Instruction Selection

15-411/15-611 Compiler Design
Seth Copen Goldstein

January 22, 2026

2019-21 Goldstein

Today

Context

Abstract Assembly

AST =2 IR

Maximal Munch

Issues

Simple SSA

X86 and 2-adr Instructions

© 2019-21 Goldstein

/

Cartoon Compiler

Abstragt syntax tree ///

> translat|on

(Lex ' Parse | Semantics
\‘r@kees—/ AST+S

bol tables

W@/

“

iInstruction
selection

/| register

code

15-411/611

Code Triples

© 2019-21 Goldstein

optimization . g .
@/ generation

Simple Source Language

e A language of assignments, expressions,
and a return statement.

e Straight-line code
e Basically lab1 subset of CO

© 2019-21 Goldstein

15-411/611

Simple Source Language

program :

S13 Sy} - S

n?~?

v=e
return e

C

V

e, De,
+H-1*1/ 1%

© 2019-21 Goldstein

sequence of statements

assignment
return
constant
variable

binary operation

Abstract Syntax Tree

@ stmt-list
OECIDECD

et
D

Example

z =x+ 3 *y - 5;

<

return z; @
’ stmt-list

<\
o ‘ return

Other possibilites?

15-411/611 © 2019-21 Goldstein 8

Today

Abstract Assembly

AST =2 IR

Maximal Munch

Issues

Simple SSA

X86 and 2-adr Instructions

© 2019-21 Goldstein

15-411/611

Abstract Assembly as IR

e Lowering of AST

e Facilitate
— Analysis & optimizations
— Translation to actual assembly

e Features:
— Unlimited number of “temporaries”
— May not restrict how memory is used
— Simple operations
— May not restrict how constants are used
— May specify certain “special registers”

© 2019-21 Goldstein

Abstract Assembly as IR

e Features:
— Unlimited number of “registers” (aka “temps”)
— May (or may not) restrict how memory is used
— Simple operations
— May not restrict how constants are used
— May specify certain “special registers”

e Form:
‘dest < src, operator src, src can be:
- constant
dest <~ operator src, . temp
operator - special register

- memory

15-411/611 © 2019-21 Goldstein

program

Abstract Assembly

iy iy

seq of instructions

move
binop e 6’%

return what is in rax

Eu«x

intermediate <
temporary
register

Example Goal

z =x+ 3 *y - 5;

return z;

© 2019-21 Goldstein

return

Today

AST =2 IR

Maximal Munch

Issues

Simple SSA

X86 and 2-adr Instructions

© 2019-21 Goldstein

Cartoon Compiler

Abstract syntax tree

Lex

tokens

| Parse | Semantics

| translation

AST+symbol tables

Intermediate Representation (tree)

iInstruction
selection

optimization

reqgister
allocation

: code
generation

15-411/611

W

Alternatives abound

© 2019-21 Goldstein

15

Translating AST to IR

e Converting from tree structured IR to
sequence of instructions
— Create temporary locations to store values
— choose which operations we want

e can combine or

e breakup original operations

e Match portions of tree and convert to triple

15-411/611 © 2019-21 Goldstein

Tree Patterns (aka Tiles)

15-411/611 © 2019-21 Goldstein

Tree Patterns

15-411/611 © 2019-21 Goldstein

Tree Patterns

d<«cC

2 Tilinga Tree |o,« #3]

&, <%
|
bz AT @ T~
b T - ' —

15-411/611 © 2019-21 Goldstein

Better Tiles @

= S

return
Correct? ' —=

If correct: better or worse?

Today

Maximal Munch
Issues

Simple SSA
X86 and 2-adr Instructions

© 2019-21 Goldstein

Maximal Munch

e recursively match tree
e At each step, pick “best” tile

© 2019-21 Goldstein

Maximal Munch

e recursively match tree

e At each step, pick “best” tile

22— Lo

© 2019-21 Goldstein

1111111111

Maximal Munch

d
e recursively match tree
e At each step, pick “best” tile dec

© 2019-21 Goldstein

1111111111

Maximal Munch

d
e recursively match tree
e At each step, pick “best” tile dec

© 2019-21 Goldstein

Maximal Munch

d
e recursively match tree

e At each step, pick “best” tile dec

e (O s

d«s

t, < Xx+1 o °

© 2019-21 Goldstein

Maximal Munch

e recursively match tree
e At each step, pick “best” tile

e need to indicate what destinations are
— choose either to supply destination
— or generate a destination

codegen &7 €

@/ —

\Q(A@C_
d< %

@ e, De, @&gg@)fgmd\/\ 'l')\&’b\,
- C;byrv@z S
}9 @ NORSS
s | codegen(s)
vze W Culese(he)
returne Colegn(for @)
YIS

