SSA (1 of 2)

15-411/15-611 Compiler Design

Seth Copen Goldstein
January 27, 2026

Today

® Trivial SSA
® (¢-functions
® Dominance

® Placement & Renaming

15-411/611 © 2019-2025 Titzer/Goldstein

SSA

@® Static single assignment is an intermediate representation
(IR) where every variable has only one definition

O Single static definition \ V/S
O (Could be in a loop which is executed dynamically many times.) 4)

® (¢-functions used at CFG join points
® All definitions dominate uses

® Variable names don’t matter; IR implementation is literally nodes
In a graph that point to each other

15-411/611 © 2019-2025 Titzer/Goldstein

Advantages of SSA

® \Makes def-use-chains explicit
® Makes dataflow optimizations more robust

O Easier to get right
O Multiple optimizations can compose
O Applies to more places
® Improves register allocation
O Makes building interference graphs easier
O Easier register allocation algorithm
O Decoupling of spill, color, and coalesce
® For most programs reduces space/time requirements

O Smaller IR, faster optimizations

15-411/611 © 2019-2025 Titzer/Goldstein

Implications of single definition

® Never have to worry about a variable being overwritten

O Before SSA, compilers had to worry about variable names and redefinitions
o A“node” in SSA IR represents a computation, rather than a storage location

® |Improves pattern-matching optimizations

o Constant propagation (y =13; x +y = !)
O Constant folding (3 + 5 w §&1)

o Strength reduction (X + 0 «w»-)

o Algebraic simplification (x + y - x «» [§i)

® Improves reasoning across control flow
® Think of it as a “bulk solution” to many forward dataflow
problems

15-411/611 © 2019-2025 Titzer/Goldstein

® Each assignment generates a fresh variable.

Trivial SSA

® At each join point insert @ functions for all live variables.

15-411/611

x1<—1

© 2019-2025 Titzer/Goldstein

Trivial SSA

® Each assignment generates a fresh variable.
® At each join point insert ® functions for all live variables.

15-411/611

x1<—1

el

T~

Z<—y+x

© 2019-2025 Titzer/Goldstein

Yo « 2

Trivial SSA

® Each assignment generates a fresh variable.
® At each join point insert ® functions for all live variables.

15-411/611

x1<—1

>

x « 1
/\
Y « X y « 2

© 2019-2025 Titzer/Goldstein

Yo « 2

Minimal SSA

® Each assignment generates a fresh variable.

® At each join point insert ® functions for all variables with multiple
outstanding defs.

= o) .

15-411/611 © 2019-2025 Titzer/Goldstein

Minimal SSA

® Each assignment generates a fresh variable.

® At each join point msertﬂg functions for all varlables with multiple
outstanding defs.

Z<—y+x

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

e Introduce ¢-functions to handle joins in CFG
e Loops have joins too!

if (x < 100) goto loop

end:

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

® SSA requires single

definition for each use X — ..
® |ntroduce @-functions Yy < -
to handle joins at loop if (x >= 100) goto end
headers too loop:
X —«x +1
y -y +1
if (x < 100) goto loop
end:

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

® SSA requires single Jx
definition for each use

® Introduce @-functions .If (x >= 100) goto end
to handle joins at loop
headers too =

loop: N
x +1
e f (x < 100) goto loop
if (x >= 100) goto end
loop:

¥ 4+~ x + 1
Y o— v 4+ 1

if (x < 100) gote loop
end:

end:

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

® SSA requires single n
. L. 1 — ..
definition for each use EL o
® Introduce @-functions if (x, >= 100) goto end
to handle joins at loop /\/\
headers too Loop; N
X3 « X, + 1
e 3 - ¥z + 1

if (x >= 100) goto end I-|:IL-:.E- (x3 < 100) goto loop

loop: /
¥ — x + 1
Y o— v 4+ 1

if (x < 100) gote loop nd:
end: e d'

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

® SSA requires single n
definition for each use vi o .

® Introduce @-functions if (x, >= 100) goto end
to handle joins at loop /\/_\
headers too Loop: N
e Y3 - ¥2 + 1

if (x >= 100) goto end if (%3 < 100) goto loop

loop: /
¥ — x + 1
Y o— v 4+ 1

if (x < 100) gote loop nd:
end: e d'

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

® SSA requires single n
. L. 1 — ..
definition for each use vi o .
® Introduce @-functions if (x, >= 100) goto end

to handle joins at loop /\/\

headers too Loop;

X3<—x2+1

— Y2 + 1
\/\)q\\r% < 100) goto 1loop

oo

v o .
if (x >= 100) goto end

loop:

x4 1 JOIN!!
Yy +— v + 1
if (x < 100) gote loop

end:

15-411/611 © 2019-2025 Titzer/Goldstein

Handling cyclic control flow

® SSA requires single
o ,bxl — ..
definition for each use v o
® Introduce @-functions if (x, >= 100) goto end
to handle joins at loop /\/_\
headers too Loop:
X3 « X, + 1
X o -
v < . y3i—yz2 + 1
if (x >= 100) goto end if (%3 < 100) goto loop
loop:
¥ — x + 1 —M_/
Y o— v 4+ 1
if (x < 100) goto loop end:
15-411/611 © ZUT9=ZUzo TTIZETGOIUSIENT

15-411/611

What is a ® anyway?

® O is a fictional operator; it merges multiple definitions into
a single definition at a join in the control flow graph.

® At a BB with p predecessors, there are p inputs to the .

Xnew ‘_g(xlr Koy Xz, ooy XP)

AV . ——— A

® \What do the inputs to a ® mean?

O The inputs to @-functions positionally correspond to the incoming
control-flow edges.

O They relate control flow merging and data flow merging.

© 2019-2025 Titzer/Goldstein

What is a ® anyway?

join

Join points in the
control flow graph
may require insertion
of ® functions.

15-411/611 © 2019-2025 Titzer/Goldstein

What is a ® anyway?

5

3* M%J'ﬁl

yl — ...

Join points in the
control flow graph
may require insertion
of ®@ functions, if
there are different
versions of the
variable arriving.

15-411/611 © 2019-2025 Titzer/Goldstein

What is a ® anyway?

Y3 <

yl — ... YZ — ...

join

Ya < ®(¥1,¥2,¥3) Each incoming control
edge supplies a
corresponding data
value for the ® from
the predecessor.

