	1 { i,j,k}	i {1}
2	{2}	2 { }	j {1,5,6}
3	{2}	3 { }	k {1,5,6}
4	{}	4 { }	
5	{7}	5 {j,k}	
6	{7}	6 {j,k}	
7	{2}	7 { }	

var j: W={1,5,6,7}

DF[1] \cup DF[5] \cup DF[6] \cup DF[7] = {7,2}

Insert more ϕ for j

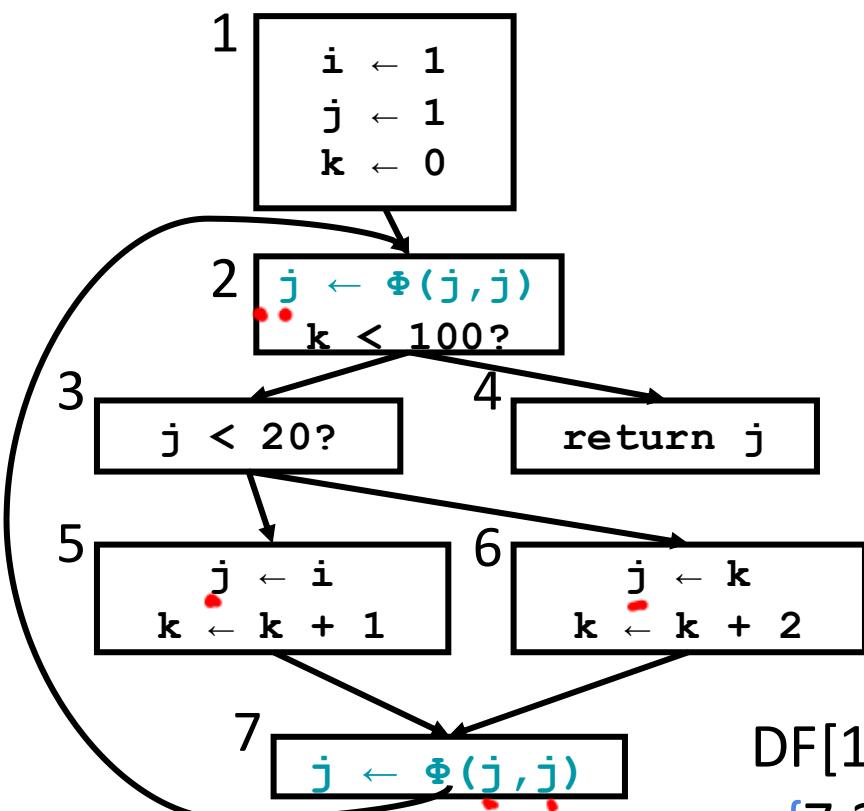


	DFs	orig[n]	defsites[v]
1	{}	1 { i,j,k}	i {1}
2	{2}	2 { }	j {1,5,6}
3	{2}	3 { }	k {1,5,6}
4	{}	4 { }	
5	{7}	5 {j,k}	
6	{7}	6 {j,k}	
7	{2}	7 { }	

var j: W={1,5,6,7}

DF[1] \cup DF[5] \cup DF[6] \cup DF[7] = {7,2}

Update writes for j



	DFs	orig[n]	defsites[v]
1	{}	1 { i,j,k}	i {1}
2	{2}	2 { }	j {1,5,6}
3	{2}	3 { }	k {1,5,6}
4	{}	4 { }	
5	{7}	5 {j,k}	
6	{7}	6 {j,k}	
7	{2}	7 { }	

var j: W={1,5,6,7,2}

$$\begin{aligned}
 & \text{DF[1]} \cup \text{DF[5]} \cup \text{DF[6]} \cup \text{DF[7]} \cup \text{DF[2]} \\
 & = \{7, 2\}
 \end{aligned}$$

Renaming Variables

- Placing ϕ is not enough, need to update names
- Walk down the dominator tree, renaming variables incrementally
- Replace uses with most recent renamed def
 - For straight-line code this is easy
 - If there are branches and joins?

Renaming for Straight-Line Code

- Need to extend for ϕ -functions.
- Need to maintain property that definitions dominate uses.

for each variable a :

Count[a] = 0

Stack[a] = [0]

renameBasicBlock(B):

for each instruction S in block B :

for each use of a variable x in S :

$i = \text{top}(\text{Stack}[x])$

replace the use of x with x_i

for each variable a that S defines

$\text{count}[a] = \text{Count}[a] + 1$

$i = \text{Count}[a]$

push i onto Stack[a]

replace definition of a with a_i

Renaming in CFG

rename(n):

renameBasicBlock(n)

for each successor Y of n, where n is the jth predecessor of Y:

for each phi-function f in Y, where the operand of f is 'a'

i = top(Stack[a])

replace jth operand with a_i

for each child of n in D-tree, X:

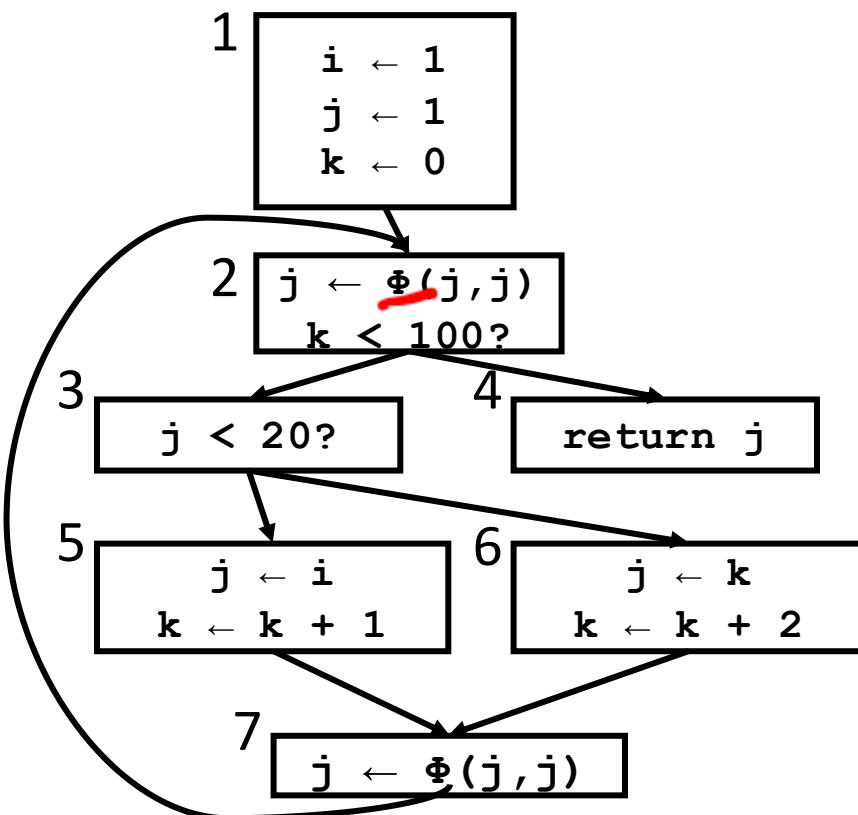
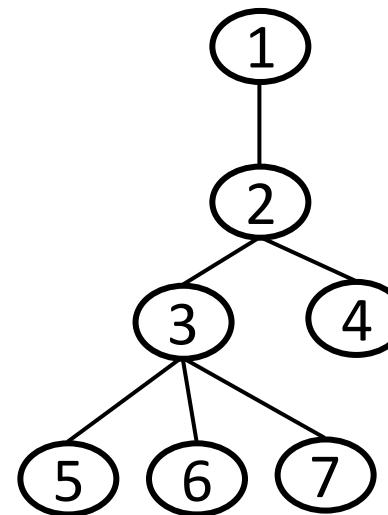
rename(X)

for each instruction S \in n:

for each variable v that S defines:

pop Stack[v]

Rename j variables



defsites[v]

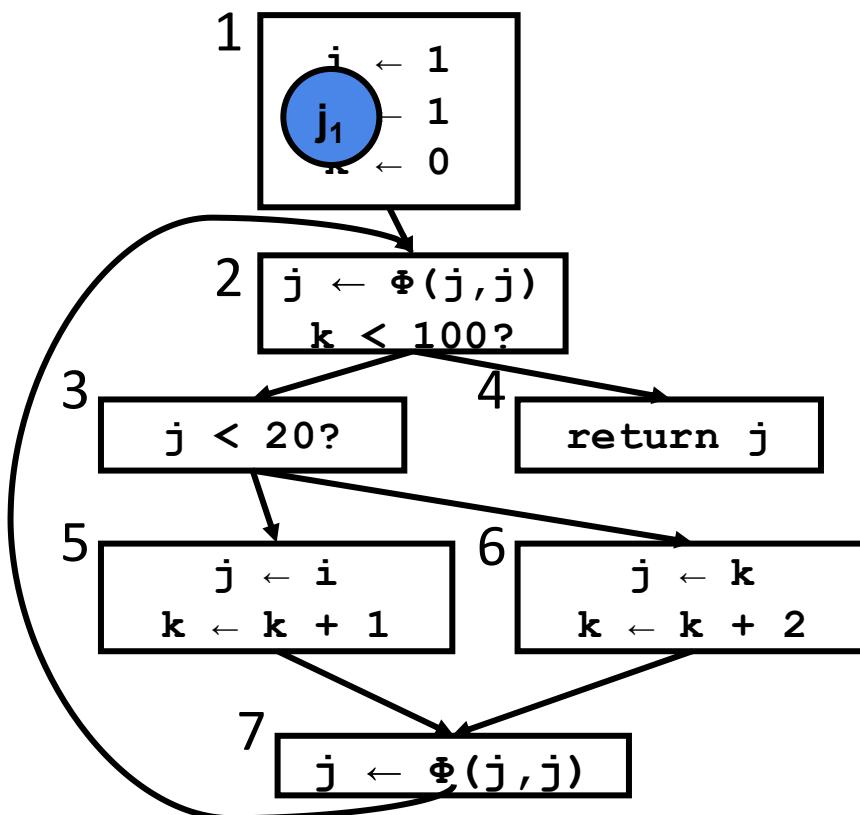
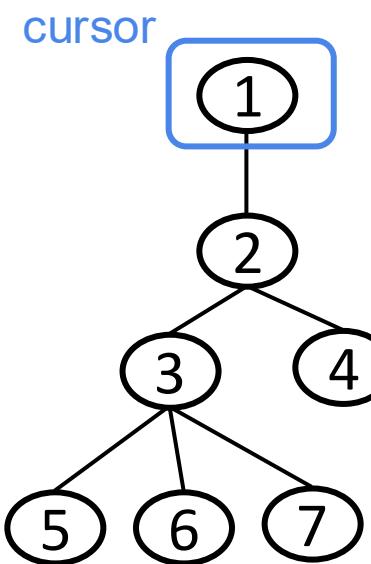
i {1}

j {1,5,6,7,2}

k {1,5,6}

The following slides do not follow the algorithm above.

Rename j variables



defsites[v]

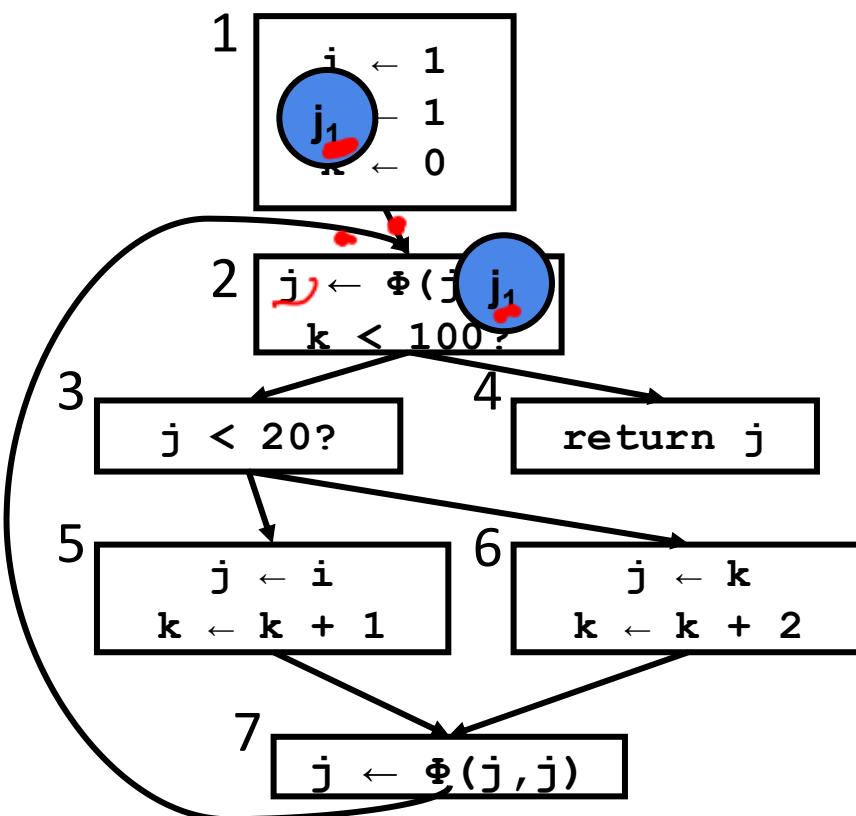
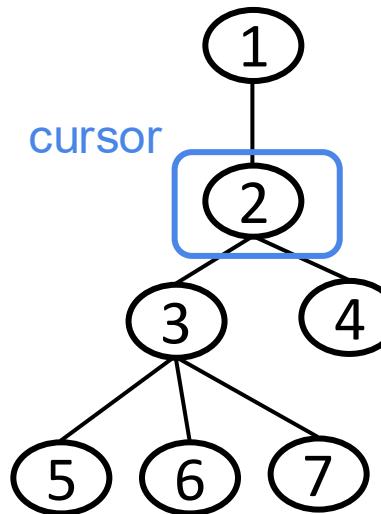
i {1}

j {1,5,6,7,2}

k {1,5,6}

The following slides do not follow the algorithm above.

Rename j variables



defsites[v]

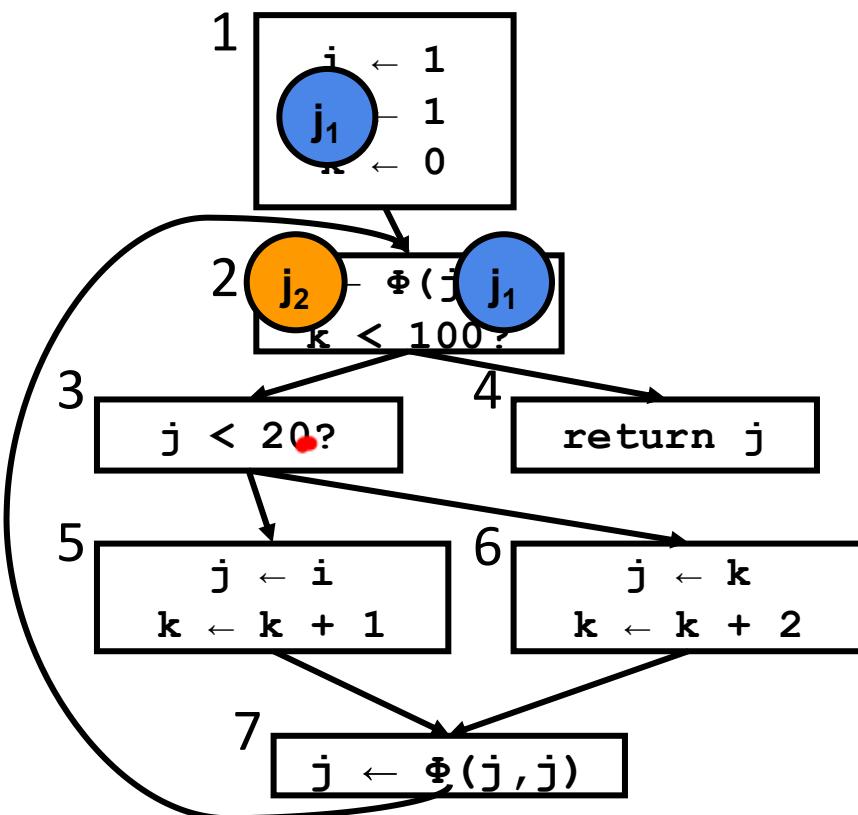
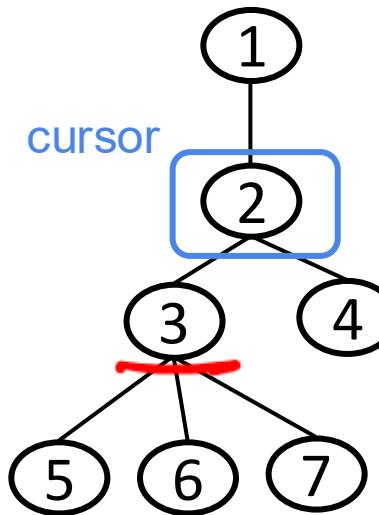
i {1}

j {1,5,6,7,2}

k {1,5,6}

The following slides do not follow the algorithm above.