1111111111

15-411/611

codegen

e | codegen(d,e)

C d<«c
Y d«v
e, Pe, codegen(t, , e,)
codegen(t, , e,)
det,Dt,
s | codegen(s)
v=e codegen(v, e)
return e codegen(rax, e)

return

© 2019-21 Goldstein

31

Example s

Result

© 2019-21 Goldstein

t, «x
t, <3

t, < t+t,
t: <y

t, <5

t, <t *t,

z <<t *t
rax <z

ret /

Example Goal
z =x+ 3 *y - 5;

return z;

tl « x + 3
qﬂﬂﬂb t2 < y -5
4 «— tl1 * t2
© Gri) rax « 2
return
urn

2 2 @
o

S
OO O&

Goal What we got

tl « x + 3 Lty <
t2 <« vy — 5 £, < 3
Z «— tl * t2 £, « t;+ t,
rax €<~ z L. <« vy
return £, « 5
t, <« tg * t,
Z 4 t, * ot
rax<— z

15-411/611 © 2019-21 Goldstein 37

How Can we Improve this?

<— X

—
(08)

«— 3

¢

—t, P,

-

e return

<Y

o

<5

@
~ =< e o~
(@)

—t.*t

O O z LG

rax <z

N

ret

How Can we Improve this?

e |Investigate generating a source operand
e Special cases
e Don’t bother?

© 2019-21 Goldstein

Generating Destinations

e | codegenle) | _up _

_ codegen(s)

V < codegen(e)

e —

return e rax < codegen(e)
return

15-411/611

Example mecm

© 2019-21 Goldstein

v v
e,®e, t,_codegen(e,)® t

v=e

return e

return

41

Special Cases

e | codegen(de)

C d<«c
\ "
Y d < x
. cDe, codegen("gg , €5)
— d LBt
e,®c codegen(t, , e,)
B d<«t,®c
v e, codegen(t, , e,)
= d<«vD t2
e, ®v codegen(t, , e,)
det,Dv
e, Pe, codegen(t, , e,)
codegen(t, , e,)
d<«1

P
Generally not recommended

15-411/611 © 2019-21 Goldstein

The “don’t bother” case

e \What should we t; <X
really do? t, (_%

L, <L+
te£= Y
t, <5
t, <—a§* te
z <<t *t
rax <z

© 2019-21 Goldstein

15-411/611

Constant
Propagation

Copy
Propagation

e | codegen(d,e)

C

v
cPe,

e, ®c
vde,
e, dv

e, ®e,

© 2019-21 Goldstein

d<«c
d <« X

codegen(t, , e,)
d«c®t,
codegen(t, , e,)
det,®c
codegen(t, , e,)
d«<vDt,
codegen(t, , e,)
det,Dv
codegen(t, , e,)
codegen(t, , e,)
det,Dt,

44

Constant Propogation

t; <X
\Eta_—(-éﬁ
t, 413

t: <y
—t—5
t, <« ts*{)5

z <<t *t
rax <z
ret

© 2019-21 Goldstein

Copy Propogation

t, e@x+3 v/
<Y

t, «<<®y*5 ~
v

z <t *t
rax <z
V4
ret

© 2019-21 Goldstein

Have to be careful

e Constant propagation:

e Copy Propagation:

© 2019-21 Goldstein

X
Y
X

<5
4]
= A
¥
<Y

<—u-4
—X+7

Have to be careful

e Constant propagation:

— Can’t just replace
all x’s with 5

— Stop if x is redefined

e Copy Propagation:

© 2019-21 Goldstein

X
y
X

<5
—Xx-4
<—y+7
<— X

<y
<—u-4
—X+7

Have to be careful

e Constant propagation:

— Can’t just replace
all x’s with 5

— Stop if x is redefined

e Copy Propagation:

— Can’t just replace
all x’s with y’s

— Stop if x or y is redefined

© 2019-21 Goldstein

X < X

<5
—Xx-4
<—y+7
— X
<Y
<—u-4
—XxX+7

Today

e Simple SSA
e x86 and 2-adr Instructions

© 2019-21 Goldstein

Static Single Assignment

e Must keep track of what definition each
use refers to in order to properly do
constant/copy propagation.

e Much simpler if only one definition for each
name.

e SSA: Each name is assigned in only one
location.

© 2019-21 Goldstein

Static Single Assignment

Must keep track of what definition each
use refers to in order to properly do
constant/copy propogation.

Much simpler if only one definition for each
name.

SSA: Each name is assigned in only one
location.

