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Today

● Trivial SSA

● φ-functions

● Dominance

● Placement & Renaming
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SSA

● Static single assignment is an intermediate representation 

(IR) where every variable has only one definition

○ Single static definition

○ (Could be in a loop which is executed dynamically many times.)

● φ‐functions used at CFG join points

● All definitions dominate uses

● Variable names don’t matter; IR implementation is literally nodes 

in a graph that point to each other

3
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Advantages of SSA

● Makes def-use-chains explicit

● Makes dataflow optimizations more robust

○ Easier to get right

○ Multiple optimizations can compose

○ Applies to more places

● Improves register allocation

○ Makes building interference graphs easier

○ Easier register allocation algorithm

○ Decoupling of spill, color, and coalesce

● For most programs reduces space/time requirements

○ Smaller IR, faster optimizations

4
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Implications of single definition

5

● Never have to worry about a variable being overwritten
○ Before SSA, compilers had to worry about variable names and redefinitions

○ A “node” in SSA IR represents a computation, rather than a storage location

● Improves pattern-matching optimizations
○ Constant propagation (y = 13; x + y ⇝ x + 13 )

○ Constant folding (3 + 5 ⇝ 8 )

○ Strength reduction (x + 0 ⇝ x )

○ Algebraic simplification (x + y - x ⇝ y )

● Improves reasoning across control flow

● Think of it as a “bulk solution” to many forward dataflow 

problems
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Trivial SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all live variables.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

z1 ← y3 + x2

x1 ← 1

6
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Trivial SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all live variables.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

x2 ← Φ(x1,x1)

y3 ← Φ(y1,y2)

z1 ← y3 + x2

x1 ← 1
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Trivial SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all live variables.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

x2 ← Φ(x1,x1)

y3 ← Φ(y1,y2)

z1 ← y3 + x2

x1 ← 1

Way too many Φ 
functions inserted!
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Minimal SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all variables with multiple 
outstanding defs.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

x1 ← 1

9

x2 ← Φ(x1,x1)

y3 ← Φ(y1,y2)

z1 ← y3 + x2

x not redefined



15-411/611 © 2019-2025 Titzer/Goldstein

Minimal SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all variables with multiple 
outstanding defs.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2 ← 2

y3 ← Φ(y1,y2)

z1 ← y3 + x1

x1 ← 1
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• Introduce φ‐functions to handle joins in CFG

• Loops have joins too!

Handling cyclic control flow

11

x ← …

y ← …

while(x < 100){

x ← x + 1

 y ← y + 1

}

x ← …

 y ← …

 if (x >= 100) goto end

loop:

 x ← x + 1

 y ← y + 1

 if (x < 100) goto loop

end:
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Handling cyclic control flow

● SSA requires single 

definition for each use

● Introduce φ‐functions 

to handle joins at loop 

headers too

12

x ← …

 y ← …

 if (x >= 100) goto end

loop:

 x ← x + 1

 y ← y + 1

 if (x < 100) goto loop

end:
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Handling cyclic control flow

13

loop:

 x ← x + 1

 y ← y + 1

 if (x < 100) goto loop

x ← …

 y ← …

 if (x >= 100) goto end

end:

● SSA requires single 

definition for each use

● Introduce φ‐functions 

to handle joins at loop 

headers too
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Handling cyclic control flow

14

loop:

x2 ← Φ(x1,x3)

y2 ← Φ(y1,y3)

 x3 ← x2 + 1

 y3 ← y2 + 1

 if (x3 < 100) goto loop

x1 ← …

 y1 ← …

 if (x1 >= 100) goto end

end:

● SSA requires single 

definition for each use

● Introduce φ‐functions 

to handle joins at loop 

headers too
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Handling cyclic control flow

15

loop:

x2 ← Φ(x1,x3)

y2 ← Φ(y1,y3)

 x3 ← x2 + 1

 y3 ← y2 + 1

 if (x3 < 100) goto loop

x1 ← …

 y1 ← …

 if (x1 >= 100) goto end

end:

● SSA requires single 

definition for each use

● Introduce φ‐functions 

to handle joins at loop 

headers too

What’s missing?
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Handling cyclic control flow

16

x1 ← …

 y1 ← …

 if (x1 >= 100) goto end

end:

● SSA requires single 

definition for each use

● Introduce φ‐functions 

to handle joins at loop 

headers too
loop:

x2 ← Φ(x1,x3)

y2 ← Φ(y1,y3)

 x3 ← x2 + 1

 y3 ← y2 + 1

 if (x3 < 100) goto loop

JOIN!!!
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Handling cyclic control flow

17

x1 ← …

 y1 ← …

 if (x1 >= 100) goto end

end:

x4 ← Φ(x1,x3)

y4 ← Φ(y1,y3)

● SSA requires single 

definition for each use

● Introduce φ‐functions 

to handle joins at loop 

headers too
loop:

x2 ← Φ(x1,x3)

y2 ← Φ(y1,y3)

 x3 ← x2 + 1

 y3 ← y2 + 1

 if (x3 < 100) goto loop
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What is a Φ anyway?

● Φ is a fictional operator; it merges multiple definitions into 

a single definition at a join in the control flow graph.