Rename j variables



defsites[v]

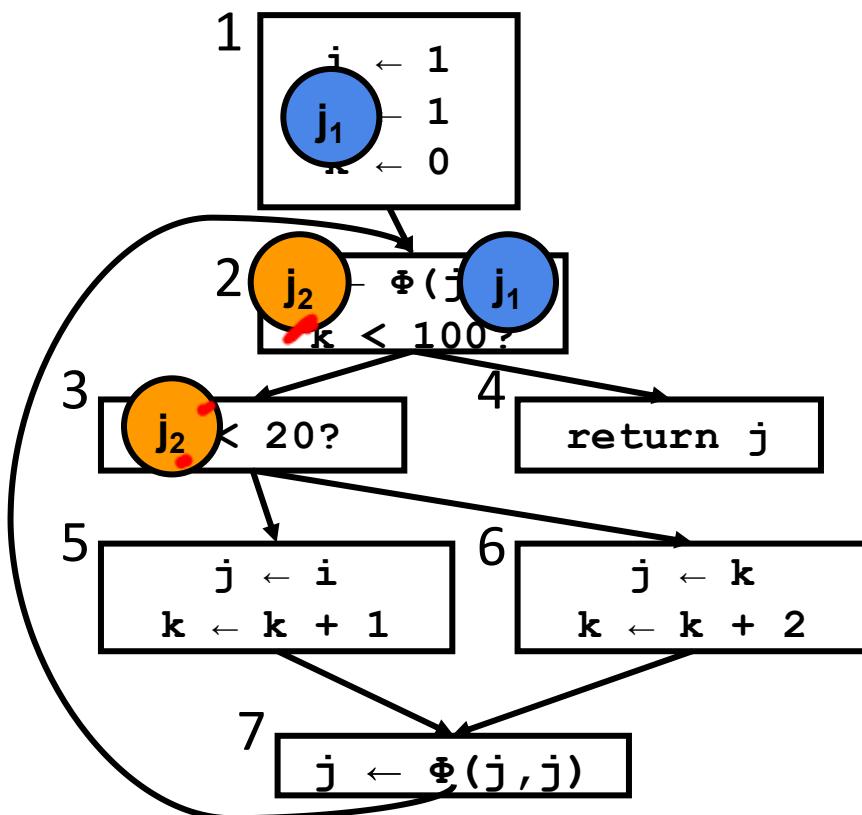
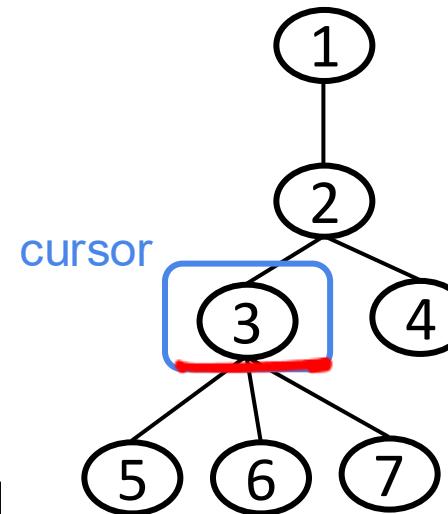
i {1}

j {1,5,6,7,2}

k {1,5,6}

The following slides do not follow the algorithm above.

Rename j variables

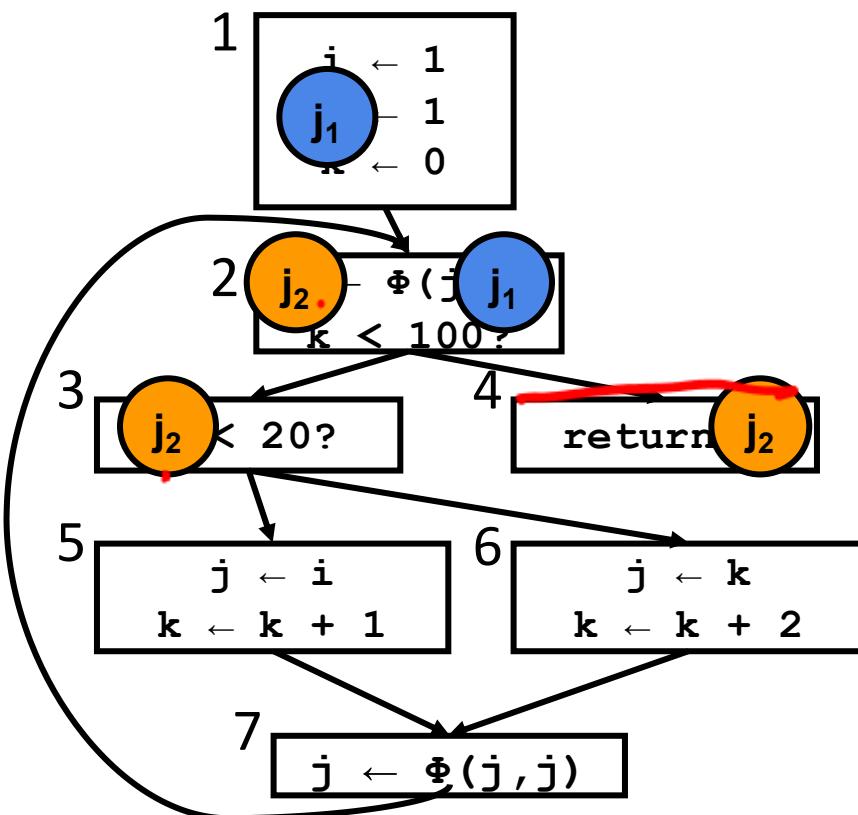
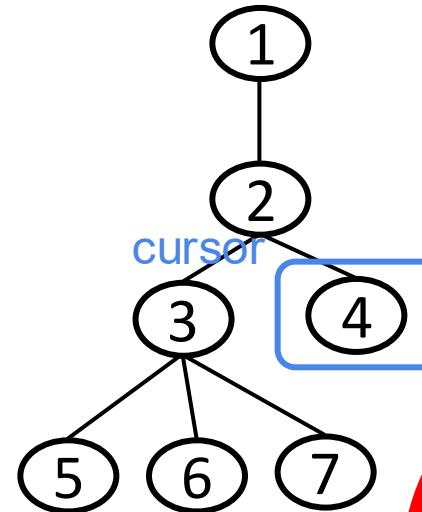


defsites[v]

i	{1}
j	{1,5,6,7,2}
k	{1,5,6}

The following slides do not follow the algorithm above.

Rename j variables

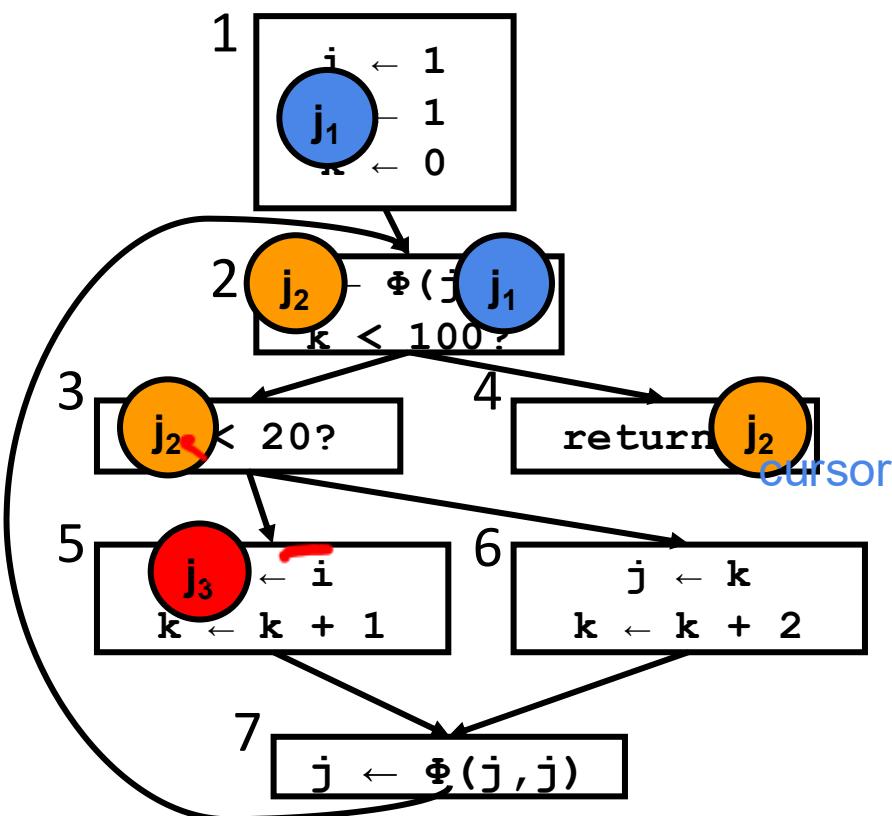
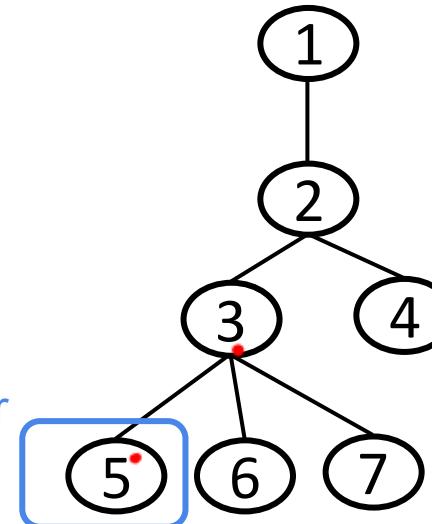


defsites[v]

i	{1}
j	{1,5,6,7,2}
k	{1,5,6}

The following slides do not follow the algorithm above.

Rename j variables

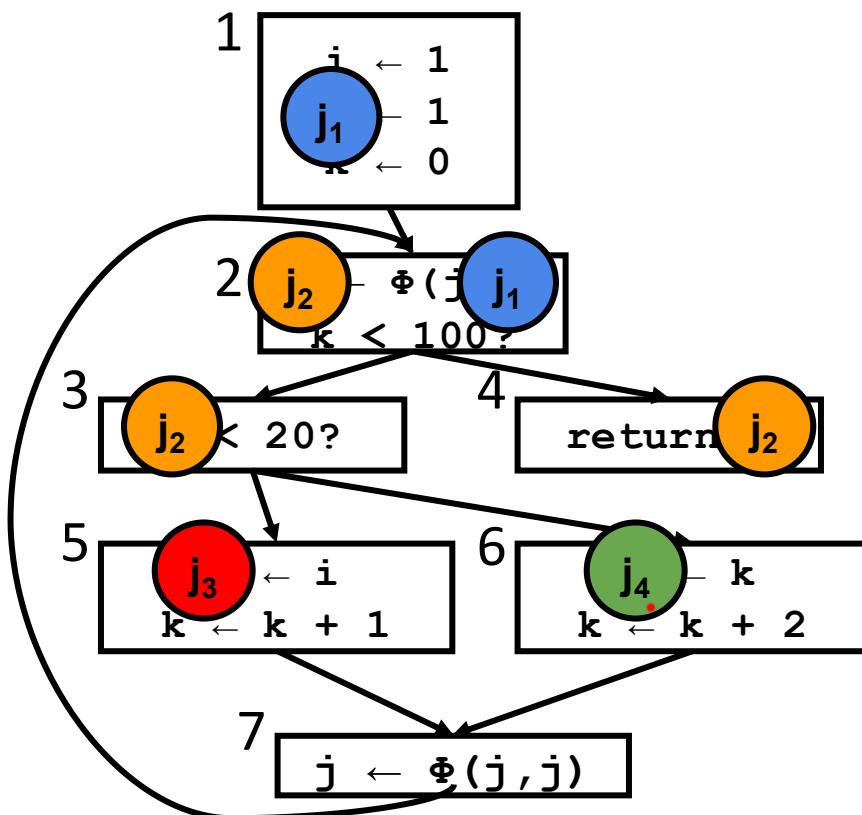
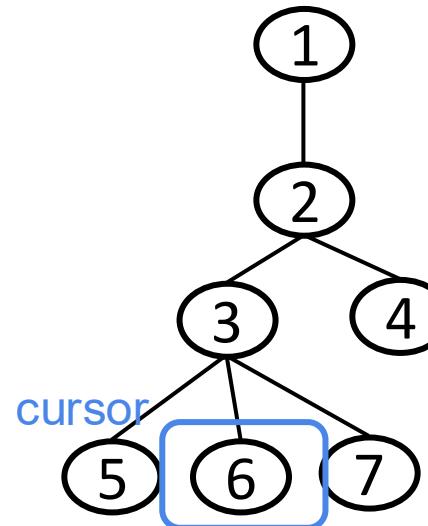


defsites[v]

i	{1}
j	{1,5,6,7,2}
k	{1,5,6}

The following slides do not follow the algorithm above.

Rename j variables



defsites[v]

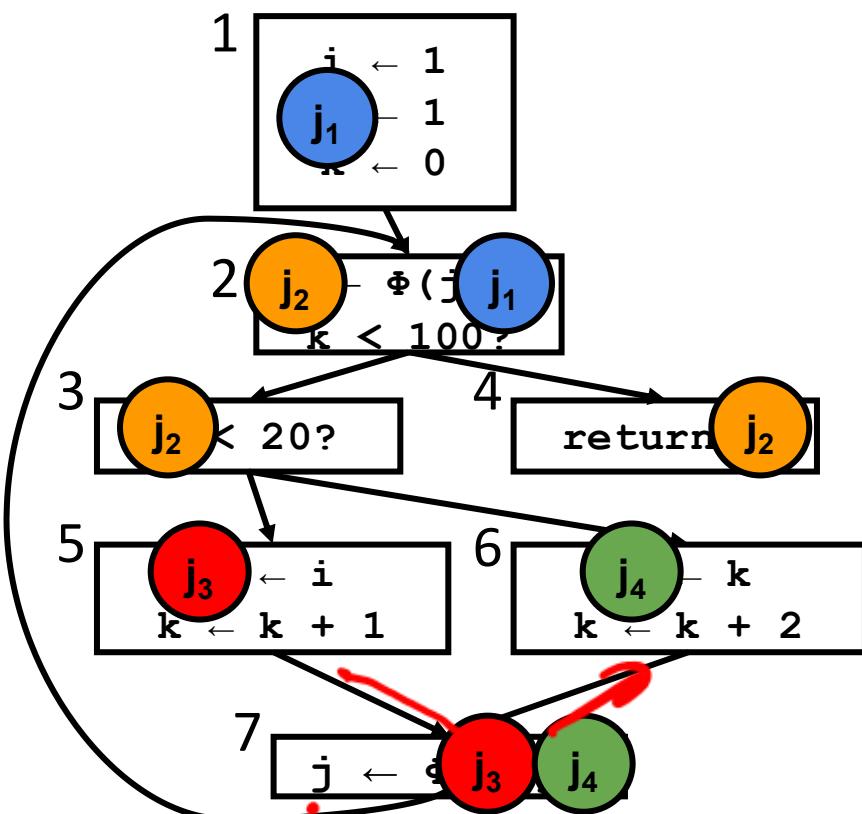
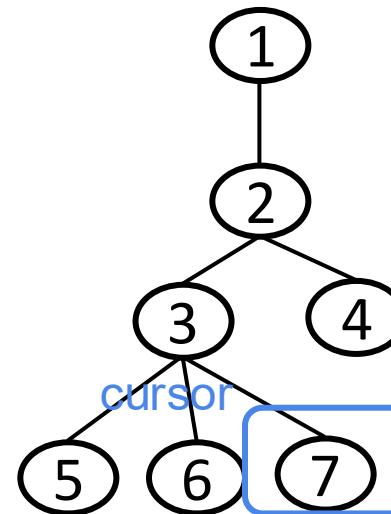
i {1}

j {1,5,6,7,2}

k {1,5,6}

The following slides do not follow the algorithm above.

