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Simple Source Language

e A language of assignments, expressions,
and a return statement.

e Straight-line code
e Basically lab1 subset of CO
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Simple Source Language

program :

S13 Sy} - S

n?~?

v=e
return e

C
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e, De,
+H-1*1/ 1%
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return
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Abstract Syntax Tree
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Example

z =x+ 3 *y - 5;

<

return z; @
’ stmt-list

<\
o ‘ return

Other possibilites?
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Abstract Assembly as IR

e Lowering of AST

e Facilitate
— Analysis & optimizations
— Translation to actual assembly

e Features:
— Unlimited number of “temporaries”
— May not restrict how memory is used
— Simple operations
— May not restrict how constants are used
— May specify certain “special registers”
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Abstract Assembly as IR

e Features:
— Unlimited number of “registers” (aka “temps”)
— May ( or may not) restrict how memory is used
— Simple operations
— May not restrict how constants are used
— May specify certain “special registers”

e Form:
‘dest < src, operator src, src can be:
- constant
dest <~ operator src, . temp
operator - special register

- memory
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program

Abstract Assembly

iy iy

seq of instructions

move
binop e 6’%

return what is in rax
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intermediate <
temporary
register



Example Goal

z =x+ 3 *y - 5;

return z;

© 2019-21 Goldstein

return



Today

AST =2 IR

Maximal Munch

Issues

Simple SSA

X86 and 2-adr Instructions

© 2019-21 Goldstein



Cartoon Compiler

Abstract syntax tree

Lex

tokens

| Parse | Semantics

| translation

AST+symbol tables

Intermediate Representation (tree)

iInstruction
selection

optimization

reqgister
allocation

: code
generation

15-411/611

W

Alternatives abound
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Translating AST to IR

e Converting from tree structured IR to
sequence of instructions
— Create temporary locations to store values
— choose which operations we want

e can combine or

e breakup original operations

e Match portions of tree and convert to triple
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Tree Patterns (aka Tiles)

15-411/611 © 2019-21 Goldstein




Tree Patterns
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Tree Patterns

d<«cC
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Better Tiles @

= S

return
Correct? ' —=

If correct: better or worse?
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Maximal Munch

e recursively match tree
e At each step, pick “best” tile
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Maximal Munch

e recursively match tree

e At each step, pick “best” tile

22— Lo

© 2019-21 Goldstein



1111111111

Maximal Munch

d
e recursively match tree
e At each step, pick “best” tile dec

© 2019-21 Goldstein



1111111111

Maximal Munch

d
e recursively match tree
e At each step, pick “best” tile dec
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Maximal Munch

d
e recursively match tree

e At each step, pick “best” tile dec

e (O s

d«s

t, < Xx+1 o °
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Maximal Munch

e recursively match tree
e At each step, pick “best” tile

e need to indicate what destinations are
— choose either to supply destination
— or generate a destination
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codegen

e | codegen(d,e)

C d<«c
Y d«v
e, Pe, codegen(t, , e,)
codegen(t, , e,)
det,Dt,
s | codegen(s)
v=e codegen(v, e)
return e codegen(rax, e)

return
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Example s




Result
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t, «x
t, <3

t, < t+t,
t: <y

t, <5

t, <t *t,

z <<t *t
rax <z

ret /



Example Goal
z =x+ 3 *y - 5;

return z;

tl « x + 3
qﬂﬂﬂb t2 < y -5
4 «— tl1 * t2
© Gri)  rax « 2
return
urn

2 2 @
o

S
OO O&




Goal What we got

tl « x + 3 Lty <
t2 <« vy — 5 £, < 3
Z «— tl * t2 £, « t;+ t,
rax €<~ z L. <« vy
return £, « 5
t, <« tg * t,
Z 4 t, * ot
rax<— z
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How Can we Improve this?

<— X

—
(08)

«— 3

¢

—t, P,

-

e return

<Y

o

<5

@
~ =< e o~
(@)

—t.*t

O O z LG

rax <z

N

ret



How Can we Improve this?

e |Investigate generating a source operand
e Special cases
e Don’t bother?
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Generating Destinations

e | codegenle) | _up _

_ codegen(s)

V < codegen(e)

e —

return e rax < codegen(e)
return
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Example mecm
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v v
e,®e, t,_codegen(e,)® t

v=e

return e

return
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Special Cases

e | codegen(de)

C d<«c
\ "
Y d < x
. cDe, codegen("gg , €5)
— d LBt
e,®c codegen(t, , e,)
B d<«t,®c
v e, codegen(t, , e,)
= d<«vD t2
e, ®v codegen(t, , e,)
det,Dv
e, Pe, codegen(t, , e,)
codegen(t, , e,)
d<«1