● At a BB with p predecessors, there are p inputs to the Φ.

xnew ← Φ(x1, x2, x3, … , xp) 

● What do the inputs to a Φ mean?

○ The inputs to φ‐functions positionally correspond to the incoming 

control-flow edges.

○ They relate control flow merging and data flow merging.

18
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What is a Φ anyway?

19

Join points in the 

control flow graph 

may require insertion 

of Φ functions. 

join
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What is a Φ anyway?

20

y1 ← …
y3 ← 

…
y2 ← …

join

Join points in the 

control flow graph 

may require insertion 

of Φ functions, if 

there are different 

versions of the 

variable arriving. 
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What is a Φ anyway?

21

y1 ← …
y3 ← 

…

y4 ← Φ(y1,y2,y3)

y2 ← …

Each incoming control 

edge supplies a 

corresponding data 

value for the Φ from 

the predecessor.

join
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What is a Φ anyway?

22

y1 ← …
y3 ← 

…

y4 ← Φ(y1,y2,y3)

y2 ← …

Each incoming control 

edge supplies a 

corresponding data 

value for the Φ from 

the predecessor.

join
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What is a Φ anyway?

23

y1 ← …
y3 ← 

…

y4 ← Φ(y1,y2,y3)

y2 ← …

join

Uses of the variable 

after the join get the 

new value, not the old 

value(s)!

y4
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Another Loop Example

24

a ← 0

b ← a + 1

c ← c + b

a ← b * 2

a < N

return c
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Another Loop Example

a1 ← 0

a3 ← Φ(a1,a2)

c3 ← Φ(c1,c2)

b2 ← a3 + 1

c2 ← c3 + b2
a2 ← b2 * 2

a2 < N

return c2

Notice c1..3 are 
recursively 

defined!

25

a ← 0

b ← a + 1

c ← c + b

a ← b * 2

a < N

return c
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What is a Φ (for a loop) anyway?

26

y1 ← …

y4 ← y3

y3 ← Φ(y1,y2,y4)

y2 ← …

join

Φs at loop 

headers relate 

the dataflow on 

a loop backedge 

with the control 

flow.

Allows finding 

induction 

variables really 

easily.
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Minimal SSA

● Each assignment generates a fresh variable.

● At each join point insert Φ functions for all variables with multiple 
outstanding defs.

y ← x y ← 2

z ← y + x

x ← 1

y1 ← x1 y2← 2

y3 ← Φ(y1,y2)

z1 ← y3 + x1

x1 ← 1

27
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When do we insert Φ?

11

1

5

6 7

8

13

2

3

4

9

10

1
2

CFG

If there is a def of a in block 

5, which nodes need a Φ()?

28
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When do we insert Φ?

29

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path Pxz of edges from x to z

•There is a nonempty path Pyz of edges from y to z

•Paths Pxz and Pyz do not have any node in 
common other than z, and…

•The node z does not appear within both Pxz and 
Pyz prior to the end, though it may appear in one 
or the other.

b ← exp1

if cond goto L

ret b

b ← exp2

X:
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When do we insert Φ?

30

b ← exp1

if cond goto L

b ← exp2

X:

Y:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path Pxz of edges from x to z

•There is a nonempty path Pyz of edges from y to z

•Paths Pxz and Pyz do not have any node in 
common other than z, and…

•The node z does not appear within both Pxz and 
Pyz prior to the end, though it may appear in one 
or the other.

ret b
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When do we insert Φ?

31

b ← exp1

if cond goto L

b ← exp2

X:

Y:

Z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path Pxz of edges from x to z

•There is a nonempty path Pyz of edges from y to z

•Paths Pxz and Pyz do not have any node in 
common other than z, and…

•The node z does not appear within both Pxz and 
Pyz prior to the end, though it may appear in one 
or the other.

ret b
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When do we insert Φ?

32

b ← exp1

if cond goto L

b ← exp2

X:

Y:

Z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path Pxz of edges from x to z

•There is a nonempty path Pyz of edges from y to z

•Paths Pxz and Pyz do not have any node in 
common other than z, and…

•The node z does not appear within both Pxz and 
Pyz prior to the end, though it may appear in one 
or the other.

ret b
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When do we insert Φ?

33

b ← exp1

if cond goto L

b ← exp2

X:

Y:

Z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path Pxz of edges from x to z

•There is a nonempty path Pyz of edges from y to z

•Paths Pxz and Pyz do not have any node in 
common other than z, and…

•The node z does not appear within both Pxz and 
Pyz prior to the end, though it may appear in one 
or the other.

ret b
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When do we insert Φ?

34

b ← exp1

if cond goto L

b ← exp2

X:

Y:

Z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path Pxz of edges from x to z

•There is a nonempty path Pyz of edges from y to z

•Paths Pxz and Pyz do not have any node in 
common other than z, and…

•The node z does not appear within both Pxz and 
Pyz prior to the end, though it may appear in one 
or the other.

ret b
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Iterative Insertion

● Implicit def of every variable in start node

● Inserting Φ-function creates new definition

● While there ∃ x,y,z that 

○ satisfy path-convergence criteria

○ and z does not contain Φ-function for b

● do

○ insert b ← Φ(b,b,b,…,bn) at node z, z having n predecessors.