Rename j variables

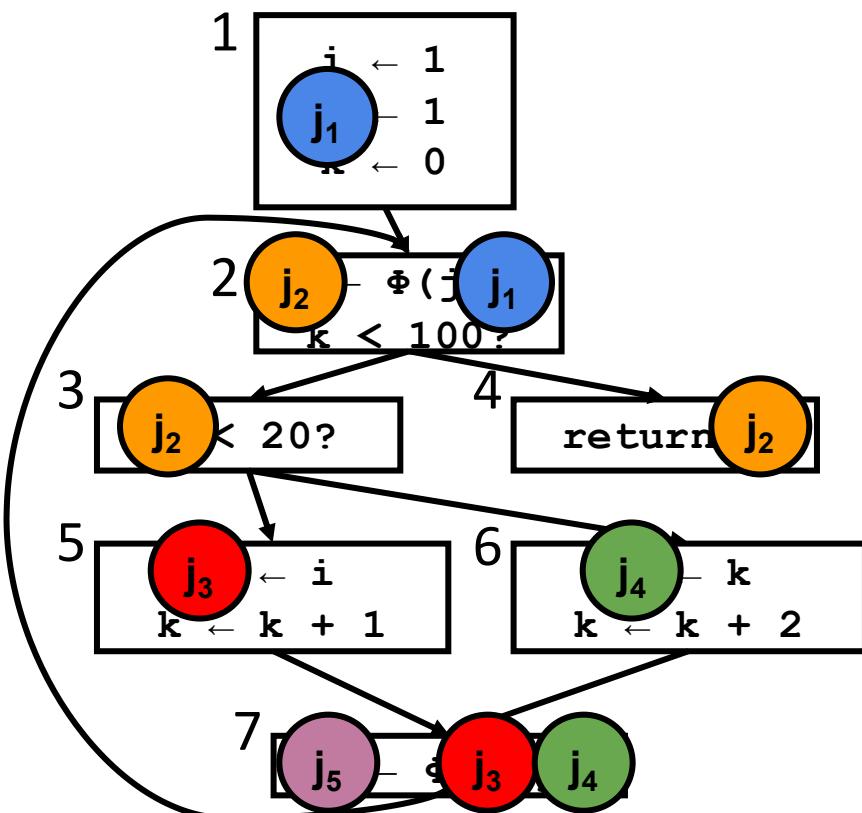
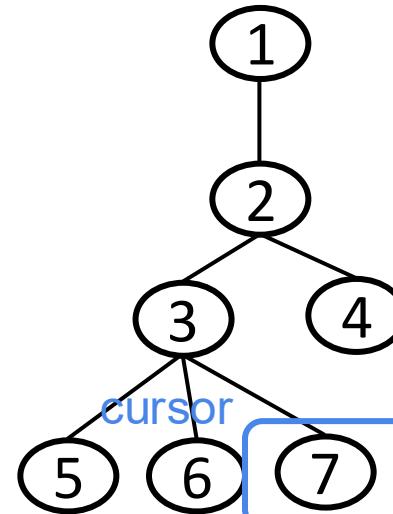


defsites[v]

i	{1}
j	{1,5,6,7,2}
k	{1,5,6}

The following slides do not follow the algorithm above.

Rename j variables



defsites[v]

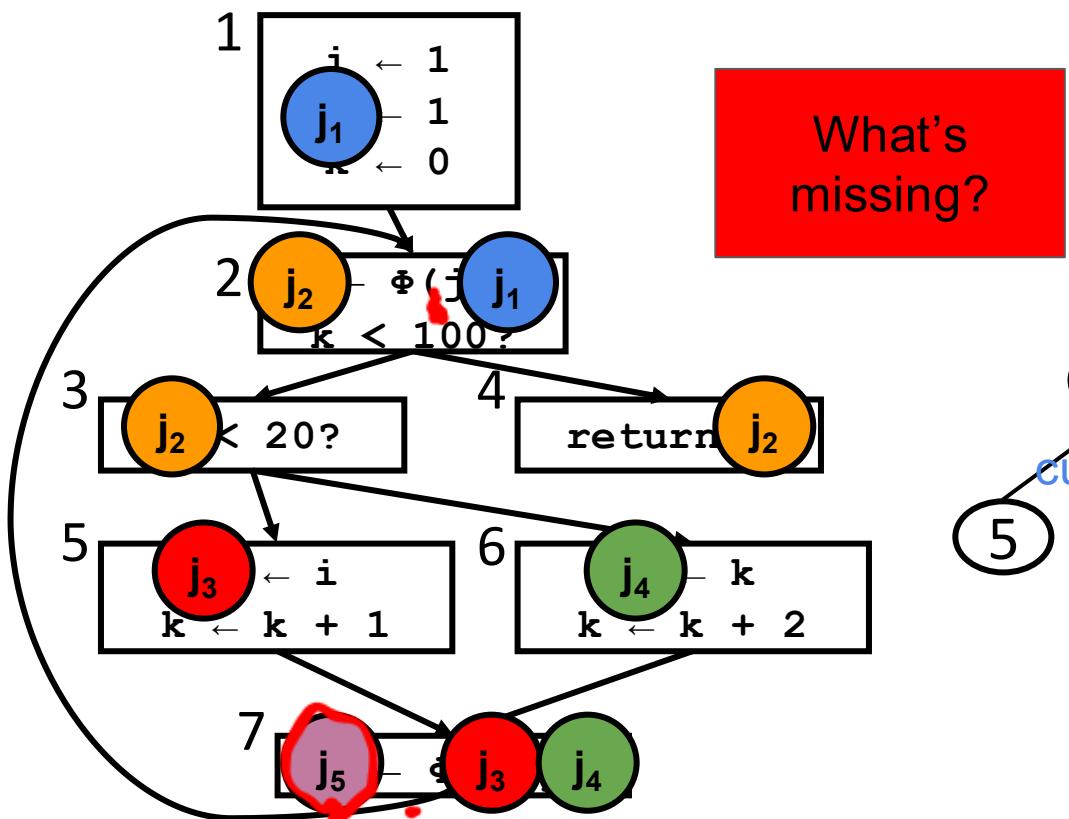
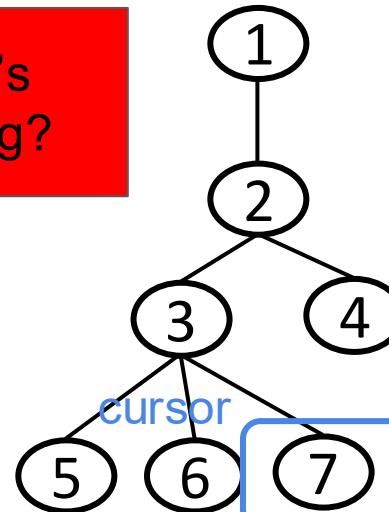
i {1}

j {1,5,6,7,2}

k {1,5,6}

The following slides do not follow the algorithm above.

Rename j variables

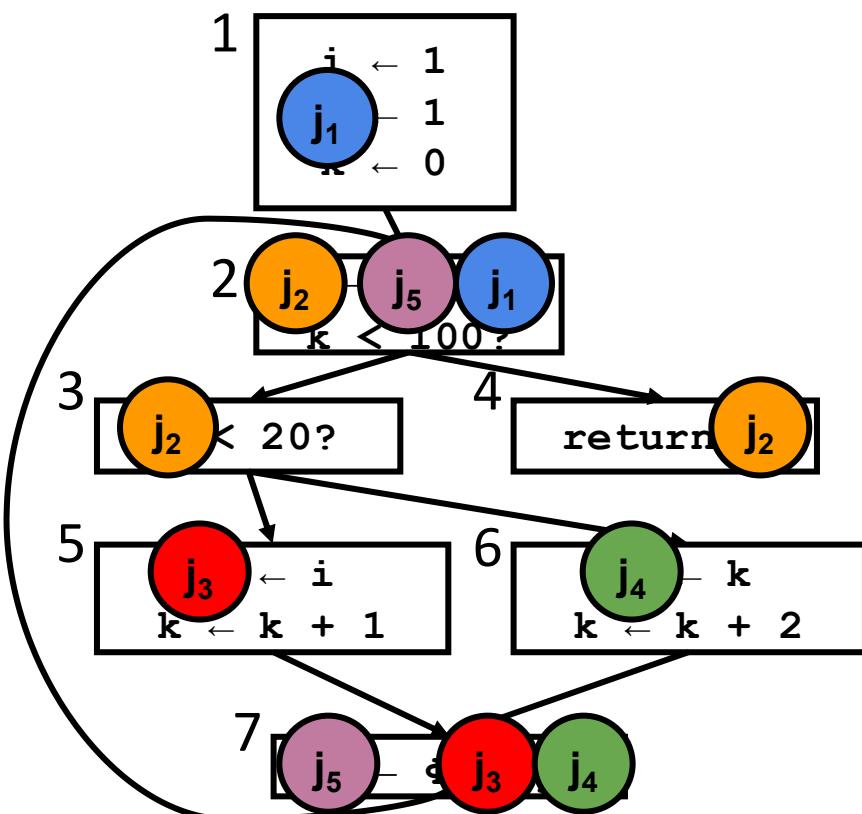
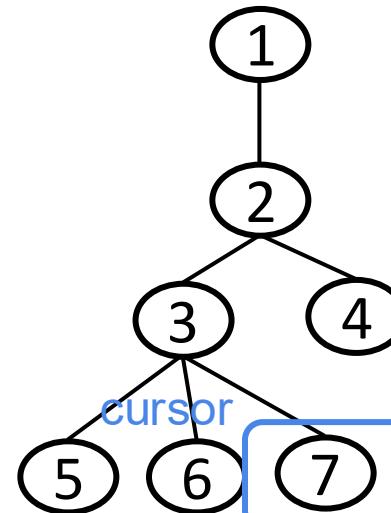


defsites[v]

i	{1}
j	{1,5,6,7,2}
k	{1,5,6}

The following slides do not follow the algorithm above.

Rename j variables



defsites[v]

i {1}

j {1,5,6,7,2}

k {1,5,6}

The following slides do not follow the algorithm above.

Flavors of SSA

- Minimal SSA

- at each join point with >1 outstanding definition insert a φ -function
- Some may be dead

- Pruned SSA

- only add live φ -functions
- must compute LIVEOUT

- Semi-pruned SSA

- Same as minimal SSA, but only on names live across more than 1 basic block

Summary

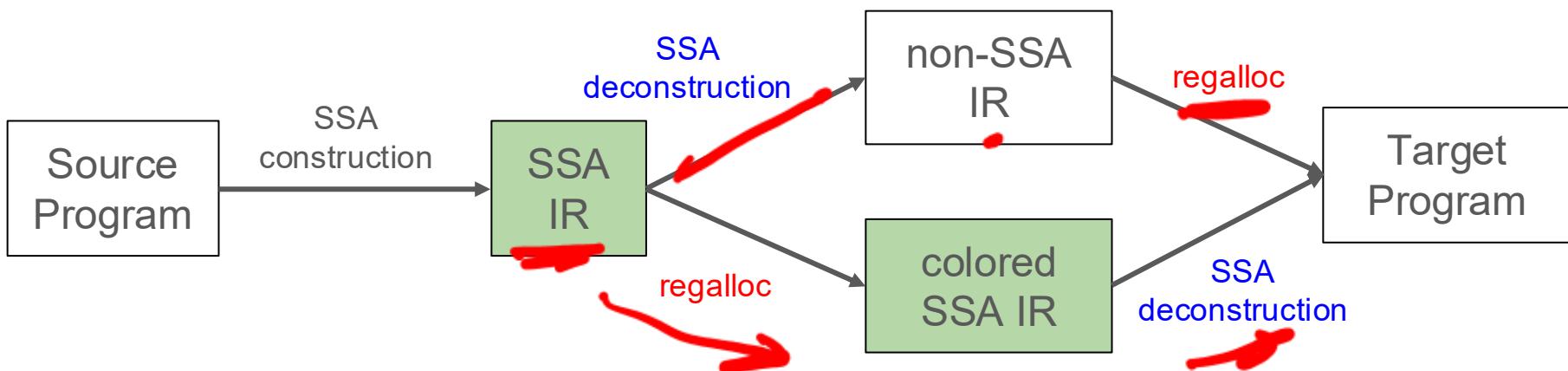
- SSA is a useful and efficient IR.
- Definitions dominate uses
- Constructing SSA can be efficient
(No need to do Lengaur-Tarjan Algorithm, instead see
A Simple, Fast Dominance Algorithm by Cooper, Harvey, and Kennedy)
- Don't do any optimizations yet!

Deconstructing SSA

- Real machines don't have Φ functions.
- Have to insert moves at predecessors.
- Mentioned earlier, but with huge caveats.
- We resolve those caveats today.

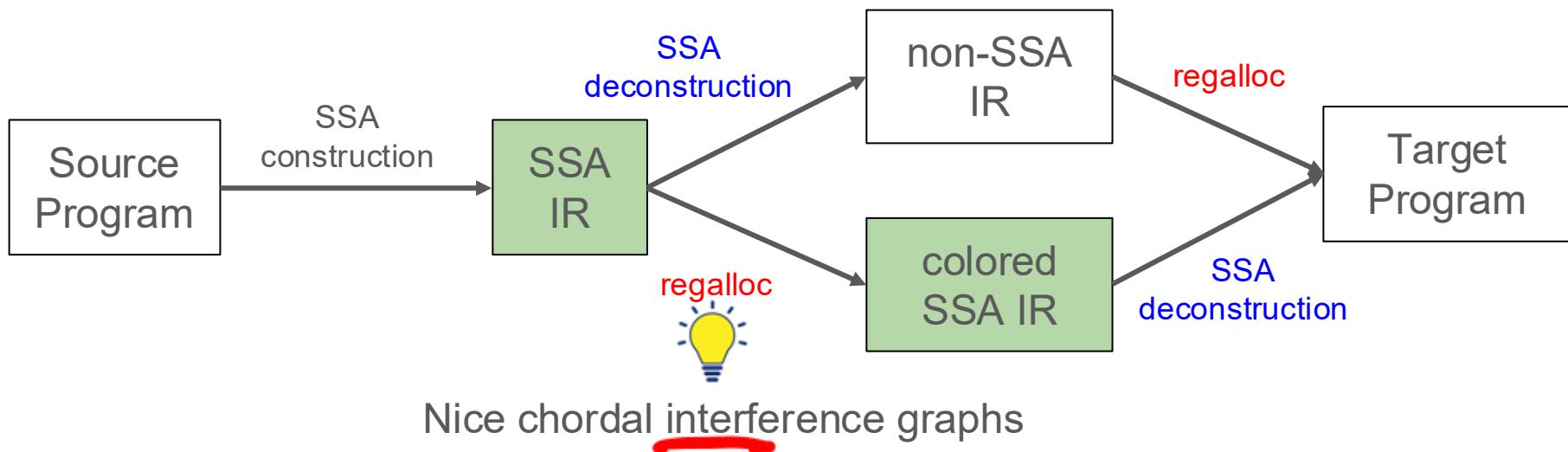
Deconstructing SSA

- When during compilation to deconstruct SSA?
- There are two common choices: before or after regalloc.
- Regalloc before deconstruction is relatively new (2010s).