Easy for fresh temporaries

e | codegen(d,e)

e, ®Pe, codegen(t, , e,)
codegen(t, , e,)
det,Dt,

[SPAVEIE- LV RCIVI{VETI S]]

Static Single Assignment

Must keep track of what definition each
use refers to in order to properly do
constant/copy propogation.

Much simpler if only one definition for each
name.

SSA: Each name is assigned in only one
location.

Easy for fresh temporaries
What about variables?

© 2019-21 Goldstein

SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—Xx-4
<—y+7/

<— X

© 2019-21 Goldstein

Xo

<5
—X-4
—vy+7/
<— X

SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—Xx-4
<—y+7/

<— X

© 2019-21 Goldstein

Xo

<5
<—Xo-4
—vy+7/
<— X

SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—Xx-4
<—y+7/

<— X

© 2019-21 Goldstein

Xo

Yo
X

<5
<—Xo-4
—vy+7/
<— X

15-411/611

SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—Xx-4
<—y+7/

<— X

© 2019-21 Goldstein

Xo
Yo
X4q

Z

<5
—Xy-4
Yot/
<— X

15-411/611

SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—X-4
—vy+7/
<— X

© 2019-21 Goldstein

Xo
Yo
X4q

Lo

<5
—Xy-4
Yot/

<— Xy

58

Now easy

e Constant propagation:

— Can replace all x, with 5.
R

e Copy Propagation:
— Can replace all x, with y,

Xg €5
X, < Yot/
Zo < Xq

Xo < Yo
Zp < Xgt/7

Today

e Xx86 and 2-adr Instructions

Real Assembly on x86

e x86 doesn’t have 3 address instructions!

d <5, +s5,

© 2019-21 Goldstein

Real Assembly on x86

e x86 doesn’t have 3 address instructions!

d <s;+5s,

__ Triples | 2-adr | x86

d<—s;+s, d<s, MOVst!,d:

- d«-d+s, ADDx s,,d
e -

15-411/611 © 2019-21 Goldstein

15-411/611

Real Assembly on x86

e x86 doesn’t have 3 address instructions!

“iples | zadr | g6

dée—s;+s, d<s MOVx s,, d
d«-d+s, ADDx s,,d

e All kinds of special register requirements

*
d <5s;%s,

T
NV

VL S, @

\ Y A
\/ U

© 2019-21 Goldstein

63

From AST to Machine Assembly
e Implied Approach:

— AST — Triples using unlimited temporaries
— Map temporaries to registers/memory
— Lower Triples to real assembly

e What about Interaction between registers

and. i ctions?
ost o
o KISS:

— Keep things simple, but

— Prepare for other passes to fix things up.

	Slide 1
	Slide 2: Today
	Slide 4: Cartoon Compiler
	Slide 5: Simple Source Language
	Slide 6: Simple Source Language
	Slide 7: Abstract Syntax Tree
	Slide 8: Example
	Slide 9: Today
	Slide 10: Abstract Assembly as IR
	Slide 11: Abstract Assembly as IR
	Slide 12: Abstract Assembly
	Slide 13: Example Goal
	Slide 14: Today
	Slide 15: Cartoon Compiler
	Slide 16: Translating AST to IR
	Slide 17: Tree Patterns (aka Tiles)
	Slide 18: Tree Patterns
	Slide 19: Tree Patterns
	Slide 20: Tiling a Tree
	Slide 21: Better Tiles
	Slide 22: Today
	Slide 23: Maximal Munch
	Slide 25: Maximal Munch
	Slide 26: Maximal Munch
	Slide 27: Maximal Munch
	Slide 28: Maximal Munch
	Slide 29: Maximal Munch
	Slide 30: codegen
	Slide 31: codegen
	Slide 34: Example
	Slide 35: Result
	Slide 36: Example Goal
	Slide 37
	Slide 38: How Can we Improve this?
	Slide 39: How Can we Improve this?
	Slide 40: Generating Destinations
	Slide 41: Example
	Slide 42: Special Cases
	Slide 43: The “don’t bother” case
	Slide 44
	Slide 45: Constant Propogation
	Slide 46: Copy Propogation
	Slide 47: Have to be careful
	Slide 48: Have to be careful
	Slide 49: Have to be careful
	Slide 50: Today
	Slide 51: Static Single Assignment
	Slide 52: Static Single Assignment
	Slide 53: Static Single Assignment
	Slide 54: SSA for Straight-line code
	Slide 55: SSA for Straight-line code
	Slide 56: SSA for Straight-line code
	Slide 57: SSA for Straight-line code
	Slide 58: SSA for Straight-line code
	Slide 59: Now easy
	Slide 60: Today
	Slide 61: Real Assembly on x86
	Slide 62: Real Assembly on x86
	Slide 63: Real Assembly on x86
	Slide 64: From AST to Machine Assembly