35
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Dominance Property of SSA

● In SSA definitions dominate uses*.

○ If xi is used in x ← Φ(…, xi, …), then

BB(xi) dominates ith predecessor of BB(Φ)

○ If x is used in y ← … x …, 

then BB(x) dominates BB(y)

● We can use this for an efficient algorithm to convert to SSA

36
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Dominance Property of SSA

37

*well akshully, this only true for strict SSA**,
where all variables are defined before they are used.

● In SSA definitions dominate uses*.

○ If xi is used in x ← Φ(…, xi, …), then

BB(xi) dominates ith predecessor of BB(Φ)

○ If x is used in y ← … x …, 

then BB(x) dominates BB(y)

● We can use this for an efficient algorithm to convert to SSA



15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Property of SSA

38

*well akshully, this only true for strict SSA**,
where all variables are defined before they are used.
**well double akshully, we can insert assignments to

convert any program to strict SSA

● In SSA definitions dominate uses*.

○ If xi is used in x ← Φ(…, xi, …), then

BB(xi) dominates ith predecessor of BB(Φ)

○ If x is used in y ← … x …, 

then BB(x) dominates BB(y)

● We can use this for an efficient algorithm to convert to SSA



Side trip: Dominators

15-411/611 © 2019-21 Goldstein

39
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Dominators

● a dom b

○block a dominates block b if every possible execution path from 

entry to b includes a 0

4

52

3

1

entry

exit
40
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Dominators

● a dom b

○block a dominates block b if every possible execution path from 

entry to b includes a 0

4

52

3

1

entry

exit
41
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Dominators

● a dom b

○block a dominates block b if every possible execution path from 

entry to b includes a

■ entry dominates everything

■ 0 dominates everything but entry

■ 1 dominates 2 and 1

0

4

52

3

1

entry

exit
42
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Dominators

● a dom b

○block a dominates block b if every possible execution path from 

entry to b includes a 0

4

52

3

1

entry

exit

Dominators are useful in:
● Dataflow analysis
● Constructing SSA
● Identifying “natural” loops
● Code motion
● …

43
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Definitions

● a sdom b

If a and b are different blocks and a dom b, we say that a 

strictly dominates b

● a idom b

If a sdom b, and there is no c such that a sdom c and c sdom 

b, we say that a is the immediate dominator of b

44

0

4

52

3

1

entry

exit
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Properties of Dom

● Dominance is a partial order on the blocks of the flow graph, i.e.,

○ 1. Reflexivity: a dom a  for all a

○ 2. Anti-symmetry: a dom b and b dom a implies a = b 

○ 3. Transitivity: a dom b and b dom c implies a dom c 

● NOTE: there may be blocks a and b such that 
neither a dom b or b dom a holds.

● The dominators of each node n are linearly ordered by the dom 
relation. The dominators of n appear in this linear order on any 
path from the initial node to n.

45
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Computing dominators

● We want to compute D[n], the set of blocks that dominate n

Initialize each D[n] (except D[entry]) to be the set of all blocks, and 
then iterate until no D[n] changes:

46
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Example

block D[n]

entry {entry}

0 {entry,0,1,2,3,4,5,exit}

1 {entry,0,1,2,3,4,5,exit}

2 {entry,0,1,2,3,4,5,exit}

3 {entry,0,1,2,3,4,5,exit}

4 {entry,0,1,2,3,4,5,exit}

5 {entry,0,1,2,3,4,5,exit}

exit {entry,0,1,2,3,4,5,exit}

Initialization

47

0

4

52

3

1

entry

exit
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{0,entry}

{1,0,entry}

{2,1,0,entry}

{3,1,0,entry}    

{4,0,entry}  
{5,4,0,entry}

{exit,3,1,0,entry}    

Example

block D[n] D[n]

entry {entry} {entry}

0 {entry,0,1,2,3,4,5,exit}

1 {entry,0,1,2,3,4,5,exit}

2 {entry,0,1,2,3,4,5,exit}

3 {entry,0,1,2,3,4,5,exit}

4 {entry,0,1,2,3,4,5,exit}

5 {entry,0,1,2,3,4,5,exit}

exit {entry,0,1,2,3,4,5,exit}

Initialization First Pass

Update rule:

48

0

4

52

3

1

entry

exit
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{0,entry}

{1,0,entry}

{2,1,0,entry}
{3,0,entry}    

{4,0,entry}  

{5,4,0,entry}

{exit,3,0,entry}    

Example

block D[n] D[n]

entry {entry} {entry}

0 {0,entry}

1 {1,0,entry}

2 {2,1,0,entry}

3 {3,1,0,entry}    

4 {4,0,entry}  

5 {5,4,0,entry}

exit {exit,3,1,0,entry}    

First Pass Second Pass

Update rule:

49

0

4

52

3

1

entry

exit
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Example

block D[n] D[n]

entry {entry} {entry}

0 {0,entry} {0,entry}

1 {1,0,entry} {1,0,entry}

2 {2,1,0,entry} {2,1,0,entry}

3 {3,0,entry}    {3,0,entry}    

4 {4,0,entry}  {4,0,entry}  

5 {5,4,0,entry} {5,4,0,entry}

exit {exit,3,0,entry}    {exit,3,0,entry}    

Second Pass Third Pass

Update rule:

