
15-411/15-611 Compiler Design

Seth Copen Goldstein

Instruction Selection

15-411/611 © 2019-21 Goldstein 1

January 22, 2026

Today

• Context

• Abstract Assembly

• AST → IR

• Maximal Munch

• Issues

• Simple SSA

• x86 and 2-adr Instructions

15-411/611 © 2019-21 Goldstein 2

Cartoon Compiler

Lex Parse Semantics translation

instruction

selection

register

allocation

code

generation
optimization

tokens

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

15-411/611 © 2019-21 Goldstein 4

Simple Source Language

• A language of assignments, expressions,
and a return statement.

• Straight-line code

• Basically lab1 subset of C0

15-411/611 © 2019-21 Goldstein 5

Simple Source Language

program := s1 ; s2 ; … sn ; sequence of statements

s := v = e assignment

 | return e return

e := c constant

 | v variable

 | e1  e2 binary operation

 := + | - | * | / | %

15-411/611 © 2019-21 Goldstein 6

stmt

expr

Abstract Syntax Tree

15-411/611 © 2019-21 Goldstein 7

stmt-list

stmt stmt-list

stmt-list

stmt

=

var expr



expr expr

var const

return

expr

Example

z = x + 3 * y – 5;

return z;

15-411/611 © 2019-21 Goldstein 8

stmt-list

= stmt-list

return

z

*

+ -

x 3 y 5

z

Other possibilites?

Today

• Context

• Abstract Assembly

• AST → IR

• Maximal Munch

• Issues

• Simple SSA

• x86 and 2-adr Instructions

15-411/611 © 2019-21 Goldstein 9

Abstract Assembly as IR

• Lowering of AST

• Facilitate

– Analysis & optimizations

– Translation to actual assembly

• Features:

– Unlimited number of “temporaries”

– May not restrict how memory is used

– Simple operations

– May not restrict how constants are used

– May specify certain “special registers”

15-411/611 © 2019-21 Goldstein 10

Abstract Assembly as IR

• Features:

– Unlimited number of “registers” (aka “temps”)

– May (or may not) restrict how memory is used

– Simple operations

– May not restrict how constants are used

– May specify certain “special registers”

• Form:

dest  src1 operator src2

dest  operator src1

 operator

15-411/611 © 2019-21 Goldstein 11

src can be:
- constant
- temp
- special register
- memory

Abstract Assembly

program := i1 i2 … in seq of instructions

i := d  s move

 | d  s1  s2 binop

 | return return what is in rax

s := c intermediate

 | t temporary

 | r register

d := t

 | r

 := + | - | * | / | %

15-411/611 © 2019-21 Goldstein 12

Example Goal
z = x + 3 * y – 5;

return z;

15-411/611 © 2019-21 Goldstein 13

stmt-list

= stmt-list

return

z

*

+ -

x 3 y 5

z

t1  x + 3

t2  y – 5
z  t1 * t2
rax  z
 return

Today

• Context

• Abstract Assembly

• AST → IR

• Maximal Munch

• Issues

• Simple SSA

• x86 and 2-adr Instructions

15-411/611 © 2019-21 Goldstein 14

Cartoon Compiler

Lex Parse Semantics translation

instruction

selection

register

allocation

code

generation
optimization

tokens

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

Alternatives abound
15-411/611 © 2019-21 Goldstein 15

Translating AST to IR

• Converting from tree structured IR to
sequence of instructions

– Create temporary locations to store values

– choose which operations we want

• can combine or

• breakup original operations

• Match portions of tree and convert to triple

15-411/611 © 2019-21 Goldstein 16

Tree Patterns (aka Tiles)

15-411/611 © 2019-21 Goldstein 17

=

sd

d  s

return

s

rax  s
 ret

Tree Patterns

15-411/611 © 2019-21 Goldstein 18

+

s1 s2

Tree Patterns

15-411/611 © 2019-21 Goldstein 19

+

s1 s2

d  s1 + s2

d

c

d

d  c

Tiling a Tree

15-411/611 © 2019-21 Goldstein 20

stmt-list

= return

z
*

+ -

x 3 y 5

z

Better Tiles

15-411/611 © 2019-21 Goldstein 21

stmt-list

= return

d
sd

rax  s

 return
Correct?