15-411/611 © 2019-2025 Titzer/Goldstein

What is a ® anyway?

Each incoming control
edge supplies a
corresponding data
value for the @ from
the predecessor.

15-411/611 © 2019-2025 Titzer/Goldstein

What is a ® anyway?

Uses of the variable
after the join get the
new value, not the old
value(s)!

15-411/611 © 2019-2025 Titzer/Goldstein

Another Loop Example

a 0

b—a+1l1

c—c+Db

a — b * 2
a <N

return c

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

4
1
o

‘v ep [0 °0"
ATIT T
2 ol o
|+ +
N o

return c

Another Loop Examplgl,__ ?

© 2019-2025 Titzer/Goldstein

Ce—?

a1<—0

return c,

What is a ® (for a loop) anyway?

®s at loop

headers relate
the dataflow on

a loop backedge
with the control

flow.

Allows finding
induction
variables really
E—

easily.

15-411/611 © 2019-2025 Titzer/Goldstein

Minimal SSA

® Each assignment generates a fresh variable.

® At each join point insert ® functions for all variables with multiple
outstanding defs.

x 1 X1<—1
Y « X y « 2 q Y1<—X1\‘}—2
Z —y + x Y3(_¢(¥]IYZ)

Zl(—Y3+xl

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert ©?

If there is a def of a in block
5, which nodes need a @()?

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert ©?

Require a ®-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b
SOEEE——

=
e There is a block y # x containing a def of b X b - expl
e There is a nonempty path P,, of edges from x to z if cond goto L

*There is a nonempty path P, of edges fromy to z
*Paths P,, and P,, do not have any node in
common other than z, and... D) exp2

e The node z does not appear within both P,, and

P,, prior to the end, though it may appear in one ret b
or the other.

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert ©?

Require a ®-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

eThere is a block y # x containing a def of b X: b — expl
e There is a nonempty path P,, of edges from x to z if cond goto L
e There is a nonempty path—P.;of edges fromytoz
*Paths P,, and P,, do not have any node in g: oxo2
common other than z, and... — SXp
e The node z does not appear within both P,, and \ |
cP)yrztﬁ)’]reloortthoe:he end, though it may appear in one ret b

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert ©?

Require a ®-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b
eThere is a block y # x containing a def of b X:

b — expl

_—

e There is a nonempty path P,, of edges from xto z if cond goto L

*There is a nonempty path P, of edges fromy to z [

*Paths P,, and P,, do not have any node in
common other than z, and...

e The node z does not appear within both P,, and

P,, prior to the end, though it may appear in one
or the other.

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert ©?

Require a ®-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

eThere is a blocky # x containing a def of b X: b — expl

e There is a nonempty path P,, of edges from x to z if cond goto L
*There is a nonempty path P, of edges fromy to z

*Paths P, and P,, do not have any node in Y.

common other than z, and... b — exp2
*The node z does not appear within both P,, and \

P,, prior to the end, though it may appear in one 7- |ret b
or the other. .

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert ©?
Require a ®-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

P,, prior to the end, though it may appear in one 7- | ret
or the other. .

*There is a block y # x containing a def of b X: |p o expl
e There is a nonempty path P,, of edges from x to z if cond goto L
*There is a nonempty path P, of edges fromy to z
ePaths P,, and P,, do not have any node in g: - 1
common other than z, and... — SXP '
e The node z does not appear within both P,, and \ 1l 1;'*\
b

15-411/611 © 2019-2025 Titzer/Goldstein

When do we insert ©?

Require a ®-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

eThere is a blocky # x containing a def of b X:

b — expl
e There is a nonempty path P,, of edges from x to z if cond goto L
*There is a nonempty path P, of edges fromy to z
ePaths P,, and P,, do not have any node in g: - 1
common other than z, and... s !
e The node z does not appear within both P,, and \ 1l

P,, prior to the end, though it may appear in one 7- |lret b
or the other. .

15-411/611 © 2019-2025 Titzer/Goldstein

lterative Insertion

® Implicit def of every variable in start node
e

® Inserting P-function creates new definition

T —

® \While there 3 X,Y,Z that

O satisfy path-convergence criteria
FEeeeE—

O and z does not contain ®-function for b
—— S
® do

O insert b — ®(b,b,b,...,b,) at node z, z having n predecessors.

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Property of SSA

® |[n SSA definitions dominate uses®.

O If x;is used in X < ®(..., x;, ...), then
BB(x;) dominates it" predecessor of BB(®P)

O lIfxisusediny « ... x ...,
then BB(x) dominates BB(y)

® \Ve can use this for an efficient algorithm to convert to SSA

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Property of SSA

® |In SSA definitions dominate uses™.

O If x;is used in X < ®(..., x;, ...), then
BB(x;) dominates it" predecessor of BB(®P)

O lIfxisusediny « ... x ...,
then BB(x) dominates BB(y)

® \Ve can use this for an efficient algorithm to convert to SSA

*well akshully, this only true for strict §SA**,
where all variables are defined before they are used.

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Property of SSA

® |[n SSA definitions dominate uses®.

O If x;is used in X < ®(..., x;, ...), then
BB(x;) dominates it" predecessor of BB(®P)

O lIfxisusediny « ... x ...,
then BB(x) dominates BB(y)

® \Ve can use this for an efficient algorithm to convert to SSA

*well akshully, this only true for strict SSA**,
where all variables are defined before they are used.
**well double akshully, we can insert assignments to

convert any program to strict SSA

15-411/611 © 2019-2025 Titzer/Goldstein

Side trip: Dominators

Dominators

® adomb

O block a dominates block b if every possible execution path from
entry to b includes a

15-411/611 © 2019-2025 Titzer/Goldstein

Dominators

® adomb

O block a dominates block b if every possible execution path from
entry to b includes a

15-411/611 © 2019-2025 Titzer/Goldstein

Dominators

® adomb

O block a dominates block b if every possible execution path from
entry to b includes a

B entry dominates everything

B 0 dominates everything but entry
M 1 dominates 2 and 1

15-411/611 © 2019-2025 Titzer/Goldstein

Dominators

® adomb

O block a dominates block b if every possible execution path from
entry to b includes a

Dominators are useful in:
Dataflow analysis
Constructing SSA
Identifying “natural” loops
Code motion

15-411/611 © 2019-2025 Titzer/Goldstein

Definitions

® asdomb

If a and b are different blocks and a dom b, we say that a
strictly dominates b

® aidomb

If @a sdom b, and there is no ¢ such that a sdom ¢ and ¢ sdom
b, we say that a is the immediate dominator of b

E“Hl v, 5%
T 2

15-411/611 © 2019-2025 Titzer/Goldstein

Properties of Dom

e Dominance is a partial order on the blocks of the flow graph, i.e.,

o 1. Reflexivity: a dom a_for allf

o 2. Anti-symmetry: a dom b and b dom a impliesa =b
——

P — D
o 3. Transitivity: a dom b and b dom ¢ implies a dom c
- ® . a3

e NOTE: there may be blocks a and b such that
neither a dom b or b dom a holds.

e The dominators of each node n are linearly ordered by the dom
relation. The dominators of n appear in this linear order on any
path from the initial node to n.