50

0

4

52

3

1

entry

exit
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Computing dominators

● Iterative algorithm is O(n2e) 

○ assuming bit vector set

○ choosing a good iteration order matters

● More efficient algorithm due to Lengauer and Tarjan

○O(e·α(e,n))

○much more complicated

○Books provide simple algorithms that are fast in practice

(faster than Tarjan algorithm for realistic CFGs)

○For a clever algorithm see: 

“A Simple, Fast Dominance Algorithm” by Cooper, Harvey, and Kennedy”

α(e,n) is inverse Ackermann

51

https://www.cs.rice.edu/~keith/EMBED/dom.pdf
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Immediate dominators

● Let sD[n] be the set of blocks that strictly dominate n, then 

● To compute iD[n], the set of blocks (size <= 1) that 
immediately dominate n

● Set 

● Repeat until no iD[n] changes:

52

sD[n] = D[n] - {n}

iD[n] = sD[n]

iD[n] = iD[n] － ⋃(sD[d])
d ∈ iD[n]
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Example

block iD[n]=sD[n] iD[n]

entry {} {}

0 {entry} {entry}

1 {0,entry} {0}

2 {1,0,entry} {1}

3 {0,entry}    {0}    

4 {0,entry}  {0}  

5 {4,0,entry} {4}

exit {3,0,entry}    {3}    

Initialization First Pass

Update rule:

53

0

4

52

3

1

entry

exit

CFG
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Dominator Tree

block iD[n]

entry {}

0 {entry}

1 {0}

2 {1}

3 {0}    

4 {0}  

5 {4}

exit {3}    

In the dominator tree the initial node is the 
entry block, and the parent of each other 

node is its immediate dominator. 

0

4

52

31

entry

exit

Dominator Tree
54

0

4

52

3

1

entry

exit

CFG
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Dominance Frontier

● z is in the dominance frontier of x If z is the first 

node we encounter on the path from x which x does 

not strictly dominate. 

● For some path from node x to z,

  x → … → y → z

where x dom y but not x sdom z.

● Intuitively, the dominance frontier consists of nodes 

“just outside the dominator tree”

56

0

4

52

3

1

entry

exit

CFG
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Dominance Frontier

● z is in the dominance frontier of x If z is the first 

node we encounter on the path from x which x does 

not strictly dominate. 

● For some path from node x to z,

  x → … → y → z

where x dom y but not x sdom z.

● Dominance frontier of 1? 

● Dominance frontier of 2? 

● Dominance frontier of 4? 

57

0

4

52

3

1

entry

exit

CFG
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Dominance Frontier

● z is in the dominance frontier of x If z is the first 

node we encounter on the path from x which x does 

not strictly dominate. 

● For some path from node x to z,

  x → … → y → z

where x dom y but not x sdom z.

● Dominance frontier of 1? {3}

● Dominance frontier of 2? {3}

● Dominance frontier of 4? {3,4}

58

0

4

52

3

1

entry

exit

CFG
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0

4

52

3

1

entry

exit

idom

59

0

4

52

3

1

entry

exit

CFG
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0

4

52

3

1

entry

exit
60

0

4

52

3

1

entry

exit

idomCFG



15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit
61

0

4

52

3

1

entry

exit

idomCFG



15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit
62

0

4

52

3

1

entry

exit

idomCFG



15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit
63

0

4

52

3

1

entry

exit

idomCFG



15-411/611 © 2019-2025 Titzer/Goldstein

● Let dominates[n] be the set of all blocks which block n 

dominates

○ subtree of dominator tree with n as the root

● The dominance frontier of n, DF[n] is 

DF[n] = ⋃ succ(s) - dominates[n] - {n}

64

s ∈ dominates[n]

Calculating the Dominance Frontier
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Recap

● a dom b

○ every possible execution path from entry to b includes a

● a sdom b

○ a dom b and a != b

● a idom b

○ a is “closest” dominator of b

● a pdom b

○ every path from a to the exit block includes b

● Dominator trees

● Dominance frontier

65
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Back to inserting Φs

66

b ← exp1

if cond goto L

…

ret b

b ← exp2

x:

y:

z:

Require a Φ-function for variable b at node z of the flow graph:

•There is a block x containing a def of b

•There is a block y ≠ x containing a def of b

•There is a nonempty path Pxz of edges from x to z

•There is a nonempty path Pyz of edges from y to z

•Paths Pxz and Pyz do not have any node in 
common other than z, and…

•The node z does not appear within both Pxz and 
Pyz prior to the end, though it may appear in one 
or the other.

In other words, z ∈ DF(x)



15-411/611 © 2019-2025 Titzer/Goldstein

Using Dominance for SSA Construction

● Dominance-Frontier Criterion: Whenever node x contains a 

definition of some variable a, then any node z ∈ DF(x), z needs 

a Φ-function for a.

● Iterated dominance frontier: since a Φ-function itself is a 

definition, we must iterate the dominance-frontier criterion until 

there are no nodes that need Φ-functions.