If correct: better or worse?

Today

• Context

• Abstract Assembly

• AST → IR

• Maximal Munch

• Issues

• Simple SSA

• x86 and 2-adr Instructions

15-411/611 © 2019-21 Goldstein 22

Maximal Munch

• recursively match tree

• At each step, pick “best” tile

15-411/611 © 2019-21 Goldstein 23

Maximal Munch

• recursively match tree

• At each step, pick “best” tile

15-411/611 © 2019-21 Goldstein 25

=

+

x 5

z

=

sd

d  s

+

s1 s2

d

d  s1 + s2

c

d

d  c

t1  5

t1

Maximal Munch

• recursively match tree

• At each step, pick “best” tile

15-411/611 © 2019-21 Goldstein 26

=

+

x 5

z

=

sd

d  s

+

s1 s2

d

d  s1 + s2

c

d

d  c

t1  5

t2  x + t1

t1

t2

Maximal Munch

• recursively match tree

• At each step, pick “best” tile

15-411/611 © 2019-21 Goldstein 27

=

+

x 5

z

=

sd

d  s

+

s1 s2

d

d  s1 + s2

c

d

d  c

t1  5

t2  x + t1

z  t2

t1

t2

Maximal Munch

• recursively match tree

• At each step, pick “best” tile

15-411/611 © 2019-21 Goldstein 28

=

+

x 5

z

=

sd

d  s

+

s1 s2

d

d  s1 + s2

c

d

d  c

t1  5

t2  x + t1

z  t2

Maximal Munch

• recursively match tree

• At each step, pick “best” tile

• need to indicate what destinations are

– choose either to supply destination

– or generate a destination

15-411/611 © 2019-21 Goldstein 29

codegen

15-411/611 © 2019-21 Goldstein 30

e codegen(d, e)

c

v

e1  e2

s codegen(s)

v = e

return e

codegen

15-411/611 © 2019-21 Goldstein 31

e codegen(d, e)

c d  c

v d  v

e1  e2 codegen(t1 , e1)
codegen(t2 , e2)
d  t1  t2

s codegen(s)

v = e codegen(v, e)

return e codegen(rax, e)
return

Example

15-411/611 © 2019-21 Goldstein 34

e codegen(d, e)

c d  c

v d  x

e1  e2 codegen(t1 , e1)
codegen(t2 , e2)
d  t1  t2

s codegen(s)

v = e codegen(v, e)

return e codegen(rax, e)
return

stmt-list

= return

z*

+ -

x 3 y 5

z

Result

t3  x

t4  3

t1  t3 + t4

t5  y

t6  5

t2  t5 * t6

z  t1 * t2

rax  z

 ret

15-411/611 © 2019-21 Goldstein 35

stmt-list

= return

z*

+ -

x 3 y 5

z

Example Goal
z = x + 3 * y – 5;

return z;

15-411/611 © 2019-21 Goldstein 36

stmt-list

= stmt-list

return

z

*

+ -

x 3 y 5

z

t1  x + 3

t2  y – 5
z  t1 * t2
rax  z
 return

15-411/611 © 2019-21 Goldstein 37

t1  x + 3

t2  y – 5
z  t1 * t2
rax  z
 return

t3  x

t4  3

t1  t3 + t4

t5  y

t6  5

t2  t5 * t6

z  t1 * t2

rax  z

 ret

Goal What we got

How Can we Improve this?

t3  x

t4  3

t1  t3 + t4

t5  y

t6  5

t2  t5 * t6

z  t1 * t2

rax  z

 ret

15-411/611 © 2019-21 Goldstein 38

stmt-list

= return

z*

+ -

x 3 y 5

z

How Can we Improve this?

15-411/611 © 2019-21 Goldstein 39

• Investigate generating a source operand

• Special cases

• Don’t bother?