15-411/611 © 2019-2025 Titzer/Goldstein

Computing dominators

® \Ve want to compute D[n], the set of blocks that dominate n
et d ¢

Initialize each D[n] (except D[entry]) to be the set of all blocks, and
then iterate until no D[n] changes: %
Dlentry] = {entry}

A
Dln] = U D[p]|, for n#ent %
-6). (@) rw). orneems @Ef

15-411/611 © 2019-2025 Titzer/Goldstein

Example

Initialization
block D[n]
entry {entry}
0 {entry,0,1,2,3,4,5,exit}
1 {entry,0,1,2,3,4,5,exit}
2 {entry,0,1,2,3,4,5,exit}
3 {entry,0,1,2,3,4,5,exit}
4 {entry,0,1,2,3,4,5,exit}
5 {entry,0,1,2,3,4,5,exit}
exit {entry,0,1,2,3,4,5,exit}
15-411/611

© 2019-2025 Titzer/Goldstein

entry

Example
Initialization First Pass
block DIn] | DIn]
entry {entry} "—_—Ié {entry}
0 {entry,0,1,2,3,4,5,exit} {0,entry}
1 {entry,0,1,2,3,4,5,exit} {1,0,entry}
2 {entry,0,1,2,3,4,5,exit} {2,1 iO,entr%}
3 {entry,0,1,2,3,4,5,exit} «13,1,0,entry}
4 {entry,0,1,2,3,4,5,exit) {4,0,entry}
5 try,0,1,2,3,4,5,exit} {5,4,0,entry}
exit {entry,0,1,2,3,4,5,exit} {exit,3,1,0,entry}
Update rule: Dln] = {n} U (1 Dlpl
pepred(n)

15-411/611

© 2019-2025 Titzer/Goldstein

Example

First Pass Second Pass

block D[n] D[n]
entry {entry} - {entry}

0 ©Oentry} [{0,entry}

1 {1,0,entry} {1,0,entry}

2 {2,1,0,entry} {2,1,0,entry}

3 {3.4,0,entry} s {3lolewy}

4 {4,0,entry} \ {4,0,entry }

5 5,40,enty} | {5,4,0,entry}
exit {exit,3,1,0,entry} 7— {exit,3,0,entry}

Update rule: Dln] = {n}U (| DIy
pepred(n)

15-411/611 © 2019-2025 Titzer/Goldstein

Example

Second Pass Third Pass

block D[n] D[n]
entry {entry} {entry}

0 {0,entry} {0,entry}

1 {1,0,entry} {1,0,entry}

2 {2,1,0,entry} {2,1,0,entry}

3 {3,0,entry} {Q,Qengry}

4 {4,0,entry} {4,0,entry}

) {5,4,0,entry} {5,4,0,entry}
exit {exit,3,0,entry} {exit,3,0,entry}

Update rule: DPlrl=1{n}U (1 Dip]
pepred(n)

15-411/611 © 2019-2025 Titzer/Goldstein

Computing dominators

® Iterative algorithm is O(n2e)

O assuming bit vector set

O choosing a good iteration order matters

® More efficient algorithm due to Lengauer and Tarjan
O O(e-ale,n) a(e,n) 1s inverse Ackermann
O much more complicated

O Books provide simple algorithms that are fast in practice
(faster than Tarjan algorithm for realistic CFGs)

O For a clever algorithm see:

“A Simple, Fast Dominance Algorithm” by Cooper, Harvey, and Kennedy”
ﬂ

15-411/611 © 2019-2025 Titzer/Goldstein

https://www.cs.rice.edu/~keith/EMBED/dom.pdf

15-411/611

Immediate dominators

Let sD[n] be the set of blocks that strictly dominate n, then

Dl = Df] - {n)

To compute iD[n], the set of blocks (size <= 1) that
Immediately dominate n

Set iD[n] = sD[n] G
Repeat until no iD[n] changes: .ES. { @3
iD[n] =iD[n] — U(sD[d]) \

d € iD{n] <. %{i

© 2019-2025 Titzer/Goldstein

Example

1

Initialization First Pass
block iD[n]=sDI[n] iD[n]
entry { {}
0 {entry} {entry}
1 {0,entry} {0}
2 {1,0,entry} em— {1}
3 {0,entry} {0
4 {0,entry} {0}
5 {4,0,entry} {4}
exit {3,0,entry} {3}
Update rule: ’D[n] - ’D[n] U (SD[g])
d.ciD[n]

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Dominator Tree

In the dominator tree the initial node is the
entry block, and the parent of each other
node is its immediate dominator.

(entr;—zj

block iD[N]

entry { .

0 {entry} 0

1 {0}

2 {1}

: o 1)| 3 4
4 {0} v l J
5 {4} 2 exit 5
exit {3}

Dominator Tree
© 2019-2025 Titzer/Goldstein

Dominance Frontier

® _z_is in the dominance frontier of__x If z is the first
node we encounter on the path from x which x does
not strictly dominate.

® For some pati:‘rom node x to z,
<
- —
where x dom y but not x sdom z.
® |[ntuitively, the dominance frontier consists of nodes
“‘just outside the dominator tree”

X— ...

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier

® 7 is in the dominance frontier of x If z is the first
node we encounter on the path from x which x does
not strictly dominate.

® For some path from node x to z,
X— ...y —>Z

where x dom y but not x sdom z.

Dominance frontier of 17
Dominance frontier of 27?
Dominance frontier of 47

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Dominance Frontier

Z is in the dominance frontier of x If z is the first
node we encounter on the path from x which x does
not strictly dominate.