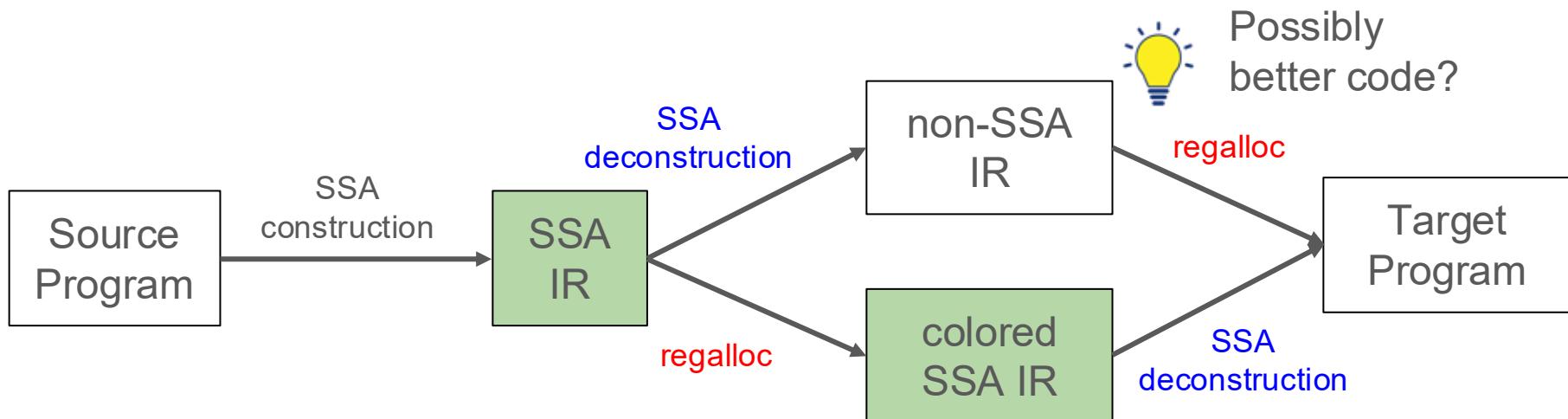
Deconstructing SSA

- When during compilation to deconstruct SSA?
- There are two common choices: before or after regalloc.
- Regalloc before deconstruction is relatively new (2010s).



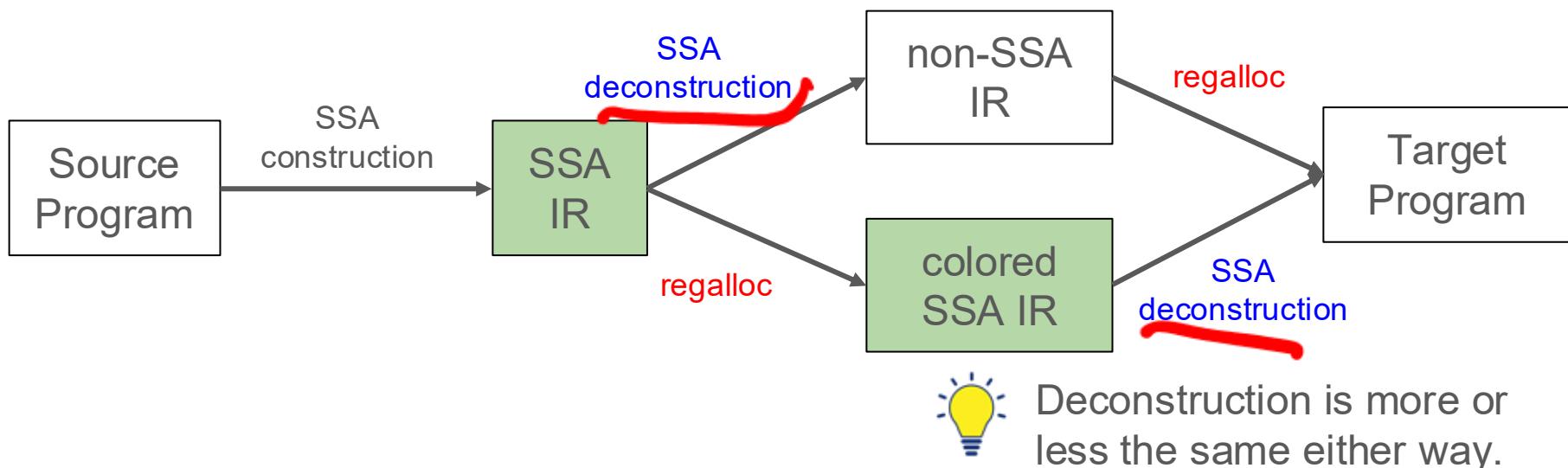
Deconstructing SSA

- When during compilation to deconstruct SSA?
- There are two common choices: before or after regalloc.
- Regalloc before deconstruction is relatively new (2010s).



Deconstructing SSA

- When during compilation to deconstruct SSA?
- There are two common choices: before or after regalloc.
- Regalloc before deconstruction is relatively new (2010s).



Deconstructing SSA

- Insert moves according to the positional correspondence of inputs.

```
 $a_1 \leftarrow x + y$   
 $b_1 \leftarrow a_1 + x$   
 $a_3 \leftarrow a_1$   
 $c_3 \leftarrow c_1$ 
```

```
 $a_2 \leftarrow b + 2$   
 $c_2 \leftarrow y + 1$   
 $a_3 \leftarrow a_2$   
 $c_3 \leftarrow c_2$ 
```

```
 $c_3 \leftarrow \Phi(a_1, a_2)$   
 $c_3 \leftarrow \Phi(c_1, c_2)$   
 $a_4 \leftarrow c_3 + a_3$ 
```

Deconstructing SSA

- Insert Φ -resolution moves and remove Φ s.

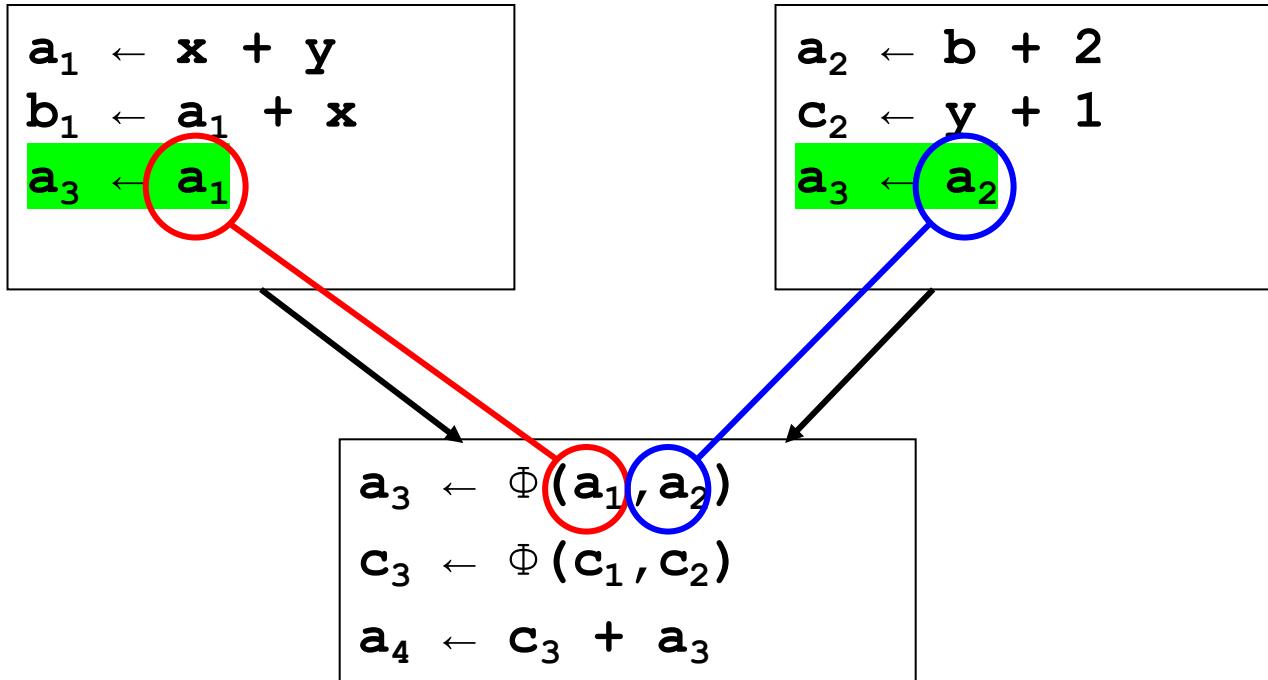
```
a1 ← x + y  
b1 ← a1 + x
```

```
a2 ← b + 2  
c2 ← y + 1
```

```
a3 ←  $\Phi(a_1, a_2)$   
c3 ←  $\Phi(c_1, c_2)$   
a4 ← c3 + a3
```

Deconstructing SSA

- Insert moves according to the positional correspondence of inputs.



Deconstructing SSA

- Insert moves according to the positional correspondence of inputs.

```
a1 ← x + y
b1 ← a1 + x
a3 ← a1
```



```
a2 ← b + 2
c2 ← y + 1
a3 ← a2
```

Notice the alignment of data flow and control flow. The Φ nodes represent this explicitly in the IR.

```
a3 ←  $\Phi(a_1, a_2)$ 
c3 ←  $\Phi(c_1, c_2)$ 
a4 ← c3 + a3
```

Deconstructing SSA

- Insert moves according to the positional correspondence of inputs.

```
a1 ← x + y
b1 ← a1 + x
a3 ← a1
c3 ← c1
```

```
a2 ← b + 2
c2 ← y + 1
a3 ← a2
c3 ← c2
```

Each Φ introduces one move into each predecessor node.

```
a3 ←  $\Phi(a_1, a_2)$ 
c3 ←  $\Phi(c_1, c_2)$ 
a4 ← c3 + a3
```

Deconstructing SSA

- Insert moves according to the positional correspondence of inputs.

```
a1 ← x + y
b1 ← a1 + x
a3 ← a1
c3 ← c1
```

```
a2 ← b + 2
c2 ← y + 1
a3 ← a2
c3 ← c2
```

Remove Φ s after inserting moves.

$a_3 \leftarrow \Phi(a_1, a_2)$

$c_3 \leftarrow \Phi(c_1, c_2)$

$a_4 \leftarrow c_3 + a_3$

Deconstructing SSA

- Insert moves according to the positional correspondence of inputs.

```

$$\begin{aligned} a_1 &\leftarrow x + y \\ b_1 &\leftarrow a_1 + x \\ a_3 &\leftarrow a_1 \\ \underline{c_3} &\leftarrow c_1 \end{aligned}$$

```

```

$$\begin{aligned} a_2 &\leftarrow b + 2 \\ c_2 &\leftarrow y + 1 \\ \underline{a_3} &\leftarrow a_2 \\ c_3 &\leftarrow c_2 \end{aligned}$$

```

Removing all Φ s after deconstruction gives a completely valid non-SSA program.

```

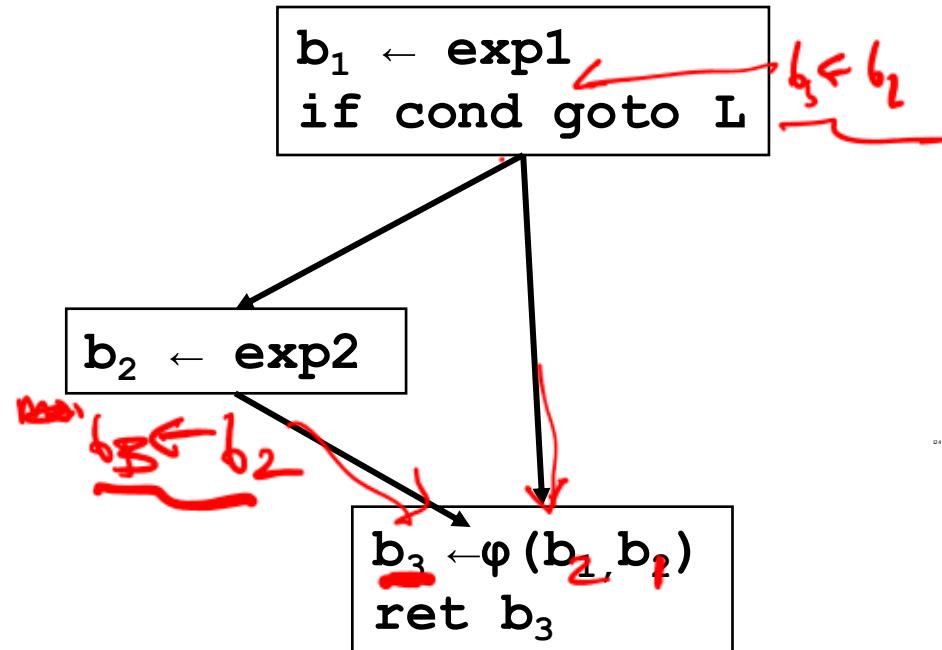
$$a_4 \leftarrow c_3 + a_3$$

```

The program is now directly executable again.

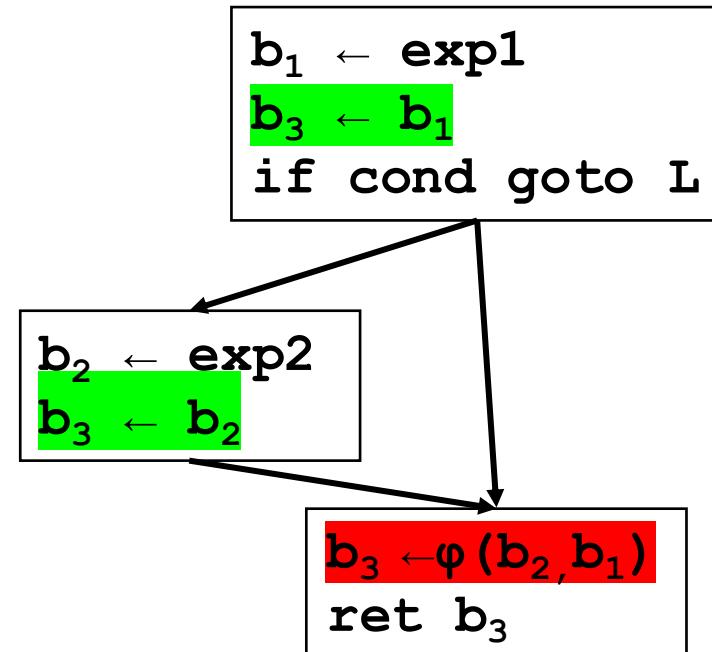
Issue 1: Critical Edges

- Consider a simple triangle CFG.