Generating Destinations

15-411/611 © 2019-21 Goldstein 40

e codegen(e) up

c c

v v

e1  e2 t1 = codegen(e1) 
 codegen(e2)

t1

s codegen(s)

v = e v  codegen(e)

return e rax  codegen(e)
return

Example

15-411/611 © 2019-21 Goldstein 41

stmt-list

= return

z*

+ -

x 3 y 5

z

15-411/611 © 2019-21 Goldstein 42

e codegen(d, e)

c d  c

v d  x

c  e2 codegen(t2 , e2)
d  c  t2

e1  c codegen(t1 , e1)
d  t1  c

v  e2 codegen(t2 , e2)
d  v  t2

e1  v codegen(t1 , e1)
d  t1  v

e1  e2 codegen(t1 , e1)
codegen(t2 , e2)
d  t1  t2

Generally not recommended

Special Cases

The “don’t bother” case

• What should we
really do?

15-411/611 © 2019-21 Goldstein 43

t3  x

t4  3

t1  t3 + t4

t5  y

t6  5

t2  t5 * t6

z  t1 * t2

rax  z

 ret

15-411/611 © 2019-21 Goldstein 44

e codegen(d, e)

c d  c

v d  x

c  e2 codegen(t2 , e2)
d  c  t2

e1  c codegen(t1 , e1)
d  t1  c

v  e2 codegen(t2 , e2)
d  v  t2

e1  v codegen(t1 , e1)
d  t1  v

e1  e2 codegen(t1 , e1)
codegen(t2 , e2)
d  t1  t2

Constant
Propagation

Copy
Propagation

Constant Propogation

15-411/611 © 2019-21 Goldstein 45

t3  x

t4  3

t1  t3 + t4 3

t5  y

t6  5

t2  t5 * t6 5

z  t1 * t2

rax  z

 ret

Copy Propogation

15-411/611 © 2019-21 Goldstein 46

t3  x

t4  3

t1  t3 x + 3

t5  y

t6  5

t2  t5 y * 5

z  t1 * t2

rax  z

 ret

Have to be careful

• Constant propagation:

– Can’t just replace
all x’s with 5

– Stop if x is redefined

• Copy Propagation:

15-411/611 © 2019-21 Goldstein 47

x  5

y  x - 4

x  y + 7

z  x

x  y

y  u - 4

z  x + 7

Have to be careful

• Constant propagation:

– Can’t just replace
all x’s with 5

– Stop if x is redefined

• Copy Propagation:

15-411/611 © 2019-21 Goldstein 48

x  5

y  x - 4

x  y + 7

z  x

x  y

y  u - 4

z  x + 7

Have to be careful

• Constant propagation:

– Can’t just replace
all x’s with 5

– Stop if x is redefined

• Copy Propagation:

– Can’t just replace
all x’s with y’s

– Stop if x or y is redefined

15-411/611 © 2019-21 Goldstein 49

x  5

y  x - 4

x  y + 7

z  x

x  y

y  u - 4

z  x + 7

Today

• Context

• Abstract Assembly

• AST → IR

• Maximal Munch

• Issues

• Simple SSA

• x86 and 2-adr Instructions

15-411/611 © 2019-21 Goldstein 50

Static Single Assignment

• Must keep track of what definition each
use refers to in order to properly do
constant/copy propagation.

• Much simpler if only one definition for each
name.

• SSA: Each name is assigned in only one
location.

15-411/611 © 2019-21 Goldstein 51

Static Single Assignment

• Must keep track of what definition each
use refers to in order to properly do
constant/copy propogation.

• Much simpler if only one definition for each
name.

• SSA: Each name is assigned in only one
location.

• Easy for fresh temporaries

15-411/611 © 2019-21 Goldstein 52

e codegen(d, e)

e1  e2 codegen(t1 , e1)
codegen(t2 , e2)
d  t1  t2

Static Single Assignment

• Must keep track of what definition each
use refers to in order to properly do
constant/copy propogation.

• Much simpler if only one definition for each
name.

• SSA: Each name is assigned in only one
location.

• Easy for fresh temporaries

• What about variables?