For some path from node x to z,
X— ...y —>Z

where x dom y but not x sdom z.

Dominance frontier of 17 {3}
Dominance frontier of 27 {3}
Dominance frontier of 47 {3,4}

© 2019-2025 Titzer/Goldstein

15-411/611

© 2019-2025 Titzer/Goldstein

idom
entry

CEG idom
entry entry

N «— =
7

15-411/611 © 2019-2025 Titzer/Goldstein

CEG idom
entry entry

15-411/611 © 2019-2025 Titzer/Goldstein

CEG idom
entry entry

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

© 2019-2025 Titzer/Goldstein

Calculating the Dominance Frontier

® | ct dominates[n] be the set of all blocks which block n
dominates

O subtree of dominator tree with n as the root

® The dominance frontier of n, DF[n] is

DF[n] = U succ(s) - dominates[n] - {n}
sedommates[n]q MN \N

15-411/611 © 2019-2025 Titzer/Goldstein

Recap

e adomb

o every possible execution path from entry to b includes a
e asdomb

oadombandal=b
e aidomb

o ais “closest” dominator of b

 RCAN
every path from a to the exit block includes b

e DominatgLgees

° Dominaﬂge,frontier

15-411/611 © 2019-2025 Titzer/Goldstein

Back to inserting ®s
Require a @-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

eThere is a block y # x containing a def of b

e There is a nonempty path P,, of edges from x to z

*There is a nonempty path P,, of edges fromytoz _

*Paths P,, and P,, do not have any node in
common other than z, and...

e The node z does not appear within both P,, and

P,, prior to the end, though it may appear in one
or the other.

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Using Dominance for SSA Construction

® Dominance-Frontier Criterion: WWhenever node x contains a
definition of some variable a, then any node z € DF(x), z needs
a ®-function for a.

® Iterated dominance frontier: since a ®-function itself is a
definition, we must iterate the dominance-frontier criterion until
there are no nodes that need ®-functions.

© 2019-2025 Titzer/Goldstein

Dominance

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier

CFG D-Tree

561 1 © 2019-20 289Dt selss@oldstein

Dominance Frontier &
path-convergence

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier Criterion

15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier Criterion

15-411/611

Dominance Frontier Criterion

15-411/611

Dominance Frontier Criterion

15-411/611

Dominance Frontier Criterion

15-411/611 © 2019-2025 Titzer/Goldstein

Using DF to Place cD()

e Gather all the defsites of every variable
e Then, for every variable

o foreach defsite
——————
M foreach ngge in DF(defgite)

® if we haven't pu}gQ in node put one in
® [f this node didn’t define the variable before: add this node to the defsites

® This essentially computes the Iterated Dominance Frontier on
the fly, creating minimal SSA

15-411/611 © 2019-2025 Titzer/Goldstein

Using DF to Place ®()

foreach node n {
foreach variable v defined in n {
orig[n] U= {v}
defsites[v] U= {n}
}
foreach variable v {
W = defsites ['\7]
while W not empty ({
foreach y in DF[n]
if s ¢ PHI[v] {
. JE——
insert “v - &(v,v,..)” at top of y
PHI[y] = PHI[vV] U {y}

if v € orig[yl: W =W U {y}
-~ L 4 e

}
15-411/611 © 2019-2025 Titzer/Goldstein

Computing SSA

1

k < 100°?

/4\,

j < 207 return j

\

k -k +1 k « k + 2

7\/

Compute D-tree

1

k < 100°?

/4\,

j < 207 return j

\

3 - i i - k
k -k +1 k « k + 2

7\/

D-tree

Compute D-tree

1 i 1
Jj 1
k 0
k < 100°
/4\
j < 207 return j
j ~ 1 6 j « k

7\/

D-tree

Compute Dominance Frontier (DFs)

1 DFs
i<—1
j o1 (1) 1
k < 100° 2 Z
j < 207 return j
N 6
— & ® @ 7
k -k +1 k —k + 2

7\/

Compute Dominance Frontier (DFs)

1

k < 100°?

— i

j < 207 return j

5 §\6~

5 - 1 i -k

7\/

I

Compute defsites

1

k < 100°?

/4\,

j < 207 return j

5 §\6~

5 - 1 i -k

7

~. _—

I

J

DFs

N OO B WN -

U

12}
2}
U

U/}
7}
2}

4,

orig[n] defsites|v]

N O DD w N

(ipkt i U
0 i {156
{} k {1,5,6}
0 - '

fi k)

{i K}

0

Inspect variables

DFs orig[n] defsites[v]

(1} — 1 {} 1 {ijk}t i {1}
i1 2 {23 2 {} j {1,5,6}
k0 3 {21 3 {} k {1,5,6}

4 {} 4 {}
5 {7} 5 {ik}
6 {7} 6 {k}
7 {2y 7 {}

var j: W={1,5,6}

Insert ¢ for |

DFs orig[n] defsites|v]
1 1 g 1 {uik i {1
j -1 2 {2y 2 {} j {1,5,6}
k0 3 {21 3 { k {1,5,6}
% < 1007 4 {4 4 g g’
5 {7} 5 4
j <mrn i 6 {7} 6 {jk}
j -1 6 j - k
k ok + 1 kk+ 2 var j: W={1,5,6}

7\/ DF[13.U DF[5] U DF[6] ={7}

Insert ¢ for |

DFs
 — 19
j -1 2 {2}
« < 100% 41
/4\. 5 {7}
j < 207 return j 6 {7}
X\. 7 12
j ~ 1 6 j « k
k « k + 1 k « k + 2

orig[n] defsites[v]

N O ok wWwnN -

Lk i 1}

{ j 11,5,6}
{} k {1,5,6}
U

U,k}

Uk}

U

var j: W={1,5,6}

Handle new write for |

DFs orig[n] defsites|v]
1 1 g1 {igk 1 1
j o1 2 {2 2 {} j {1,5,6}
k0 3 {23 3 {} k {1,5,6}
k < 1007 4 U 4 8 q
5 {7} 5 {,
j <mrn i 6 {7} 6 {jk}
j - i or—s —x
kK c k + 1 kK « k + 2 var j: W={1,5,6.7}