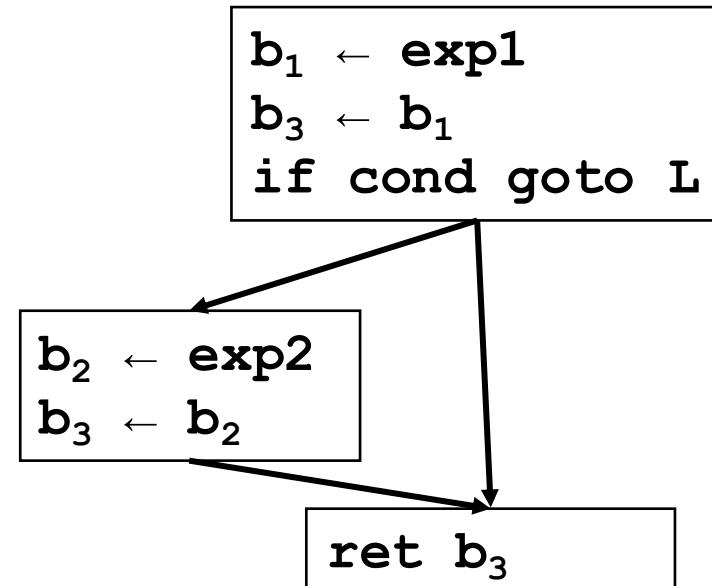
Issue 1: Critical Edges

- Consider a simple triangle CFG.
- We insert moves in both predecessors and remove the Φ .



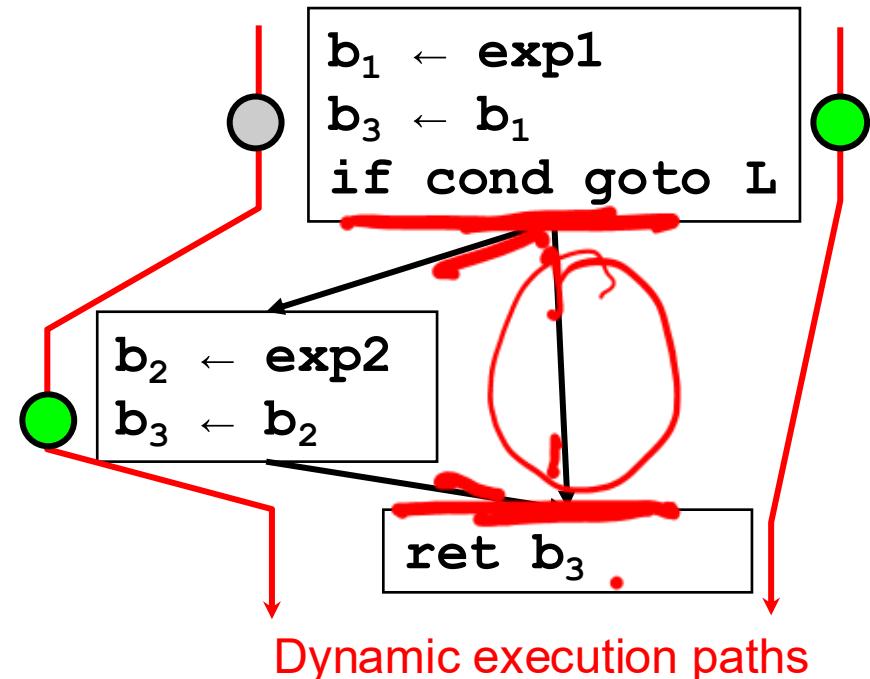
Issue 1: Critical Edges

- Consider a simple triangle CFG.
- We insert moves in both predecessors and remove the Φ .



Issue 1: Critical Edges

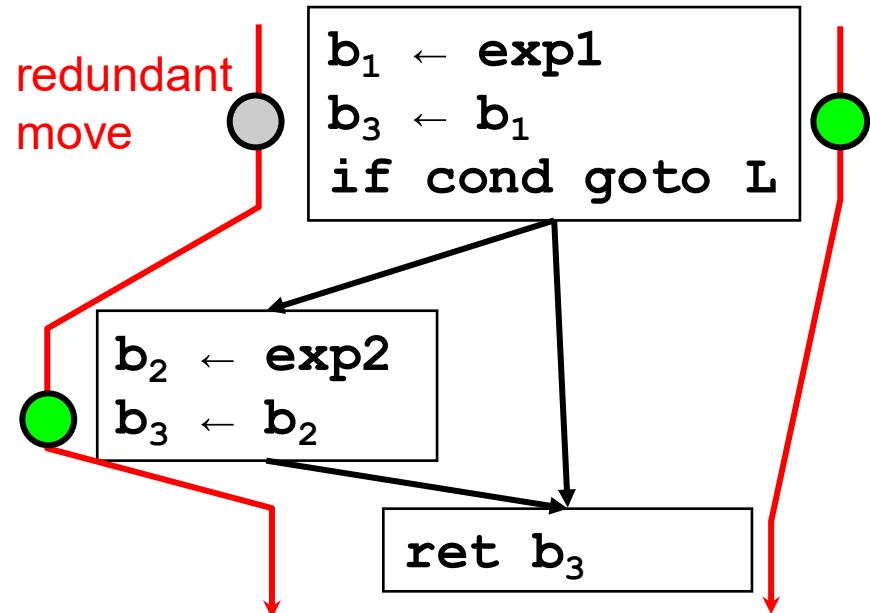
- Consider a simple triangle CFG.
- We insert moves in both predecessors and remove the Φ .



Issue 1: Critical Edges

- Consider a simple triangle CFG.
- We insert moves in both predecessors and remove the Φ .

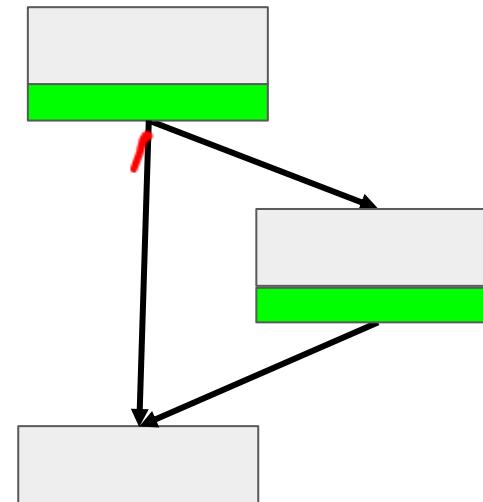
Naïve insertion can introduce redundant code on some execution paths.



Issue 1: Critical Edges

- Consider a simple triangle CFG.
- We insert moves in both predecessors and remove the Φ .

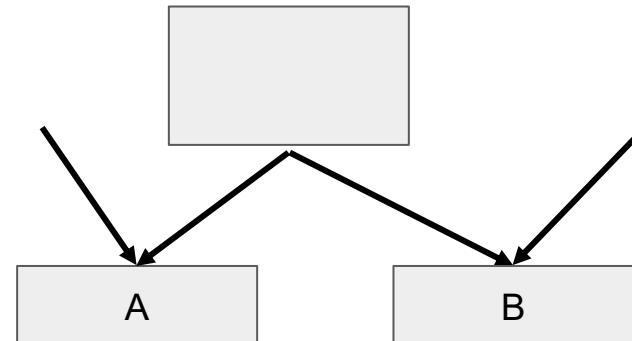
Naïve insertion can introduce redundant code on some execution paths.



Issue 1: Critical Edges

- Consider a *more complicated* CFG.
- We insert moves in *all* predecessors and remove the Φ .

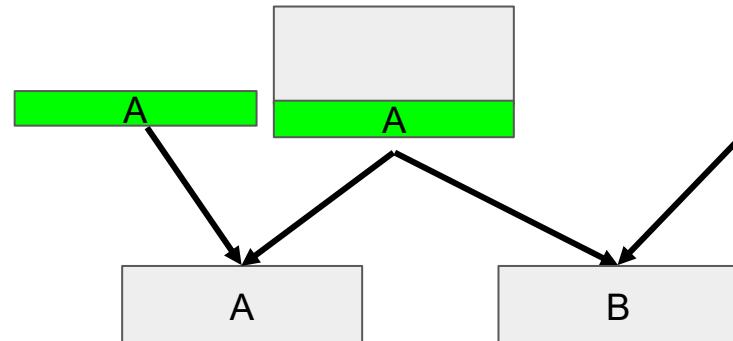
Naïve insertion can introduce redundant code on some execution paths.



Issue 1: Critical Edges

- Consider a *more complicated* CFG.
- We insert moves in *all* predecessors and remove the Φ .

Naïve insertion can introduce redundant code on some execution paths.

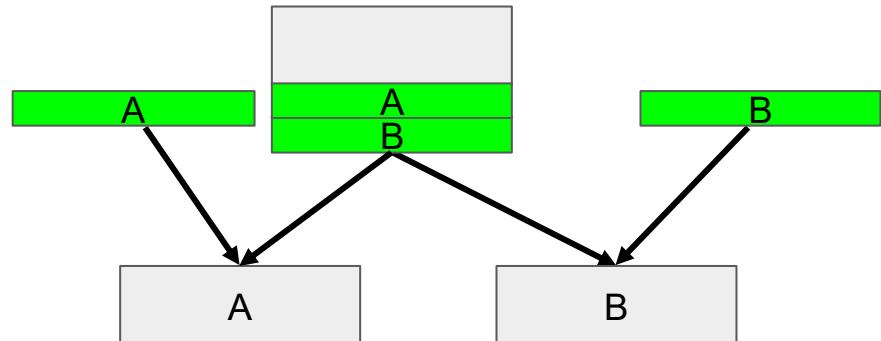


Issue 1: Critical Edges

- Consider a *more complicated* CFG.
- We insert moves in *all* predecessors and remove the Φ .

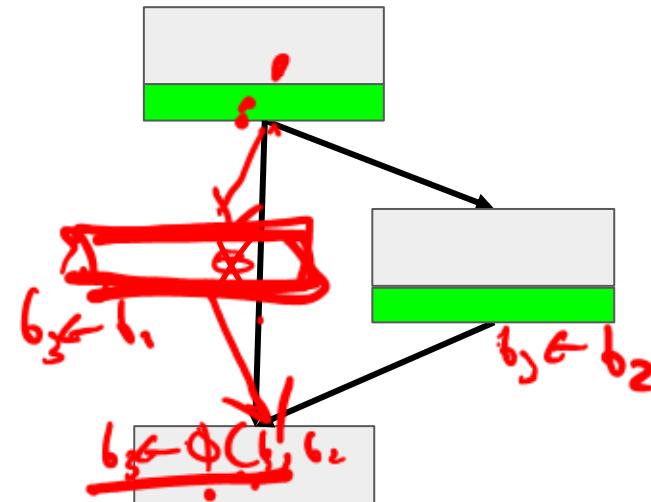
Naïve insertion can introduce redundant code on some execution paths.

Can actually get *really* bad.



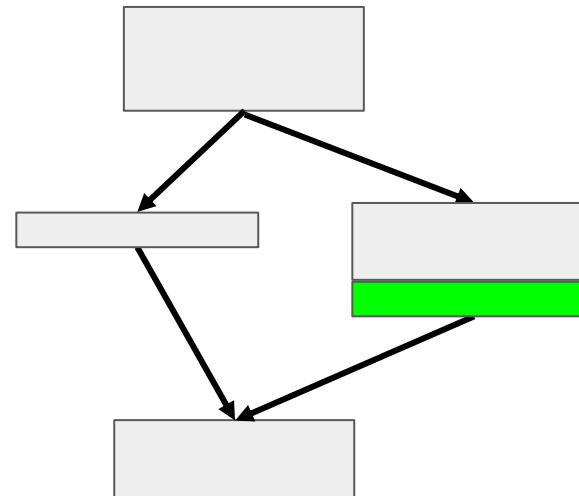
Splitting Critical Edges

- To avoid redundant moves, split *critical edges* by inserting an empty block between.



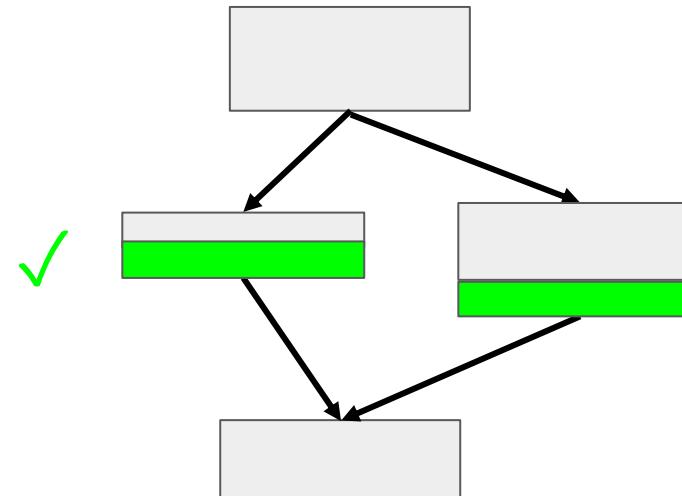
Splitting Critical Edges

- To avoid redundant moves, split *critical edges* by inserting an empty block between.



Splitting Critical Edges

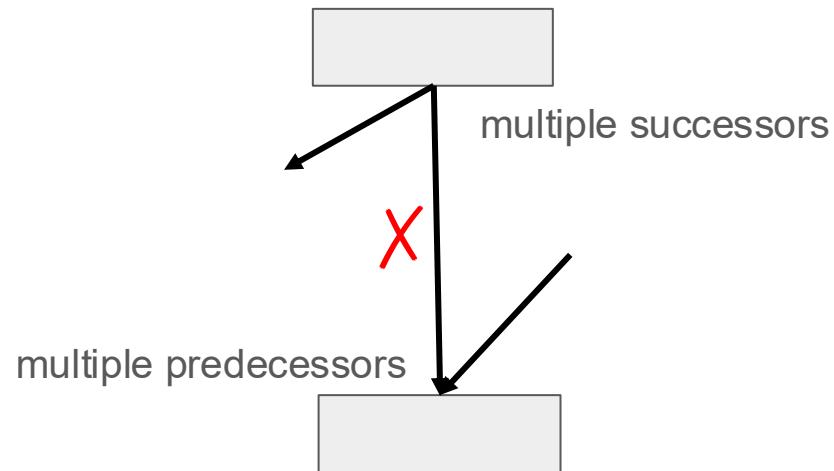
- To avoid redundant moves, split *critical edges* by inserting an empty block between.
- This block is the proper place for Φ -resolution moves.



Splitting Critical Edges

- To avoid redundant moves, split *critical edges* by inserting an empty block between.
- This block is the proper place for Φ -resolution moves.

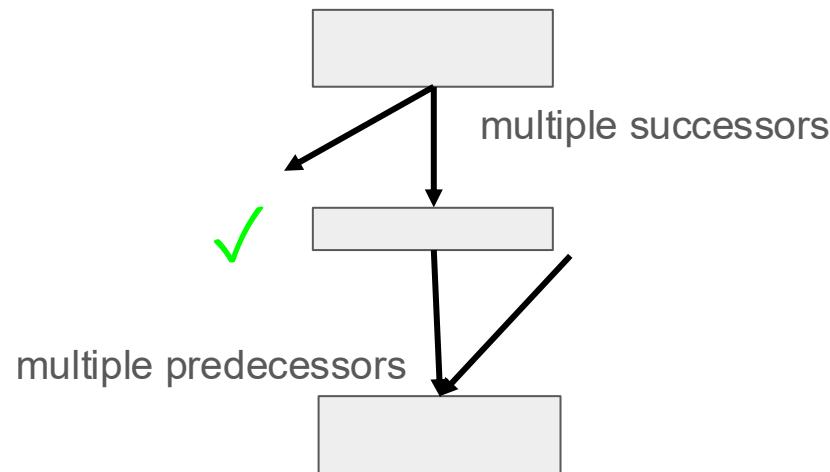
A *critical edge* is any edge that connects a block with multiple successors to a block with multiple predecessors.