67
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Dominance

B

1

5

6 7

8

D

2

3

4

9

A

C

1

B

5

6 7 8

2

3

4 9

A

C D

CFG D-Tree

If there is a def of a in block 

5, which nodes need a Φ()?

68
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Dominance Frontier

B

1

5

6 7

8

D

2

3

4

9

A

C

CFG D-Tree

The dominance Frontier of a node x =
{ w | x dom pred(w) AND !(x sdom w)}

15-411/611
© 2019-21 Goldstein

69

1

B
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3
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A

C D
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Dominance Frontier & 
path-convergence

B

1

5

6 7

8

D

2

3

4

9

A

C

B

1

5

6 7

8

D

2

3

4

9

A

C

70



15-411/611 © 2019-2025 Titzer/Goldstein

Dominance Frontier Criterion

B

1

5

6 7

8

D

2

3

4

9

A

C

71
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Dominance Frontier Criterion

B

1

5

6 7

8

D

2

3

4

9

A

C

72

And, Iterating
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Dominance Frontier Criterion

B

1

5

6 7

8

D
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And, Iterating
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Dominance Frontier Criterion

B

1

5

6 7

8

D

2

3

4

9

A

C
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And, Iterating
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Dominance Frontier Criterion

B

1

5

6 7

8

D

2

3

4

9

A

C

75

Done
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Using DF to Place Φ()

● Gather all the defsites of every variable

● Then, for every variable

○ foreach defsite
■ foreach node in DF(defsite)

● if we haven’t put Φ() in node put one in

● If this node didn’t define the variable before: add this node to the defsites

● This essentially computes the Iterated Dominance Frontier on 

the fly, creating minimal SSA

77
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Using DF to Place Φ()

foreach node n {

 foreach variable v defined in n {

  orig[n] ∪= {v}
  defsites[v] ∪= {n}
 }

 foreach variable v {

  W = defsites[v]

  while W not empty {

   foreach y in DF[n]

   if y ∉ PHI[v] {
    insert “v ← Φ(v,v,…)” at top of y 

    PHI[v] = PHI[v] ∪ {y}
    if v ∉ orig[y]: W = W ∪ {y}
   }

  }

 }

}
78



i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

1

2

4

65

7

3

Computing SSA



i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

1

2

4

65

7

3

Compute D-tree

1

D-tree



i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

1

2

4

65

7

3

Compute D-tree

1

5 6 7

2

3 4

D-tree



Compute Dominance Frontier (DFs)

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1

5 6 7

2

3 4

i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

1

2

4

65

7

3



Compute Dominance Frontier (DFs)

DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1

5 6 7

2

3 4

i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

1

2

4

65

7

3



DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

1

2

4

65

7

3

Compute defsites



DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j:  W={1,5,6}

i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

1

2

4

65

7

3

Inspect variables



DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j:  W={1,5,6}

DF[1] ∪ DF[5] ∪ DF[6] ={7}

i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

1

2

4

65

7

3

Insert ɸ for j



DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j:  W={1,5,6}

i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Insert ɸ for j



DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j:  W={1,5,6,7}

i ← 1

j ← 1

k ← 0

k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Handle new write for j

DF[1] ∪ DF[5] ∪ DF[6] ∪ DF[7] ={7,2}



DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j:  W={1,5,6,7}

i ← 1

j ← 1

k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Insert more ɸ for j

DF[1] ∪ DF[5] ∪ DF[6] ∪ DF[7] ={7,2}



DFs

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

1 { i,j,k}
2 {}
3 {}
4 {}
5 {j,k}
6 {j,k}
7 {}

orig[n] defsites[v]

i {1}
j {1,5,6}
k {1,5,6}

var j:  W={1,5,6,7,2}

i ← 1

j ← 1

k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Update writes for j

DF[1] ∪ DF[5] ∪ DF[6] ∪ DF[7] ∪ DF[2] 
={7,2}
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Renaming Variables

● Placing ɸ is not enough, need to update names

● Walk down the dominator tree, renaming variables incrementally

● Replace uses with most recent renamed def

○ For straight-line code this is easy

○ If there are branches and joins?

91
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Renaming for Straight-Line Code

● Need to extend for ɸ-functions.

● Need to maintain property that 

definitions dominate uses.

92

for each variable a:

    Count[a] = 0

    Stack[a] = [0]

renameBasicBlock(B):

    for each instruction S in block B:

        for each use of a variable x in S:

            i = top(Stack[x])

            replace the use of x with xi

        for each variable a that S defines

            count[a] = Count[a] + 1

            i = Count[a]

            push i onto Stack[a]

            replace definition of a with ai



Renaming in CFG

93

rename(n):

 renameBasicBlock(n)

 for each successor Y of n, where n is the jth predecessor of Y:

 for each phi-function f in Y, where the operand of f is ‘a’

       i = top(Stack[a])

 replace jth operand with ai

 for each child of n in D-tree, X:

  rename(X)

 for each instruction S ∈ n:

  for each variable v that S defines:

   pop Stack[v]



defsites[v]

i {1}
j {1,5,6,7,2}
k {1,5,6}

i ← 1

j ← 1

k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

The 

following 

slides do not 

follow the 

algorithm 

above.