— &(3.9) DF|1| U DF[5] U DF[6] U DF[7] ={7,.2.}

Insert more ¢ for |

DFs orig[n] defsites|v]
1} E— 1 {1 {ijkp {1}
j o1 2 {2} 2 {} j {1,5,6}
k0 3 {2 3 { k {1,5,6}
2[F— .9 4 4 4
k < 1002 5 {7} 5 {jk}
j < 207 return j 6 {7} 6 {J'k}
Y — 7 {2y 7)
j — i 6 j ~ k
k ok + 1 k ok +2 var j: W={1,5,6,7}

7\/ DF[1] U DF[5] U DF[6] U DF[7] ={7,2}

Update writes for |

DFs orig[n] defsites|v]
1 14 1 {ik i {1
j -1 2 {2y 2 {} j {1,5,6}
k0 3 {21 3 { k {1,5,6}
2[T—+G.9 4 4 4
E‘k < 1002 5 {7} 5 {jk}
j < 207 return j 6 {7} 6 {J'k}
pera e
+ 1 k — k + 2 varj: W={1,5,6,7,2}
7Y DF[1] U DF[5] U DF[6] U DF[7] U DF[2]

=17,2

Renaming Variables

® Placing ¢ is not enough, need to update names

® \Walk down the dominator tree, renaming variables incrementally
P

® Replace uses with most recent renamed def

O For straight-line code this is easy

O |If there are branches and joins?

15-411/611 © 2019-2025 Titzer/Goldstein

Renaming for Straight-Line Code

® Need to extend for g-functions. for each variable a:
® Need to maintain property that e

C ey . Stack[a] = [0]
definitions dominate uses. —

renameBasicBlock(B):
EE—
for each instruction.S in block B:

for each use of a variable x in S:
-

i = top(Stack][x])
EEEE——

replace the use of x with x;
-
-

for each variable a that S defines
- v (]

count[a] = Count[a] + 1
S

@= Count|a]

push i onto Stack[a]
TEEE——

replace definition of a with a;
b o

15-411/611 © 2019-2025 Titzer/Goldstein

Renaming in CFG
rename:nt:

renameBasic Block(n)
for each successor Y of n, where n is the j" predecessor of Y
~ o> P
for each phi-function f in Y, where the OBerand of fis ‘a’
-y o
1= top(StackLa])

replace j* operand with a;

for each child of n in D-tree, X:
. 93

rename(X)
[]
for each instruction S € n:
-
for each variable v that S defines:

pop Stack[v]
gr—

Rename j variables defsites|[v]
rm—

s o W
j o1 @ i 11,5,6,7,2}
k -0 k {1;516}

k < 1002
j < 207 return j
j < i 6 <k

Rename j variables defsites[v]

1 _ 1 cursor | {1}
1 @] i {15672}
: K {1,56)

j — Q(JIJ)
k < 1002

j < 207 return j

\

j « i J -k

Rename j variables defsites[v]

i {1}
@ i {15672}
cursor k- {1,5,6}
2
| _ (3
j < 207 return j
) = OO
k « k +1 k — k + 2

Rename j variables defsites[v]

1 . R
@ i {15672}
cursor k- {1,5,6}

j < 2Q? return j

\

j « i J -k

Rename j variables defsites[v]

1 o
D i {1,5,6,7,2}
k {1,5,6}

207 return j

\

j « i J -k

Rename j variables defsites[v]

1 . o
j 1{1,5,6,7,2}

Rename j variables defsites[v]

1] | {1}
j {1,5,6,7,2}
k {1,5,6}

Rename j variables

defsites[v]

i {1}

j {115161712}
k {1,5,6}

Rename j variables

defsites[v]

i {1}
D i {1,5,6,7,2}
k {1,5,6}

Rename j variables

defsites[v]

i {1}
D i {1,5,6,7,2}
k {1,5,6}

Rename j variables

defsites[v]
i {1}

j {115161712}
k {1,5,6}

Rename j variables

defsites[v]

i {1}
D i {1,5,6,7,2}
k {1,5,6}

Flavors of SSA

Minimal SSA

at eachjetrrpoint with >1 outstanding definition insert a @-function

O Some may be dead
® Pruned SSA

E——
O only add live @-functions

O must compute LIVEOUT

o Semi-pruned SSA

O Same as minimal SSA, but only on names live across more than 1
basic block

15-411/611 © 2019-2025 Titzer/Goldstein

Summary

® SSA is a useful and efficient IR.

® Definitions dominate uses
e ——— 4

® Constructing SSA can be efficient
(No need to do Lengaur-Tarjan Algorithm, instead see
A Simple, Fast Dominance Algorithm by Cooper,
Harvey, and Kennedy)

® Don’t do any optimizations yet!

15-411/611 © 2019-2025 Titzer/Goldstein

https://www.cs.rice.edu/~keith/EMBED/dom.pdf
https://www.cs.rice.edu/~keith/EMBED/dom.pdf

Deconstructing SSA

Real machines don’t have ® functions.
Have to insert moves at predecessors.
Mentioned earlier, but with huge caveats.
We resolve those caveats today.

15-411/611 © 2019-2025 Titzer/Goldstein

e \When during compilation to deconstruct SSA?

Deconstructing SSA

e There are two common choices: before or after regalloc.
e Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
construction

15-411/611

o
»

SSA non-SSA
deconstruction IR
SSA ‘
IR

colored
regalloc

—ae—
\ SSA IR

© 2019-2025 Titzer/Goldstein

regalloc

Target
Program

SSA
deconstruction

-

e \When during compilation to deconstruct SSA?

Deconstructing SSA

e There are two common choices: before or after regalloc.
e Regalloc before deconstruction is relatively new (2010s).

Source
Program

15-411/611

SSA non-SSA
deconstruction IR
SSA
construction SSA
1 IR
regalloc colored
O SSA IR

Nice chordal interference graphs

F]
© 2019-2025 Titzer/Goldstein

regalloc

Target
Program

SSA
deconstruction

e \When during compilation to deconstruct SSA?

Deconstructing SSA

e There are two common choices: before or after regalloc.
e Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
construction

15-411/611

A 4

SSA non-SSA
deconstruction IR
SSA
IR
regalloc colored
SSA IR

© 2019-2025 Titzer/Goldstein

s+ Possibly
Q)

better code?

regalloc

Target
Program

SSA
deconstruction

e \When during compilation to deconstruct SSA?