Splitting Critical Edges

- To avoid redundant moves, split *critical edges* by inserting an empty block between.
- This block is the proper place for Φ -resolution moves.

Splitting all critical edges prior to SSA deconstruction is easy.

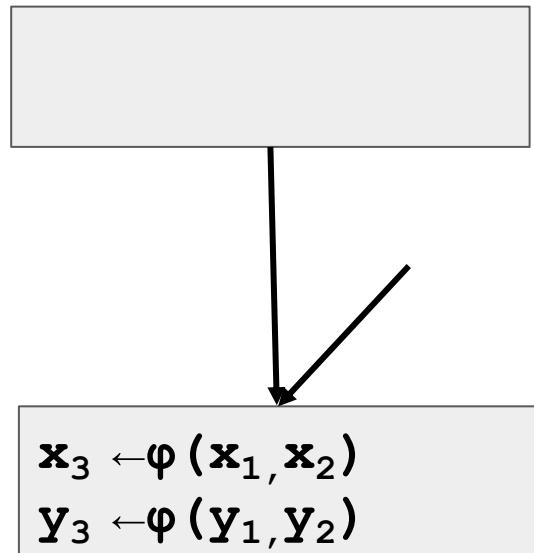


Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- For CFGs without loops, *no*.
- Let's convince ourselves.

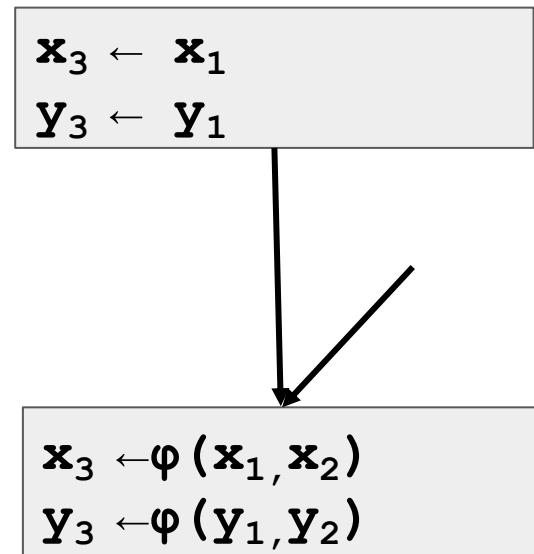
Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- Consider a join with at least two Φ s.



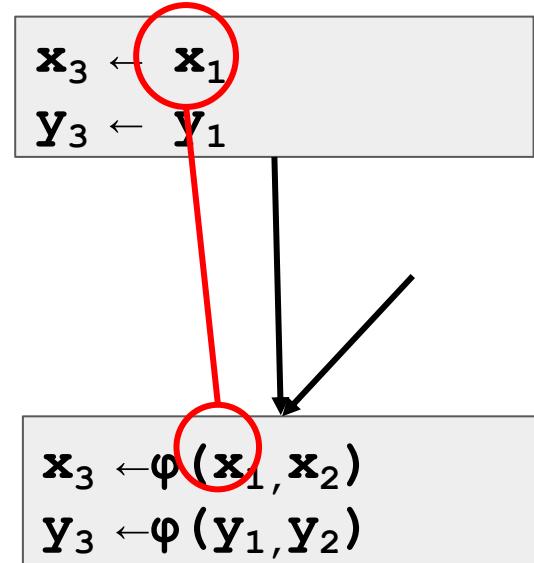
Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- Consider a join with at least two Φ s.
- Moves are inserted into predecessors.



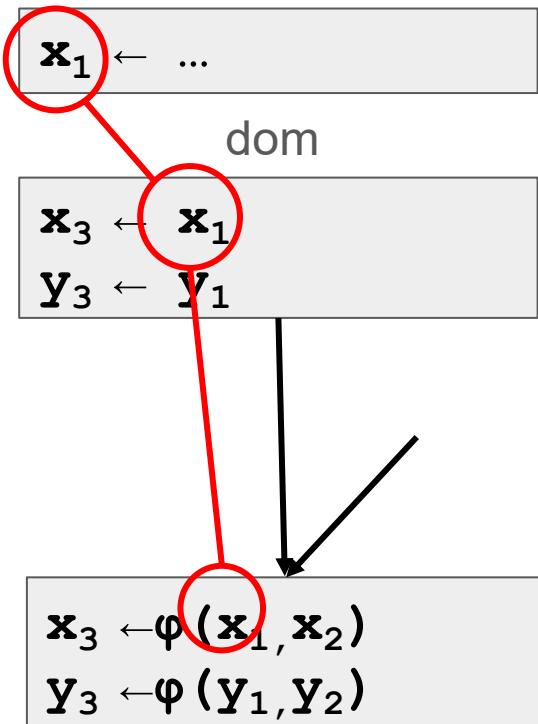
Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- Consider a join with at least two Φ s.
- Moves are inserted into predecessors.



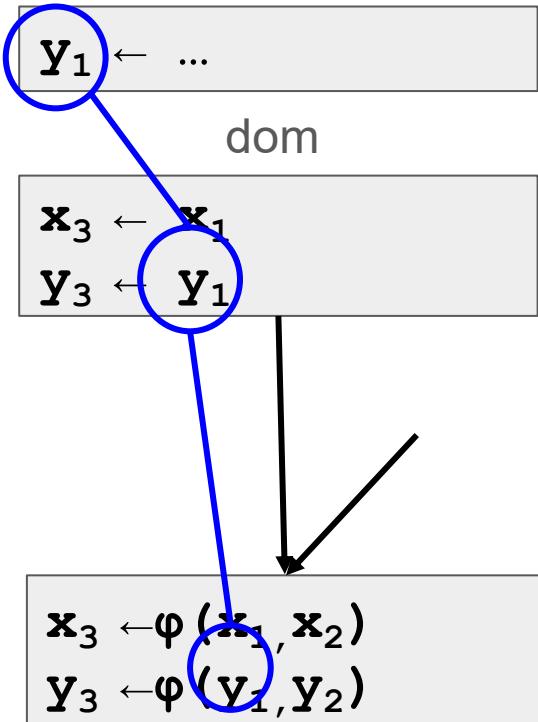
Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- Consider a join with at least two Φ s.
- Moves are inserted into predecessors.
- By SSA invariants, the definition of the RHS of each move dominates the move.



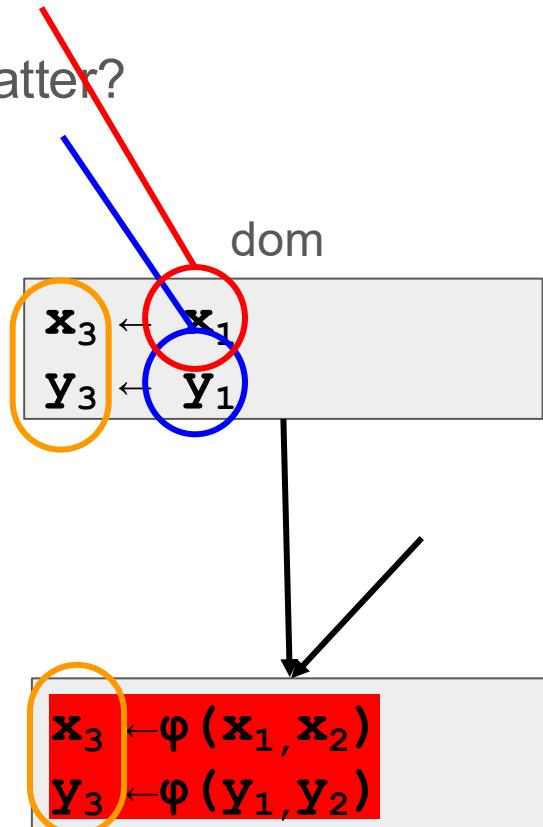
Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- Consider a join with at least two Φ s.
- Moves are inserted into predecessors.
- By SSA invariants, the definition of the RHS of each move dominates the move.



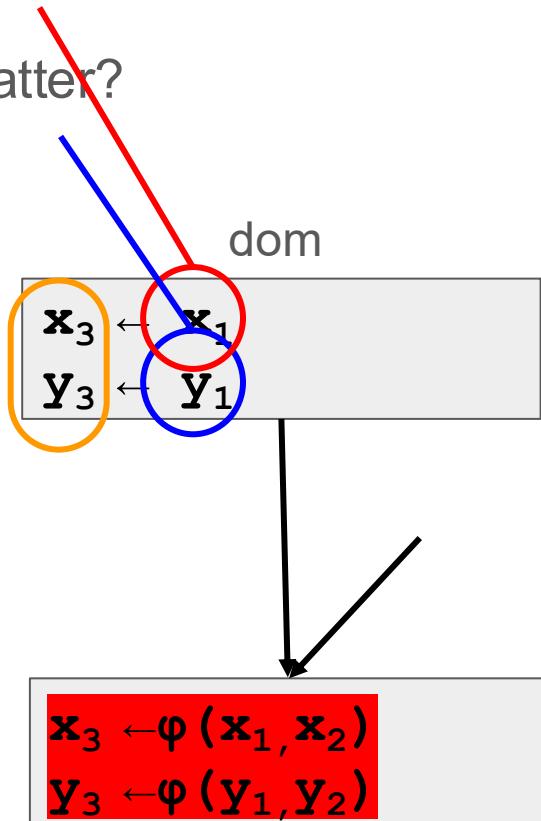
Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- Consider a join with at least two Φ s.
- Moves are inserted into predecessors.
- By SSA invariants, the definition of the RHS of each move dominates the move.
- **It cannot be the case that the LHS is live, because previously there was only one definition, below.**



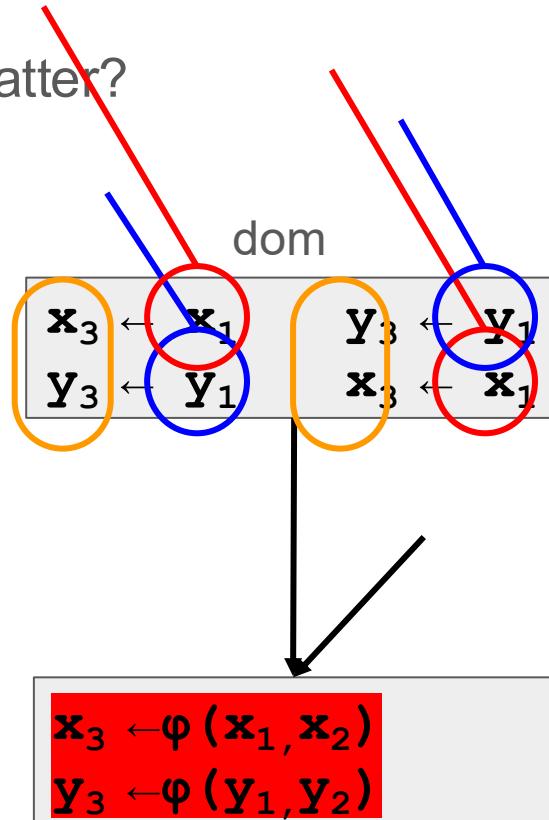
Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- Consider a join with at least two Φ s.
- Moves are inserted into predecessors.
- By SSA invariants, the definition of the RHS of each move dominates the move.
- It cannot be the case that the LHS is live, because previously there was only one definition, below.
- **Therefore we are only assigning to fresh variables, and not overwriting anything.**



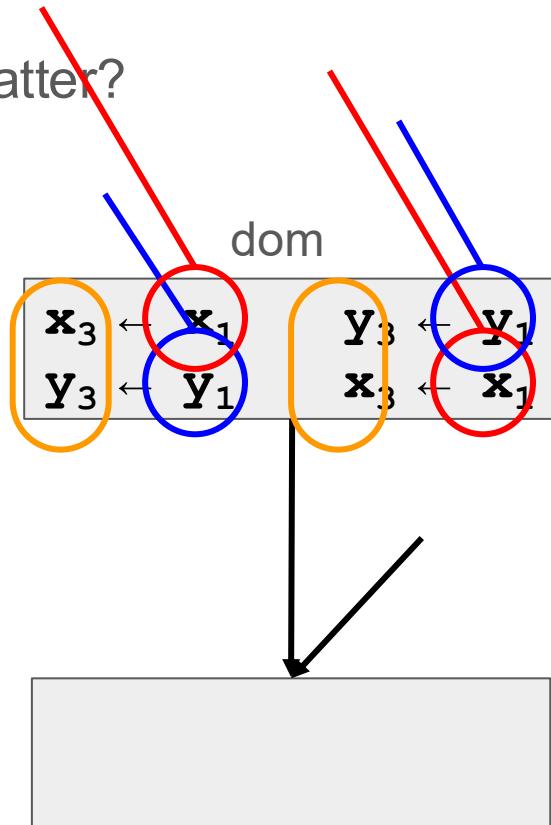
Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- Consider a join with at least two Φ s.
- Moves are inserted into predecessors.
- By SSA invariants, the definition of the RHS of each move dominates the move.
- It cannot be the case that the LHS is live, because previously there was only one definition, below.
- Therefore we are only assigning to fresh variables, and not overwriting anything.
- **Therefore any order is fine.**



Issue 2: Ordering Moves

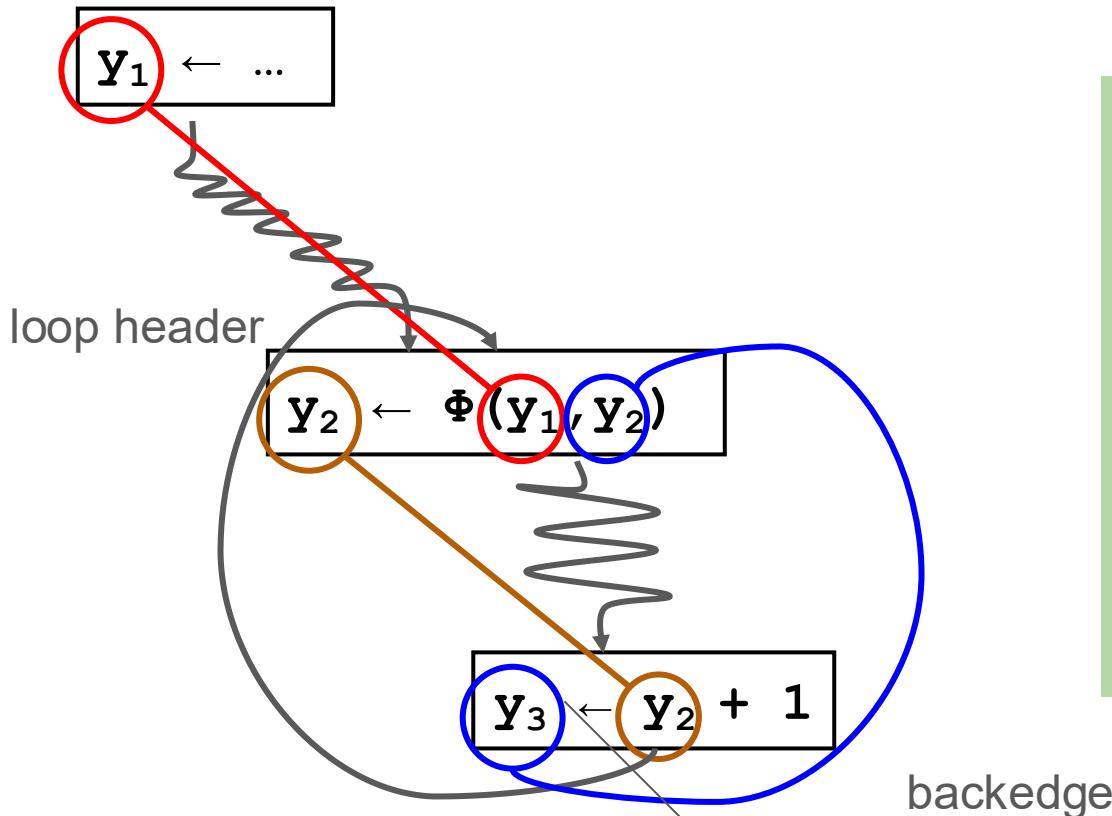
- Does the order of Φ -resolution moves matter?
- Consider a join with at least two Φ s.
- Moves are inserted into predecessors.
- By SSA invariants, the definition of the RHS of each move dominates the move.
- It cannot be the case that the LHS is live, because previously there was only one definition, below.
- Therefore we are only assigning to fresh variables, and not overwriting anything.
- **Therefore any order is fine.**



Issue 2: Ordering Moves

- Does the order of Φ -resolution moves matter?
- For CFGs without loops, *no*.
- But what about loops?