P
Generally not recommended
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The “don’t bother” case

e \What should we t; <X
really do? t, (_%

L, <L+
te£= Y
t, <5
t, <—a§* te
z <<t *t
rax <z
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Constant
Propagation

Copy
Propagation

e | codegen(d,e)

C

v
cPe,

e, ®c
vde,
e, dv

e, ®e,
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d<«c
d <« X

codegen(t, , e,)
d«c®t,
codegen(t, , e,)
det,®c
codegen(t, , e,)
d«<vDt,
codegen(t, , e,)
det,Dv
codegen(t, , e,)
codegen(t, , e,)
det,Dt,
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Constant Propogation

t; <X
\Eta_—(-éﬁ
t, 413

t: <y
—t—5
t, <« ts*{)5

z <<t *t
rax <z
ret
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Copy Propogation

t, e@x+3 v/
<Y

t, «<<®y*5 ~
v

z <t *t
rax <z
V4
ret
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Have to be careful

e Constant propagation:

e Copy Propagation:

© 2019-21 Goldstein

X
Y
X

<5
4]
= A
¥
<Y

<—u-4
—X+7



Have to be careful

e Constant propagation:

— Can’t just replace
all x’s with 5

— Stop if x is redefined

e Copy Propagation:

© 2019-21 Goldstein
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Have to be careful

e Constant propagation:

— Can’t just replace
all x’s with 5

— Stop if x is redefined

e Copy Propagation:

— Can’t just replace
all x’s with y’s

— Stop if x or y is redefined

© 2019-21 Goldstein

X < X

<5
—Xx-4
<—y+7
— X
<Y
<—u-4
—XxX+7



Today

e Simple SSA
e x86 and 2-adr Instructions
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Static Single Assignment

e Must keep track of what definition each
use refers to in order to properly do
constant/copy propagation.

e Much simpler if only one definition for each
name.

e SSA: Each name is assigned in only one
location.
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Static Single Assignment

Must keep track of what definition each
use refers to in order to properly do
constant/copy propogation.

Much simpler if only one definition for each
name.

SSA: Each name is assigned in only one
location.

Easy for fresh temporaries

e | codegen(d,e)

e, ®Pe, codegen(t, , e,)
codegen(t, , e,)
det,Dt,

[SPAVEIE- LV RCIVI{VETI S]]



Static Single Assignment

Must keep track of what definition each
use refers to in order to properly do
constant/copy propogation.

Much simpler if only one definition for each
name.

SSA: Each name is assigned in only one
location.

Easy for fresh temporaries
What about variables?
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SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—Xx-4
<—y+7/

<— X
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SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—Xx-4
<—y+7/

<— X
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SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—Xx-4
<—y+7/

<— X
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SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—Xx-4
<—y+7/

<— X
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SSA for Straight-line code

e Gjve each variable a version number.

e Scan code in program order

e \Whenever we encounter a definition,
increment the version number

e Whenever we encounter a use, use the
most recently assigned version number.

X < X

<5
—X-4
—vy+7/
<— X
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Xo
Yo
X4q

Lo

<5
—Xy-4
Yot/

<— Xy
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Now easy

e Constant propagation:

— Can replace all x, with 5.
R

e Copy Propagation:
— Can replace all x, with y,

Xg €5
X, < Yot/
Zo < Xq

Xo < Yo
Zp < Xgt/7



Today

e Xx86 and 2-adr Instructions



Real Assembly on x86

e x86 doesn’t have 3 address instructions!

d <5, +s5,
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Real Assembly on x86

e x86 doesn’t have 3 address instructions!

d <s;+5s,

__ Triples | 2-adr | x86

d<—s;+s, d<s, MOVst!,d:

- d«-d+s, ADDx s,,d
e -

15-411/611 © 2019-21 Goldstein
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Real Assembly on x86

e x86 doesn’t have 3 address instructions!

“iples | zadr | g6

dée—s;+s, d<s MOVx s,, d
d«-d+s, ADDx s,,d

e All kinds of special register requirements

*
d <5s;%s,

T
NV

VL S, @

\ Y A
\/ U

© 2019-21 Goldstein
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From AST to Machine Assembly
e Implied Approach:

— AST — Triples using unlimited temporaries
— Map temporaries to registers/memory
— Lower Triples to real assembly

e What about Interaction between registers

and. i ctions?
ost o
o KISS:

— Keep things simple, but

— Prepare for other passes to fix things up.
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