Deconstructing SSA

e There are two common choices: before or after regalloc.
e Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
construction

15-411/611

SSA non-SSA
deconstruction IR
regalloc colored
SSA IR

regalloc

Target
Program

SSA

dgconstru ction

\- Deconstruction is more or
¥ less the same either way.

© 2019-2025 Titzer/Goldstein

Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a; «— X + Y d, « b + 2

bl «— al + x CZ «— y + 1
f

C', \ C;é’Cz_

P

L
a, « C3 + a;

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Deconstructing SSA

Insert @-resolution moves and remove OPs.

a1<—x+y
b, —« a; + x

N

a, —« b + 2
Cz<—y+1

/

a; « ®(a;,ay)
c3 « ®(cy,c5)
a, « c3 + a;

© 2019-2025 Titzer/Goldstein

Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a1<—x+y a2<—b+2
b1<—a + x + 1

N

o

c3 « ®(cy,c5)

Cor <

a, « C3 + aj

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a1<—x+y a2<—b+2

C, — + 1

Notice the alignment
of dafgflow and

control floy. The ® ‘
nodes represent this Cc; « O(cq, c2)
explicitly in the IR.

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a1<—x+y a2<—b+2
b1<—a1+x C2<—y+1

Each @ introduces
one move into each
predecessor node.

a; —\?o(a;,ay)
C3 — @

a, « C3 + aj

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a, —« b + 2

a1<—x+y

b1<—a1+x CZ<—y+1
a; « a a; « a
S - & S« &

Remove Os after \

neering moves. | R

a, « C3 + aj

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

alﬁx+y
b, —« a; + x
a3<—a1
C3<—Cl

a2<—b
C, — Y

a3<—a2
C3 « Cy

+ 2
+ 1

Removing all ®@s after\ /

deconstruction gives
a completely valid

a4<—C3+a3

non-SSA program.

15-411/611

© 2019-2025 Titzer/Goldstein

The program is now
directly executable
again.

15-411/611

Issue 1: Critical Edges

® Consider a simple triangle CFG.

b, — expl
if cond goto L

b, — exp2
Rad
&Eﬁﬁkz_
——
D3 ¢ (by, by)
ret b,

© 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \We insert moves in both predecessors and remove the .

bl — expl

if cond goto L

\

ret b,

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \Ve insert moves in both predecessors and remove the ®.

b, — expl
b; — by
if cond goto L

b, — exp2
b; — b,

R
ret b;

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \We insert moves in both predecessors and remove the .

b, — expl
by — b,
if cond goto L

b, — exp2
b; — b,

ret b;

Dynamic execution paths
15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \We insert moves in both predecessors and remove the .

b, — expl
by — b,
if cond goto L

redundant

L . move
Nailve insertion can

introduce redundant code
on some execution paths.

b, — exp2
b; — b,

y
ret b;

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \We insert moves in both predecessors and remove the .

Nailve insertion can
introduce redundant code
on some execution paths.

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Issue 1: Critical Edges

® Consider a more complicated CFG.

® \We insert moves in all predecessors and remove the O.

Nailve insertion can

introduce redundant code
on some execution paths.

AV

© 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

® Consider a more complicated CFG.

® \We insert moves in all predecessors and remove the O.

Nalve insertion can u

introduce redundant code
on some execution paths.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

® Consider a more complicated CFG.
® \We insert moves in all predecessors and remove the O.

Naive insertion can
introduce redundant code
on some execution paths.

Can actually get really bad.

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an
empty block between.

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an
empty block between.

/T~

\

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an
empty block between.

e This block is the proper place for ®-resolution moves.

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an
empty block between.

e This block is the proper place for ®-resolution moves.

A critical edge is any edge that multiple successors
connects a block with multiple
successors to a block with X

multiple predecessors.
multiple predecessors

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an
empty block between.

e This block is the proper place for ®-resolution moves.

Splitting all critical edges prior multiple successors

to SSA deconstruction is easy. \/ | v |

multiple predecessors /

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?
e For CFGs without loops, no.
e Let's convince ourselves.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

e Does the order of d-resolution moves matter?

e Consider a join with at least two Ps.

15-411/611

© 2019-2025 Titzer/Goldstein

4

X3 <@ (x; X))
V3 <¢ (Y1 ¥2)

Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?

e Consider a join with at least two Ps.
e Moves are inserted into predecessors.

15-411/611

© 2019-2025 Titzer/Goldstein

X3<— xl
Y3~ Y1

4

X3 <@ (x; X))
V3 <¢ (Y1 ¥2)

Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?

e Consider a join with at least two Ps.
e Moves are inserted into predecessors.

15-411/611

© 2019-2025 Titzer/Goldstein

4

A
X3 <—(p((35},x2)

V3 ¢ (Y1,Y2)

Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?

e Consider a join with at least two ®s. xbﬁ

e Moves are inserted into predecessors. dom

e By SSA invariants, the definition of the X3 X
RHS of each move dominates the move. Ys — 11

4

A
X3 <—‘P((35},xz)

V3 ¢ (Y1,Y2)

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

e Consider a join with at least two Ps.

e Moves are inserted into predecessors.

e By SSA invariants, the definition of the
RHS of each move dominates the move.

15-411/611

© 2019-2025 Titzer/Goldstein

e Does the order of ®-resolution moves matter?
7

Yi)< -

dom

)
Ys Y1

4

X3 <0 ,xz)
V3 —o\¥7 Vo)

Issue 2: Ordering Moves

e Does the order of ®-resolution moves mattex?

e Consider a join with at least two Ps.

e Moves are inserted into predecessors. _ dom
e By SSA invariants, the definition of the ‘ X3
RHS of each move dominates the move. Y3 \39

e [t cannot be the case that the LHS is live,
because previously there was only one
definition, below.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

e Does the order of ®-resolution moves mattex?

e Consider a join with at least two Ps.

e Moves are inserted into predecessors. _ dom
e By SSA invariants, the definition of the ‘ X3
RHS of each move dominates the move. Y3 \39

e |t cannot be the case that the LHS is live,
because previously there was only one
definition, below.

e Therefore we are only assigning to fresh
variables, and not overwriting anything.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

e Does the order of ®-resolution moves mattex?

e Consider a join with at least two Ps.

e Moves are inserted into predecessors. -

e By SSA invariants, the definition of the
RHS of each move dominates the move.

e |t cannot be the case that the LHS is live,
because previously there was only one
definition, below.

e Therefore we are only assigning to fresh
variables, and not overwriting anything.

e Therefore any order is fine.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

e Does the order of ®-resolution moves mattex?

e Consider a join with at least two Ps.
e Moves are inserted into predecessors.

e By SSA invariants, the definition of the

RHS of each move dominates the move. e A=
e |t cannot be the case that the LHS is live,

because previously there was only one

definition, below. /

e Therefore we are only assigning to fresh
variables, and not overwriting anything.
e Therefore any order is fine.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?
e For CFGs without loops, no.
e But what about loops?