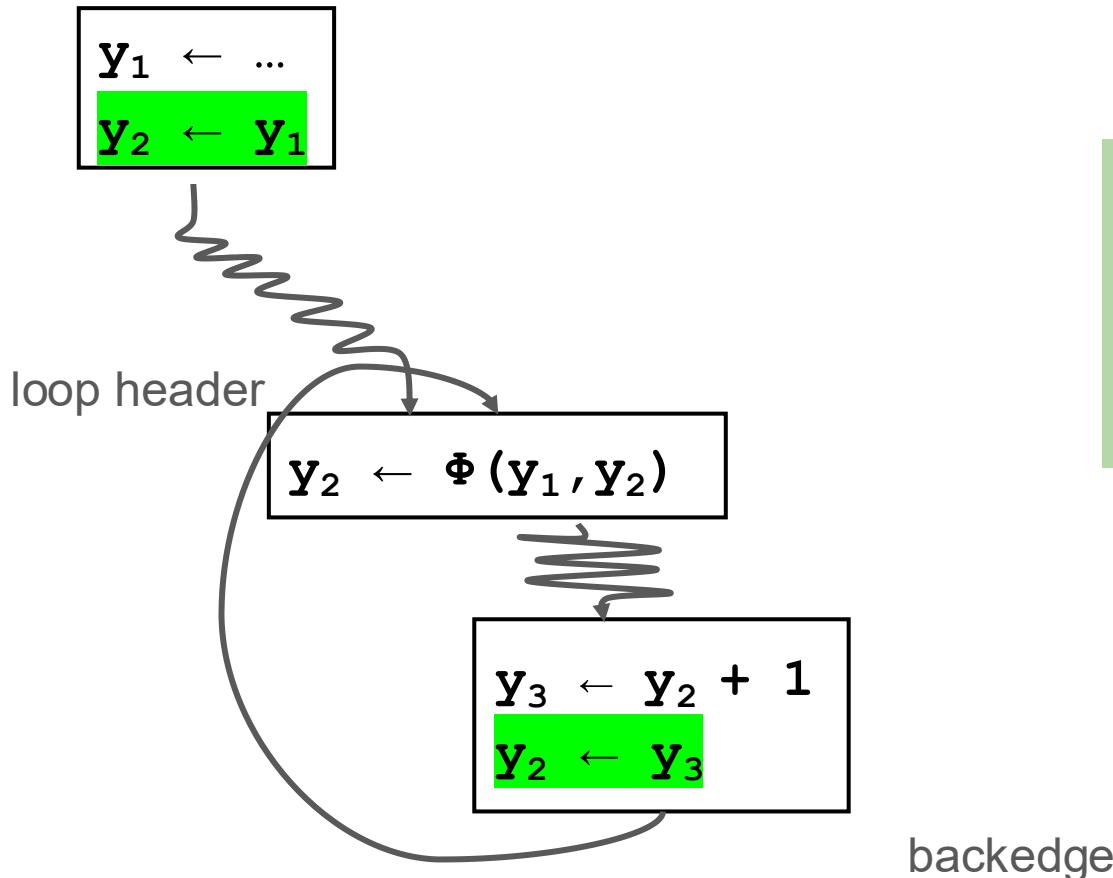
Issue 2: Ordering Moves



Φ s at loop headers relate the dataflow on a loop backedge with the control flow.

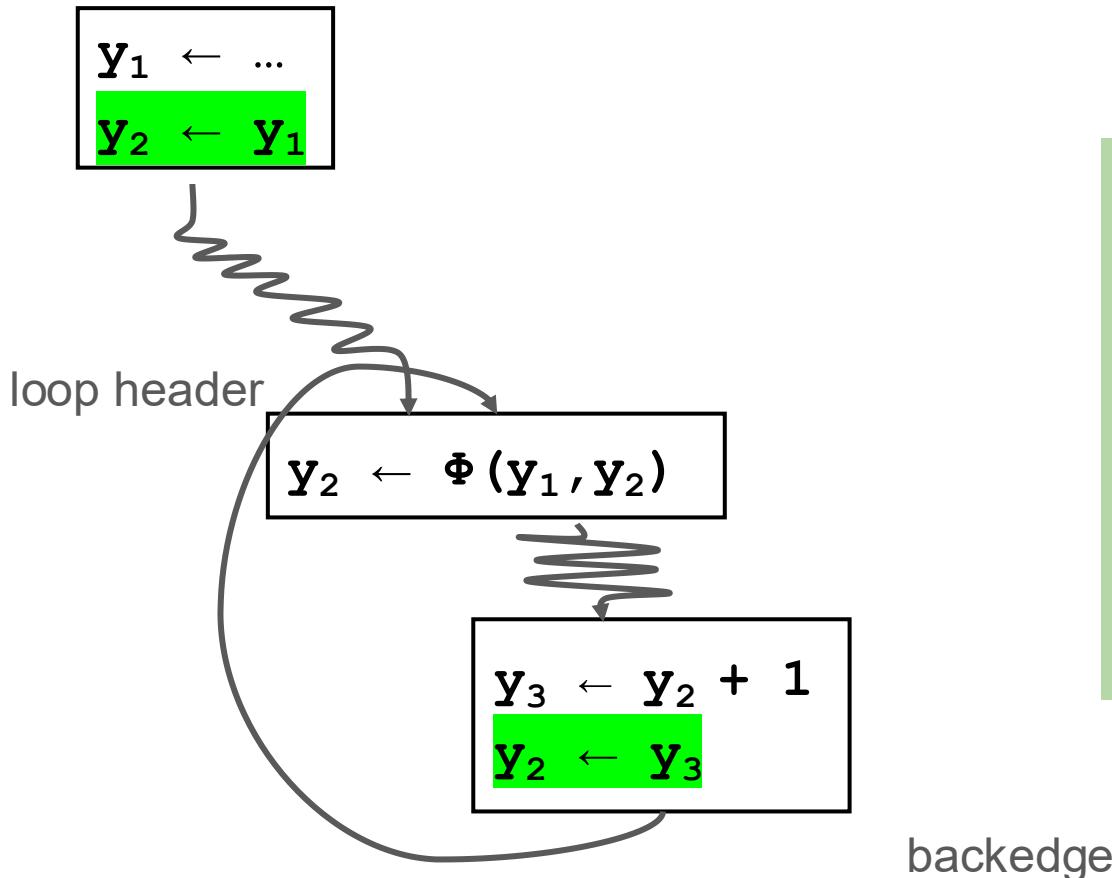
A loop Φ can be defined in terms of itself.

Issue 2: Ordering Moves



Like any other join, we insert Φ -resolution moves at predecessors.

Issue 2: Ordering Moves

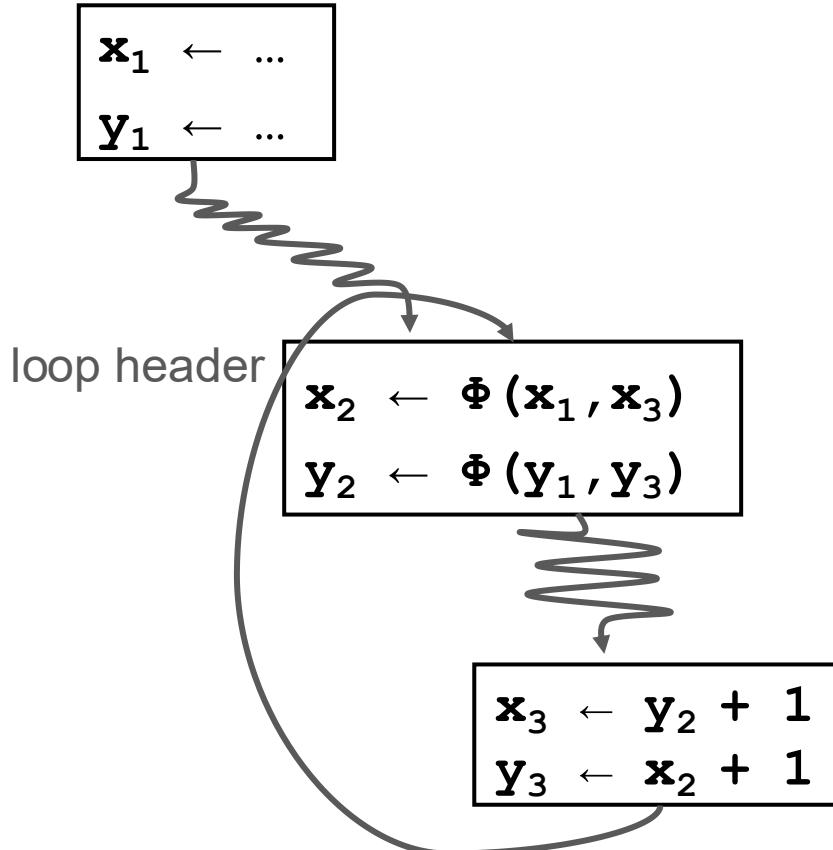


Like any other join, we insert Φ -resolution moves at predecessors.

With only one Φ , there is no problem yet.

backedge

Issue 2: Ordering Moves

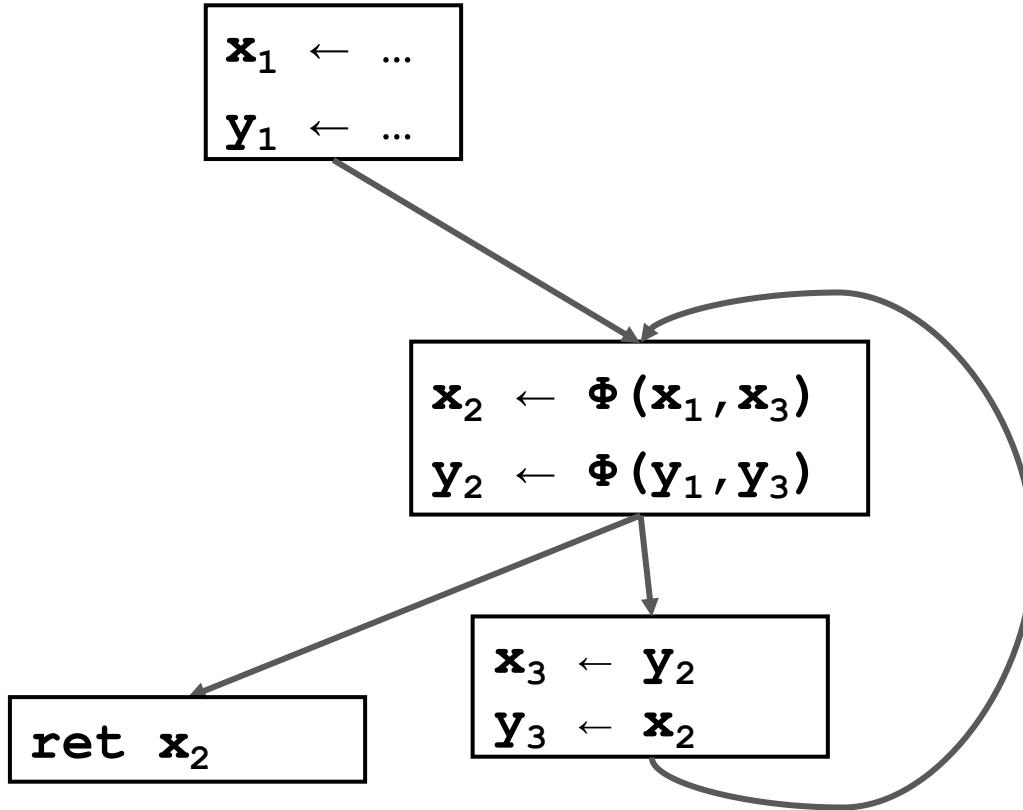


Like any join, a loop header can have multiple Φ s.

Because Φ s can use inductively defined versions of themselves, they can be recursive or even *mutually recursive*.

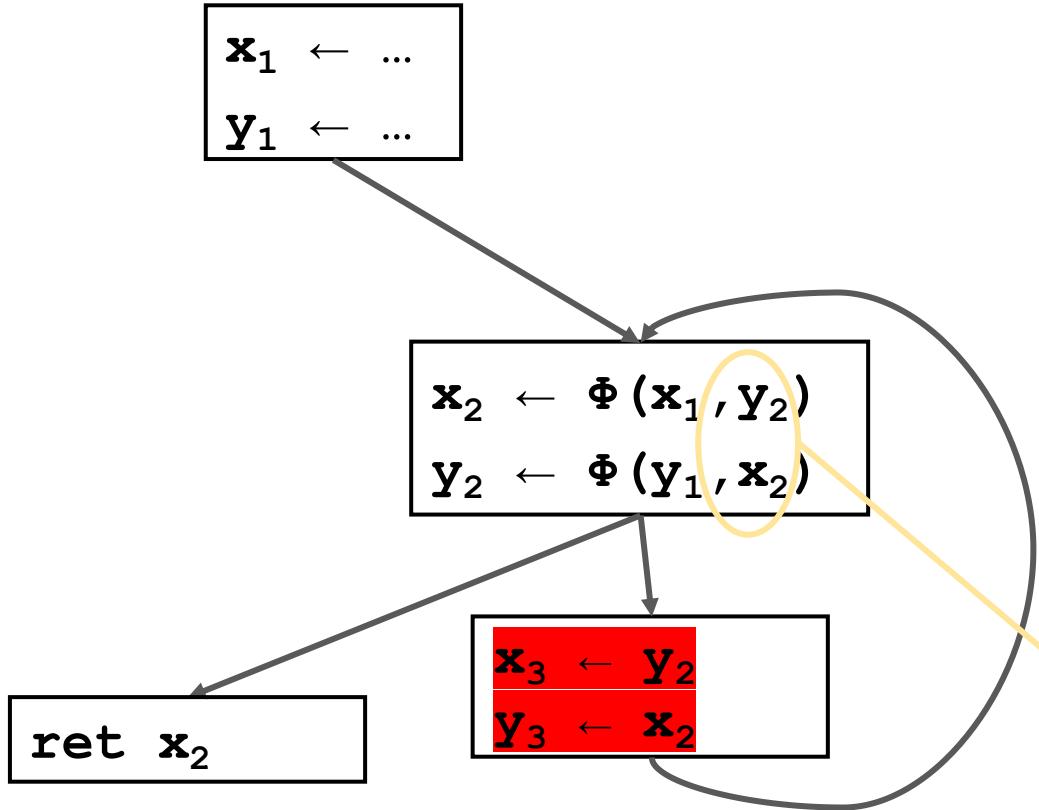
backedge

Issue 2: Ordering Moves



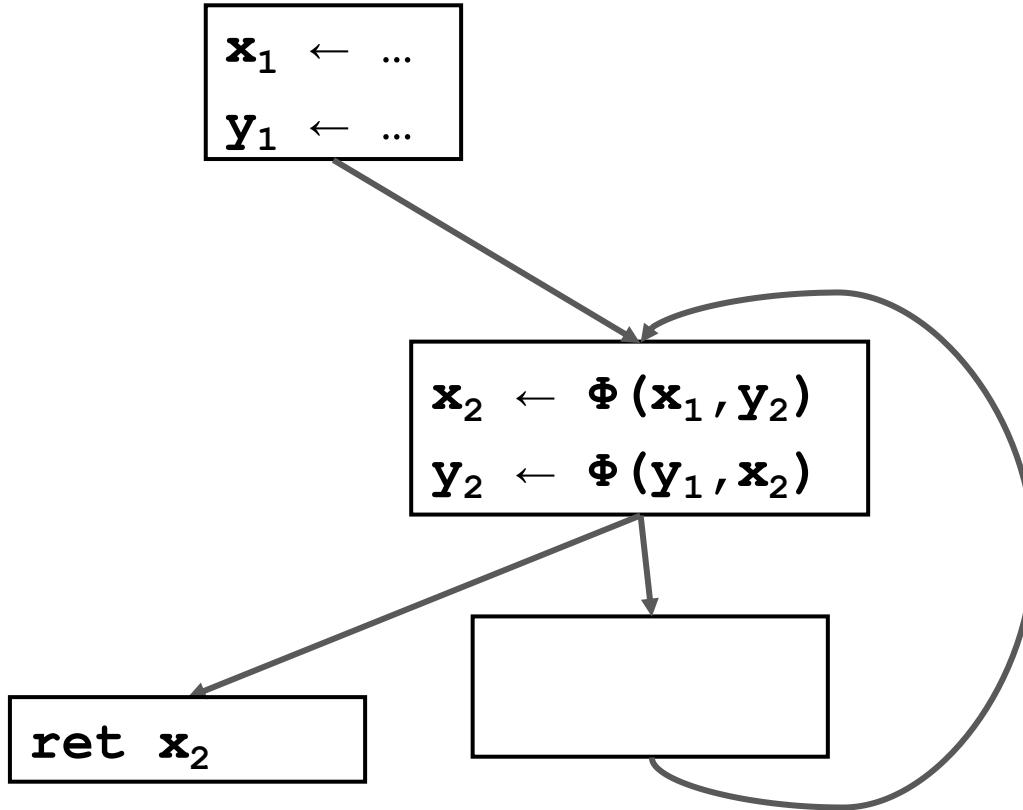
A simple example:
swap of variables in
a loop.