defsites[v]

i ← 1

j ← 1

k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables

1

5 6 7

2

3 4

j1

cursor i {1}
j {1,5,6,7,2}
k {1,5,6}

The 

following 

slides do not 

follow the 

algorithm 

above.



defsites[v]

i ← 1

j ← 1

k ← 0

j ← Φ(j,j)
k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k
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j ← Φ(j,j)
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2

4
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Rename j variables

1

5 6 7

2

3 4

j1

j1

cursor

i {1}
j {1,5,6,7,2}
k {1,5,6}

The 

following 

slides do not 

follow the 

algorithm 

above.
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j < 20? return j
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Rename j variables
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j1

j1

cursor
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Rename j variables
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i ← 1

j ← 1

k ← 0
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j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables
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i ← 1

j ← 1

k ← 0
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k < 100?

j < 20? return j

j ← i

k ← k + 1

j ← k

k ← k + 2

j ← Φ(j,j)

1

2

4

65

7

3

Rename j variables
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i ← 1

j ← 1

k ← 0
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k < 100?

j < 20? return j
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Rename j variables
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Rename j variables
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i ← 1

j ← 1

k ← 0
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j < 20? return j
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Rename j variables
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above.
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Flavors of SSA

●Minimal SSA

○ at each join point with >1 outstanding definition insert a φ-function

○ Some may be dead

●Pruned SSA

○ only add live φ-functions

○ must compute LIVEOUT

●Semi-pruned SSA

○ Same as minimal SSA, but only on names live across more than 1 

basic block

10 6
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Summary

● SSA is a useful and efficient IR.

● Definitions dominate uses

● Constructing SSA can be efficient

(No need to do Lengaur-Tarjan Algorithm, instead see 

A Simple, Fast Dominance Algorithm by Cooper, 

Harvey, and Kennedy )

● Don’t do any optimizations yet!

10 7

https://www.cs.rice.edu/~keith/EMBED/dom.pdf
https://www.cs.rice.edu/~keith/EMBED/dom.pdf
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Deconstructing SSA

● Real machines don’t have Φ functions.

● Have to insert moves at predecessors.

● Mentioned earlier, but with huge caveats.

● We resolve those caveats today.
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Deconstructing SSA

● When during compilation to deconstruct SSA?

● There are two common choices: before or after regalloc.

● Regalloc before deconstruction is relatively new (2010s).

Source

Program

SSA

IR

non-SSA

IR
Target

Program

SSA

construction

SSA

deconstruction regalloc

colored 

SSA IR
regalloc SSA

deconstruction
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Deconstructing SSA

● When during compilation to deconstruct SSA?

● There are two common choices: before or after regalloc.

● Regalloc before deconstruction is relatively new (2010s).

Source

Program

SSA

IR

non-SSA

IR
Target

Program

SSA

construction

SSA

deconstruction regalloc

colored 

SSA IR
regalloc SSA

deconstruction

Nice chordal interference graphs
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Deconstructing SSA

● When during compilation to deconstruct SSA?

● There are two common choices: before or after regalloc.

● Regalloc before deconstruction is relatively new (2010s).

Source

Program

SSA

IR

non-SSA

IR
Target

Program

SSA

construction

SSA

deconstruction regalloc

colored 

SSA IR
regalloc SSA

deconstruction

Possibly 

better code?
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Deconstructing SSA

● When during compilation to deconstruct SSA?

● There are two common choices: before or after regalloc.

● Regalloc before deconstruction is relatively new (2010s).

Source

Program

SSA

IR

non-SSA

IR
Target

Program

SSA

construction

SSA

deconstruction regalloc

colored 

SSA IR
regalloc SSA

deconstruction

Deconstruction is more or 

less the same either way.
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Deconstructing SSA

● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2

c2 ← y + 1

a3 ← Φ(a1,a2)

c3 ← Φ(c1,c2)

a4 ← c3 + a3

a1 ← x + y

b1 ← a1 + x
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Deconstructing SSA

● Insert Φ-resolution moves and remove Φs.

a2 ← b + 2

c2 ← y + 1

a3 ← Φ(a1,a2)

c3 ← Φ(c1,c2)

a4 ← c3 + a3

a1 ← x + y

b1 ← a1 + x
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Deconstructing SSA

● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2

c2 ← y + 1

a3 ← a2

a3 ← Φ(a1,a2)

c3 ← Φ(c1,c2)

a4 ← c3 + a3

a1 ← x + y

b1 ← a1 + x

a3 ← a1
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Deconstructing SSA

● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2

c2 ← y + 1

a3 ← a2

a3 ← Φ(a1,a2)

c3 ← Φ(c1,c2)

a4 ← c3 + a3

a1 ← x + y

b1 ← a1 + x

a3 ← a1

Notice the alignment 

of data flow and 

control flow. The Φ 

nodes represent this 

explicitly in the IR.
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Deconstructing SSA

● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2

c2 ← y + 1

a3 ← a2
c3 ← c2

a3 ← Φ(a1,a2)

c3 ← Φ(c1,c2)

a4 ← c3 + a3

a1 ← x + y

b1 ← a1 + x

a3 ← a1
c3 ← c1

Each Φ introduces 

one move into each 

predecessor node.
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Deconstructing SSA

● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2

c2 ← y + 1

a3 ← a2
c3 ← c2

a3 ← Φ(a1,a2)

c3 ← Φ(c1,c2)

a4 ← c3 + a3

a1 ← x + y

b1 ← a1 + x

a3 ← a1
c3 ← c1

Remove Φs after 

inserting moves.
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Deconstructing SSA

● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2

c2 ← y + 1

a3 ← a2
c3 ← c2

a4 ← c3 + a3

a1 ← x + y

b1 ← a1 + x

a3 ← a1
c3 ← c1

The program is now 

directly executable 

again.