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

®s at loop
headers relate
the dataflow on
a loop backedge
with the control
flow.

A loop @ can be
defined in terms
of itself.

_~ backedge

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Issue 2: Ordering Moves

yl «— ...

loop header

™~

4

Yo — ®(y¥1,Y2)

=

Y3 « Yo+ 1

© 2019-2025 Titzer/Goldstein

Like any other

join, we insert ®@-
resolution moves
at predecessors.

backedge

15-411/611

Issue 2: Ordering Moves
yl — ..

Like any other
join, we insert ®@-
resolution moves

loop header/ ™~ at predecessors.
Vo « ®(¥1,Y2) With only one ®,
there is no
é problem yet.

Y3 « Yo+ 1

backedge

© 2019-2025 Titzer/Goldstein

15-411/611

Issue 2: Ordering Moves

xl — ...
yl — ...

loop header
p x2 <« Q(xl,X3)

Yo — ®(y1,¥3)

=

y3<—x2+1

© 2019-2025 Titzer/Goldstein

Like any join, a loop
header can have
multiple ®s.

Because ®s can use
inductively defined
versions of
themselves, they can
be recursive or even
mutually recursive.

backedge

15-411/611

Issue 2: Ordering Moves

xl — ...
yl — ...

ret x,

X2 <« Q (xl,X3)

Yo — ®(y1,¥3)

X3 < Yo
Y3 « X;

© 2019-2025 Titzer/Goldstein

A simple example:
swap of variables in
a loop.

15-411/611

Issue 2: Ordering Moves

xl — ...
yl — ...

ret x,

Xy ¢ (x] IYZ)

Vo — ®(y1,%)

A

© 2019-2025 Titzer/Goldstein

After optimizations
such as copy
propagation, the ®s
can be mutually
recursive.

Replace
x5 with y,
y3 with x,

15-411/611

Issue 2: Ordering Moves

xl — ...
yl — ...

ret x,

X, — ®(x1,Y¥5)

Vo — ®(y1,%))

© 2019-2025 Titzer/Goldstein

After optimizations
such as copy
propagation, the ®s
can be mutually
recursive.

This is totally legal
and cool.

15-411/611

Issue 2: Ordering Moves

xl — ...
yl — ...

/\\
X, — ®(x1,Y¥,)

Yo — ®(y1,%5)

ret x,

X

Incorrect code

© 2019-2025 Titzer/Goldstein

SSA deconstruction
using the naive
move insertion will
always generate
incorrect code,
regardless of the
order.

15-411/611

Issue 2: Ordering Moves

xl — ...
yl — ...

/\\
X, — ®(x1,Y¥,)

Yo — ®(y1,%5)

ret x,

X

Incorrect code

© 2019-2025 Titzer/Goldstein

SSA deconstruction
using the naive
move insertion will
always generate
incorrect code,
regardless of the
order.

15-411/611

Issue 2: Ordering Moves

xl — ...
yl — ...

N\

X, — ®(x1,Y¥,)

Yo — ®(y1,%5)

©2019-2025 TT

The reason is that
phi resolution moves
have parallel move
semantics.

Implementing Parallel Moves

e & resolution moves must be done in parallel, without
overwriting old versions.
e One simple solution: introduce new temps again.

ty « .
0 Yo Works every time.
N N boen
% y t — Y2 Generates a lot of
x° 0 generates t; — ys temporaries, but
1| | 11 X, — t, maybe the register
*2 Y2 X, — t allocator / copy
X3 Y3 N . propagation can
R 2 2 clean them up?
X3 « t3

15-411/611 © 2019-2025 Titzer/Goldstein

Implementing Parallel Moves

e & resolution moves must be done in parallel, without
overwriting old versions.
e Better solution: order moves more intelligently.

r 3 r 3
X0 Yo
X4 Y1

(_
X5 Yo
X3 Y3
. J . J

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Next SSA Lecture

e Finish Deconstructing SSA

e More practice building SSA
e Constant propagation with SSA

SSA in practice

© 2019-2025 Titzer/Goldstein

Implementing Parallel Moves

e & resolution moves must be done in parallel, without
overwriting old versions.
e Better solution: order moves more intelligently.

Notice that because

CY Y parallel moves
X Yo originate from SSA
X, V1 deconstruction,
X, - v, variables on the LHS
% y appear only once on
3 3 the LHS.

Xo F X1 F Xp; F X3

15-411/611 © 2019-2025 Titzer/Goldstein

Implementing Parallel Moves

e & resolution moves must be done in parallel, without
overwriting old versions.
e Better solution: order moves more intelligently using LTG.

Location Transfer Graph

We can build a
) Y graph where each
X, Yo node in the parallel
X1 V1 moves gets a node,

X, Vo and directed edges
represent moves.
X3 Ys P ? ?

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Implementing Parallel Moves

e & resolution moves must be done in parallel, without
overwriting old versions.
e Better solution: order moves more intelligently using LTG.

Yo
Y1
Y2
Y1

Variables may
appear multiple
times on the RHS,
and may appear on
both LHS and RHS.