Issue 2: Ordering Moves



After optimizations such as copy propagation, the Φ s can be mutually recursive.

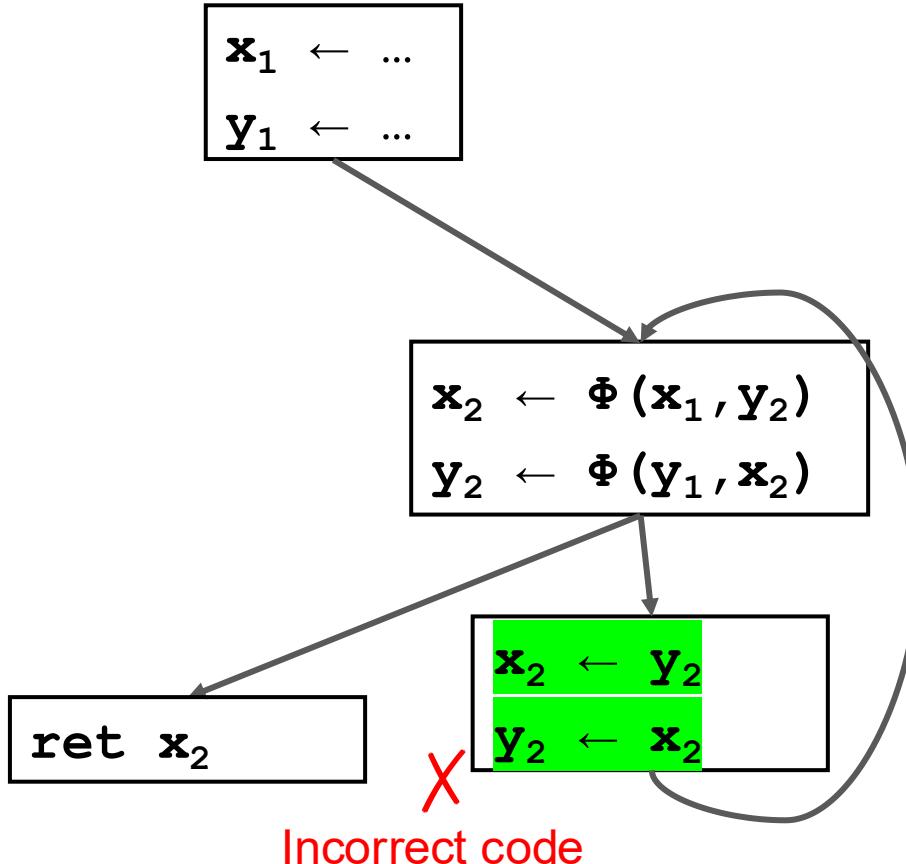
Issue 2: Ordering Moves



After optimizations such as copy propagation, the Φ s can be mutually recursive.

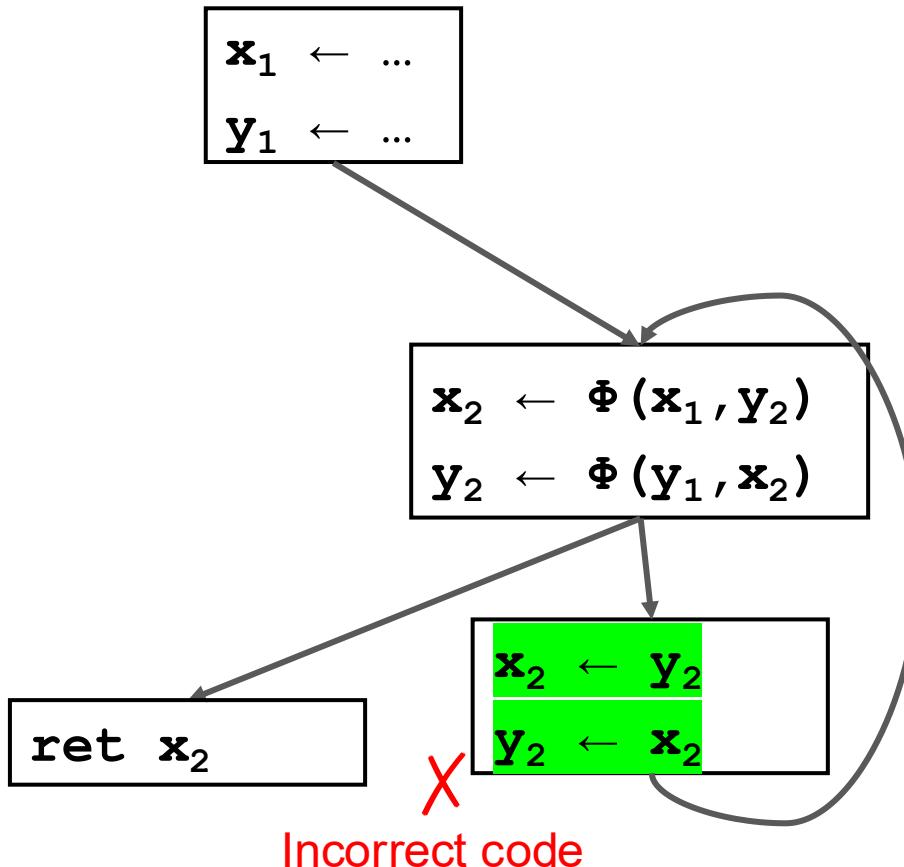
This is totally legal and cool.

Issue 2: Ordering Moves

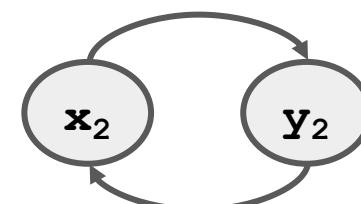


SSA deconstruction using the naïve move insertion will always generate incorrect code, regardless of the order.

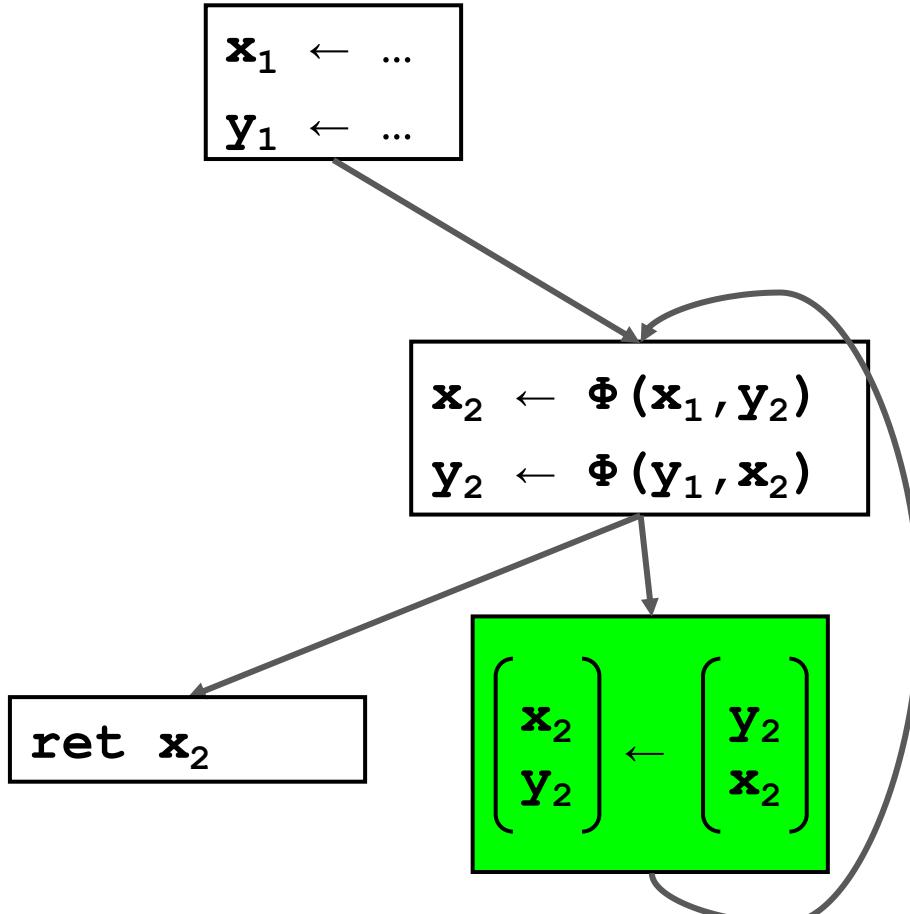
Issue 2: Ordering Moves



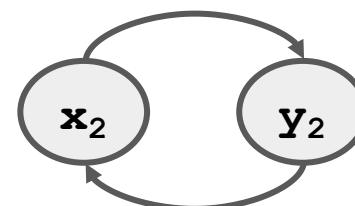
SSA deconstruction using the naïve move insertion will always generate incorrect code, regardless of the order.



Issue 2: Ordering Moves



The reason is that phi resolution moves have *parallel move* semantics.



Implementing Parallel Moves

- Φ resolution moves must be done in parallel, without overwriting old versions.
- One simple solution: introduce new temps again.

$$\begin{pmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} \leftarrow \begin{pmatrix} \mathbf{y}_0 \\ \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{pmatrix}$$

generates

$$\begin{aligned} \mathbf{t}_0 &\leftarrow \mathbf{y}_0 \\ \mathbf{t}_1 &\leftarrow \mathbf{y}_1 \\ \mathbf{t}_2 &\leftarrow \mathbf{y}_2 \\ \mathbf{t}_3 &\leftarrow \mathbf{y}_3 \\ \mathbf{x}_0 &\leftarrow \mathbf{t}_0 \\ \mathbf{x}_1 &\leftarrow \mathbf{t}_1 \\ \mathbf{x}_2 &\leftarrow \mathbf{t}_2 \\ \mathbf{x}_3 &\leftarrow \mathbf{t}_3 \end{aligned}$$

Works every time.

Generates **a lot** of temporaries, but maybe the register allocator / copy propagation can clean them up?

Implementing Parallel Moves

- Φ resolution moves must be done in parallel, without overwriting old versions.
- Better solution: order moves more intelligently.

$$\begin{pmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} \leftarrow \begin{pmatrix} \mathbf{y}_0 \\ \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{pmatrix}$$

Next SSA Lecture

- Finish Deconstructing SSA
- More practice building SSA
- Constant propagation with SSA
- SSA in practice

Implementing Parallel Moves

- Φ resolution moves must be done in parallel, without overwriting old versions.
- Better solution: order moves more intelligently.

$$\begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} \leftarrow \begin{bmatrix} \mathbf{y}_0 \\ \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{bmatrix}$$

Notice that because parallel moves originate from SSA deconstruction, variables on the LHS appear only once on the LHS.

$$\mathbf{x}_0 \neq \mathbf{x}_1 \neq \mathbf{x}_2 \neq \mathbf{x}_3$$

Implementing Parallel Moves

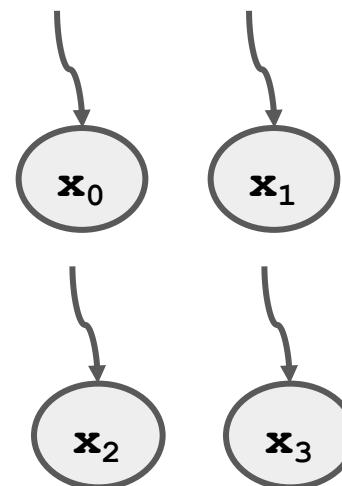
- Φ resolution moves must be done in parallel, without overwriting old versions.
- Better solution: order moves more intelligently *using LTG*.

Location Transfer Graph

$$\begin{pmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} \leftarrow \begin{pmatrix} \mathbf{y}_0 \\ \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{pmatrix}$$

We can build a graph where each node in the parallel moves gets a node, and directed edges represent moves.

$$\mathbf{x}_0 \neq \mathbf{x}_1 \neq \mathbf{x}_2 \neq \mathbf{x}_3$$



Implementing Parallel Moves

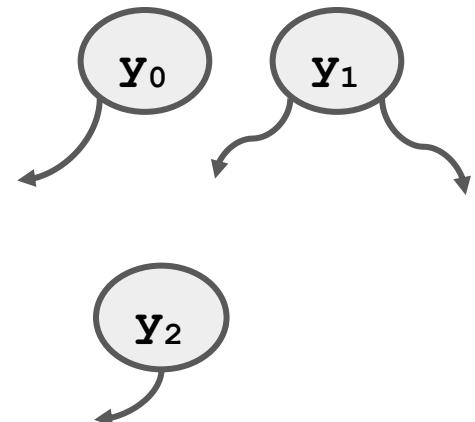
- Φ resolution moves must be done in parallel, without overwriting old versions.
- Better solution: order moves more intelligently *using LTG*.

Location Transfer Graph

$$\begin{pmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} \leftarrow \begin{pmatrix} \mathbf{y}_0 \\ \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_1 \end{pmatrix}$$

Variables may appear *multiple times* on the RHS, and may appear on both LHS and RHS.

$$\mathbf{x}_0 \neq \mathbf{x}_1 \neq \mathbf{x}_2 \neq \mathbf{x}_3$$



Location Transfer Graphs

- A location transfer graph represents a set of parallel moves.
- It can be traversed to generate a legal move ordering.
- It's constrained:
 - Every node in the graph has at most one incoming edge.
 - That implies the graph can only have simple cycles.

$$\begin{pmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} \leftarrow \begin{pmatrix} \mathbf{x}_2 \\ \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_0 \end{pmatrix}$$