Removing all Φs after 

deconstruction gives 

a completely valid 

non-SSA program.
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Issue 1: Critical Edges

● Consider a simple triangle CFG.

12 4

b1 ← exp1

if cond goto L

b3 ←φ(b1,b2)

ret b3

b2 ← exp2
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Issue 1: Critical Edges

12 5

b1 ← exp1

b3 ← b1
if cond goto L

b3 ←φ(b2,b1)

ret b3

b2 ← exp2

b3 ← b2

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ. 
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Issue 1: Critical Edges

12 6

b1 ← exp1

b3 ← b1
if cond goto L

ret b3

b2 ← exp2

b3 ← b2

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ. 
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Issue 1: Critical Edges

12 7

b1 ← exp1

b3 ← b1
if cond goto L

ret b3

b2 ← exp2

b3 ← b2

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ. 

Dynamic execution paths
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Issue 1: Critical Edges

12 8

b1 ← exp1

b3 ← b1
if cond goto L

ret b3

b2 ← exp2

b3 ← b2

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ. 

Naïve insertion can 

introduce redundant code 

on some execution paths.

redundant

move
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Issue 1: Critical Edges

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ. 

Naïve insertion can 

introduce redundant code 

on some execution paths.
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Issue 1: Critical Edges

● Consider a more complicated CFG.

● We insert moves in all predecessors and remove the Φ. 

Naïve insertion can 

introduce redundant code 

on some execution paths.

BA



15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a more complicated CFG.

● We insert moves in all predecessors and remove the Φ. 

Naïve insertion can 

introduce redundant code 

on some execution paths.

BA

AA



15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a more complicated CFG.

● We insert moves in all predecessors and remove the Φ. 

Naïve insertion can 

introduce redundant code 

on some execution paths.

B

BA

A

Can actually get really bad.

A B
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Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an 

empty block between.

✗
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Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an 

empty block between.
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Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an 

empty block between.

● This block is the proper place for Φ-resolution moves.

✓
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Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an 

empty block between.

● This block is the proper place for Φ-resolution moves.

A critical edge is any edge that 

connects a block with multiple 

successors to a block with 

multiple predecessors.

✗

multiple successors

multiple predecessors
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Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an 

empty block between.

● This block is the proper place for Φ-resolution moves.

Splitting all critical edges prior 

to SSA deconstruction is easy.

multiple successors

multiple predecessors

✓
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

● For CFGs without loops, no.

● Let’s convince ourselves.
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)

y3 ←φ(y1,y2)

● Consider a join with at least two Φs.
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)

y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.

● Moves are inserted into predecessors.
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)

y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.

● Moves are inserted into predecessors.
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)

y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.

● Moves are inserted into predecessors.

● By SSA invariants, the definition of the 

RHS of each move dominates the move.

x1 ← …

dom
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)

y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.

● Moves are inserted into predecessors.

● By SSA invariants, the definition of the 

RHS of each move dominates the move.

y1 ← …

dom
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)

y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.

● Moves are inserted into predecessors.

● By SSA invariants, the definition of the 

RHS of each move dominates the move.

● It cannot be the case that the LHS is live, 

because previously there was only one 

definition, below.

dom



15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)

y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.

● Moves are inserted into predecessors.

● By SSA invariants, the definition of the 

RHS of each move dominates the move.

● It cannot be the case that the LHS is live, 

because previously there was only one 

definition, below.

● Therefore we are only assigning to fresh 

variables, and not overwriting anything.

dom
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)

y3 ←φ(y1,y2)

x3 ← x1     y3 ← y1
y3 ← y1     x3 ← x1

● Consider a join with at least two Φs.

● Moves are inserted into predecessors.

● By SSA invariants, the definition of the 

RHS of each move dominates the move.

● It cannot be the case that the LHS is live, 

because previously there was only one 

definition, below.

● Therefore we are only assigning to fresh 

variables, and not overwriting anything.

● Therefore any order is fine.

dom
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ← x1     y3 ← y1
y3 ← y1     x3 ← x1

● Consider a join with at least two Φs.

● Moves are inserted into predecessors.

● By SSA invariants, the definition of the 

RHS of each move dominates the move.

● It cannot be the case that the LHS is live, 

because previously there was only one 

definition, below.

● Therefore we are only assigning to fresh 

variables, and not overwriting anything.

● Therefore any order is fine.

dom
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Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

● For CFGs without loops, no.

● But what about loops?



15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

14 9

y1 ← …

y3 ← y2 + 1

y2 ← Φ(y1,y2)

loop header

Φs at loop 

headers relate 

the dataflow on 

a loop backedge 

with the control 

flow.