Xo F X1 F Xp; F X3

© 2019-2025 Titzer/Goldstein

Location Transfer Graph

&

Location Transfer Graphs

e A location transfer graph represents a set of parallel moves.
e |t can be traversed to generate a legal move ordering.

e It's constrained:
O Every node in the graph has at most one incoming edge.
O That implies the graph can only have simple cycles.

r N r N
x| | x: G20
X X
1] 0
X2 X
) L)~
\ 7 \ 7

15-411/611 © 2019-2025 Titzer/Goldstein

	Slide 1
	Slide 2: Today
	Slide 3: SSA
	Slide 4: Advantages of SSA
	Slide 5: Implications of single definition
	Slide 6: Trivial SSA
	Slide 7: Trivial SSA
	Slide 8: Trivial SSA
	Slide 9: Minimal SSA
	Slide 10: Minimal SSA
	Slide 11: Handling cyclic control flow
	Slide 12: Handling cyclic control flow
	Slide 13: Handling cyclic control flow
	Slide 14: Handling cyclic control flow
	Slide 15: Handling cyclic control flow
	Slide 16: Handling cyclic control flow
	Slide 17: Handling cyclic control flow
	Slide 18: What is a Φ anyway?
	Slide 19: What is a Φ anyway?
	Slide 20: What is a Φ anyway?
	Slide 21: What is a Φ anyway?
	Slide 22: What is a Φ anyway?
	Slide 23: What is a Φ anyway?
	Slide 24: Another Loop Example
	Slide 25: Another Loop Example
	Slide 26: What is a Φ (for a loop) anyway?
	Slide 27: Minimal SSA
	Slide 28: When do we insert Φ?
	Slide 29: When do we insert Φ?
	Slide 30: When do we insert Φ?
	Slide 31: When do we insert Φ?
	Slide 32: When do we insert Φ?
	Slide 33: When do we insert Φ?
	Slide 34: When do we insert Φ?
	Slide 35: Iterative Insertion
	Slide 36: Dominance Property of SSA
	Slide 37: Dominance Property of SSA
	Slide 38: Dominance Property of SSA
	Slide 39
	Slide 40: Dominators
	Slide 41: Dominators
	Slide 42: Dominators
	Slide 43: Dominators
	Slide 44: Definitions
	Slide 45: Properties of Dom
	Slide 46: Computing dominators
	Slide 47: Example
	Slide 48: Example
	Slide 49: Example
	Slide 50: Example
	Slide 51: Computing dominators
	Slide 52: Immediate dominators
	Slide 53: Example
	Slide 54: Dominator Tree
	Slide 56: Dominance Frontier
	Slide 57: Dominance Frontier
	Slide 58: Dominance Frontier
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Calculating the Dominance Frontier
	Slide 65: Recap
	Slide 66: Back to inserting Φs
	Slide 67: Using Dominance for SSA Construction
	Slide 68: Dominance
	Slide 69: Dominance Frontier
	Slide 70: Dominance Frontier & path-convergence
	Slide 71: Dominance Frontier Criterion
	Slide 72: Dominance Frontier Criterion
	Slide 73: Dominance Frontier Criterion
	Slide 74: Dominance Frontier Criterion
	Slide 75: Dominance Frontier Criterion
	Slide 77: Using DF to Place Φ()
	Slide 78: Using DF to Place Φ()
	Slide 79: Computing SSA
	Slide 80: Compute D-tree
	Slide 81: Compute D-tree
	Slide 82: Compute Dominance Frontier (DFs)
	Slide 83: Compute Dominance Frontier (DFs)
	Slide 84: Compute defsites
	Slide 85: Inspect variables
	Slide 86: Insert ɸ for j
	Slide 87: Insert ɸ for j
	Slide 88: Handle new write for j
	Slide 89: Insert more ɸ for j
	Slide 90: Update writes for j
	Slide 91: Renaming Variables
	Slide 92: Renaming for Straight-Line Code
	Slide 93: Renaming in CFG
	Slide 94: Rename j variables
	Slide 95: Rename j variables
	Slide 96: Rename j variables
	Slide 97: Rename j variables
	Slide 98: Rename j variables
	Slide 99: Rename j variables
	Slide 100: Rename j variables
	Slide 101: Rename j variables
	Slide 102: Rename j variables
	Slide 103: Rename j variables
	Slide 104: Rename j variables
	Slide 105: Rename j variables
	Slide 106: Flavors of SSA
	Slide 107: Summary
	Slide 108: Deconstructing SSA
	Slide 109: Deconstructing SSA
	Slide 110: Deconstructing SSA
	Slide 111: Deconstructing SSA
	Slide 112: Deconstructing SSA
	Slide 113: Deconstructing SSA
	Slide 114: Deconstructing SSA
	Slide 115: Deconstructing SSA
	Slide 116: Deconstructing SSA
	Slide 117: Deconstructing SSA
	Slide 118: Deconstructing SSA
	Slide 119: Deconstructing SSA
	Slide 124: Issue 1: Critical Edges
	Slide 125: Issue 1: Critical Edges
	Slide 126: Issue 1: Critical Edges
	Slide 127: Issue 1: Critical Edges
	Slide 128: Issue 1: Critical Edges
	Slide 129: Issue 1: Critical Edges
	Slide 130: Issue 1: Critical Edges
	Slide 131: Issue 1: Critical Edges
	Slide 132: Issue 1: Critical Edges
	Slide 133: Splitting Critical Edges
	Slide 134: Splitting Critical Edges
	Slide 135: Splitting Critical Edges
	Slide 136: Splitting Critical Edges
	Slide 137: Splitting Critical Edges
	Slide 138: Issue 2: Ordering Moves
	Slide 139: Issue 2: Ordering Moves
	Slide 140: Issue 2: Ordering Moves
	Slide 141: Issue 2: Ordering Moves
	Slide 142: Issue 2: Ordering Moves
	Slide 143: Issue 2: Ordering Moves
	Slide 144: Issue 2: Ordering Moves
	Slide 145: Issue 2: Ordering Moves
	Slide 146: Issue 2: Ordering Moves
	Slide 147: Issue 2: Ordering Moves
	Slide 148: Issue 2: Ordering Moves
	Slide 149: Issue 2: Ordering Moves
	Slide 150: Issue 2: Ordering Moves
	Slide 151: Issue 2: Ordering Moves
	Slide 152: Issue 2: Ordering Moves
	Slide 153: Issue 2: Ordering Moves
	Slide 154: Issue 2: Ordering Moves
	Slide 155: Issue 2: Ordering Moves
	Slide 156: Issue 2: Ordering Moves
	Slide 157: Issue 2: Ordering Moves
	Slide 158: Issue 2: Ordering Moves
	Slide 159: Implementing Parallel Moves
	Slide 160: Implementing Parallel Moves
	Slide 161: Next SSA Lecture
	Slide 162: Implementing Parallel Moves
	Slide 163: Implementing Parallel Moves
	Slide 164: Implementing Parallel Moves
	Slide 165: Location Transfer Graphs