A loop Φ can be 

defined in terms 

of itself.

backedge
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Issue 2: Ordering Moves

15 0

y1 ← …

y2 ← y1

y3 ← y2 + 1

y2 ← y3

y2 ← Φ(y1,y2)

loop header

Like any other 

join, we insert Φ-

resolution moves 

at predecessors.

backedge
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Issue 2: Ordering Moves

15 1

y1 ← …

y2 ← y1

y3 ← y2 + 1

y2 ← y3

y2 ← Φ(y1,y2)

loop header

Like any other 

join, we insert Φ-

resolution moves 

at predecessors.

With only one Φ, 

there is no 

problem yet.

backedge



15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

15 2

x1 ← …

y1 ← …

x3 ← y2 + 1

y3 ← x2 + 1

x2 ← Φ(x1,x3)

y2 ← Φ(y1,y3)

loop header

Like any join, a loop 

header can have 

multiple Φs.

Because Φs can use 

inductively defined 

versions of 

themselves, they can 

be recursive or even 

mutually recursive.

backedge
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Issue 2: Ordering Moves

15 3

x1 ← …

y1 ← …

x3 ← y2
y3 ← x2

x2 ← Φ(x1,x3)

y2 ← Φ(y1,y3)

A simple example: 

swap of variables in 

a loop.

ret x2
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Issue 2: Ordering Moves

15 4

x1 ← …

y1 ← …

x3 ← y2
y3 ← x2

x2 ← Φ(x1,y2)

y2 ← Φ(y1,x2)

After optimizations 

such as copy 

propagation, the Φs 

can be mutually 

recursive.

ret x2

Replace

x3 with y2
y3 with x2
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Issue 2: Ordering Moves

15 5

x1 ← …

y1 ← …

x2 ← Φ(x1,y2)

y2 ← Φ(y1,x2)

After optimizations 

such as copy 

propagation, the Φs 

can be mutually 

recursive.

ret x2

This is totally legal 

and cool.
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Issue 2: Ordering Moves

15 6

x1 ← …

y1 ← …

x2 ← y2

y2 ← x2

x2 ← Φ(x1,y2)

y2 ← Φ(y1,x2)

SSA deconstruction 

using the naïve 

move insertion will 

always generate 

incorrect code, 

regardless of the 

order.

ret x2
✗

Incorrect code
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Issue 2: Ordering Moves

15 7

x1 ← …

y1 ← …

x2 ← y2

y2 ← x2

x2 ← Φ(x1,y2)

y2 ← Φ(y1,x2)

SSA deconstruction 

using the naïve 

move insertion will 

always generate 

incorrect code, 

regardless of the 

order.

ret x2
x2 y2

✗
Incorrect code
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Issue 2: Ordering Moves

15 8

x1 ← …

y1 ← …

x2 ← Φ(x1,y2)

y2 ← Φ(y1,x2)

The reason is that 

phi resolution moves 

have parallel move 

semantics.

ret x2
x2
y2

y2
x2

←
x2 y2
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Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without 

overwriting old versions.

● One simple solution: introduce new temps again.

x0
x1
x2
x3

←

y0
y1
y2
y3

t0 ← y0
t1 ← y1
t2 ← y2
t3 ← y3
x0 ← t0
x1 ← t1
x2 ← t2
x3 ← t3

generates

Works every time.

Generates a lot of 

temporaries, but 

maybe the register 

allocator / copy 

propagation can 

clean them up?
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Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without 

overwriting old versions.

● Better solution: order moves more intelligently.

x0
x1
x2
x3

←

y0
y1
y2
y3
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Next SSA Lecture

● Finish Deconstructing SSA

● More practice building SSA

● Constant propagation with SSA

● SSA in practice
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Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without 

overwriting old versions.

● Better solution: order moves more intelligently.

x0
x1
x2
x3

←

y0
y1
y2
y3

Notice that because 

parallel moves 

originate from SSA 

deconstruction, 

variables on the LHS 

appear only once on 

the LHS.

x0 ≠ x1 ≠ x2 ≠ x3
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Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without 

overwriting old versions.

● Better solution: order moves more intelligently using LTG.

x0
x1
x2
x3

←

y0
y1
y2
y3

We can build a 

graph where each 

node in the parallel 

moves gets a node, 

and directed edges 

represent moves.

x0 ≠ x1 ≠ x2 ≠ x3

x0 x1

x2 x3

Location Transfer Graph



15-411/611 © 2019-2025 Titzer/Goldstein

Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without 

overwriting old versions.

● Better solution: order moves more intelligently using LTG.

x0
x1
x2
x3

←

y0
y1
y2
y1

Variables may 

appear multiple 

times on the RHS, 

and may appear on 

both LHS and RHS.

x0 ≠ x1 ≠ x2 ≠ x3

y0 y1

y2

Location Transfer Graph
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Location Transfer Graphs

● A location transfer graph represents a set of parallel moves.
● It can be traversed to generate a legal move ordering.
● It’s constrained:

○ Every node in the graph has at most one incoming edge.
○ That implies the graph can only have simple cycles.

x0
x1
x2
x3

←

x2
x0
x1
x0

x0

x2
x1

x3
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