15-411/611 © 2019-21 Goldstein 53

SSA for Straight-line code

• Give each variable a version number.

• Scan code in program order

• Whenever we encounter a definition,
increment the version number

• Whenever we encounter a use, use the
most recently assigned version number.

15-411/611 © 2019-21 Goldstein 54

x  5

y  x - 4

x  y + 7

z  x

x0  5

y  x - 4

x  y + 7

z  x

SSA for Straight-line code

• Give each variable a version number.

• Scan code in program order

• Whenever we encounter a definition,
increment the version number

• Whenever we encounter a use, use the
most recently assigned version number.

15-411/611 © 2019-21 Goldstein 55

x  5

y  x - 4

x  y + 7

z  x

x0  5

y  x0 - 4

x  y + 7

z  x

SSA for Straight-line code

• Give each variable a version number.

• Scan code in program order

• Whenever we encounter a definition,
increment the version number

• Whenever we encounter a use, use the
most recently assigned version number.

15-411/611 © 2019-21 Goldstein 56

x  5

y  x - 4

x  y + 7

z  x

x0  5

y0  x0 - 4

x  y + 7

z  x

SSA for Straight-line code

• Give each variable a version number.

• Scan code in program order

• Whenever we encounter a definition,
increment the version number

• Whenever we encounter a use, use the
most recently assigned version number.

15-411/611 © 2019-21 Goldstein 57

x  5

y  x - 4

x  y + 7

z  x

x0  5

y0  x0 - 4

x1  y0 + 7

z  x

SSA for Straight-line code

• Give each variable a version number.

• Scan code in program order

• Whenever we encounter a definition,
increment the version number

• Whenever we encounter a use, use the
most recently assigned version number.

15-411/611 © 2019-21 Goldstein 58

x  5

y  x - 4

x  y + 7

z  x

x0  5

y0  x0 - 4

x1  y0 + 7

z0  x1

Now easy

• Constant propagation:

– Can replace all x0 with 5.

• Copy Propagation:

– Can replace all x0 with y0

15-411/611 © 2019-21 Goldstein 59

x0  y0

y1  u0 - 4

z0  x0 + 7

x0  5

y0  x0 - 4

x1  y0 + 7

z0  x1

Today

• Context

• Abstract Assembly

• AST → IR

• Maximal Munch

• Issues

• Simple SSA

• x86 and 2-adr Instructions

15-411/611 © 2019-21 Goldstein 60

Real Assembly on x86

• x86 doesn’t have 3 address instructions!

15-411/611 © 2019-21 Goldstein 61

d  s1 + s2

Real Assembly on x86

• x86 doesn’t have 3 address instructions!

15-411/611 © 2019-21 Goldstein 62

d  s1 + s2

Triples 2-adr x86

d  s1 + s2 d  s1

d  d + s2

MOVx s1, d
ADDx s2, d

Real Assembly on x86

• x86 doesn’t have 3 address instructions!

• All kinds of special register requirements

15-411/611 © 2019-21 Goldstein 63

d  s1 * s2

Triples 2-adr x86

d  s1 + s2 d  s1

d  d + s2

MOVx s1, d
ADDx s2, d

Triples 2-adr x86

d  s1 * s2 d  s1

d  d * s2

MOVL s1, rax
IMUL s2

MOVL rax, d

What about edx?

From AST to Machine Assembly

• Implied Approach:

– AST → Triples using unlimited temporaries

– Map temporaries to registers/memory

– Lower Triples to real assembly

• What about Interaction between registers
and instructions?

• Cost model?

• KISS:

– Keep things simple, but

– Prepare for other passes to fix things up.

15-411/611 © 2019-21 Goldstein 64

	Slide 1
	Slide 2: Today
	Slide 4: Cartoon Compiler
	Slide 5: Simple Source Language
	Slide 6: Simple Source Language
	Slide 7: Abstract Syntax Tree
	Slide 8: Example
	Slide 9: Today
	Slide 10: Abstract Assembly as IR
	Slide 11: Abstract Assembly as IR
	Slide 12: Abstract Assembly
	Slide 13: Example Goal
	Slide 14: Today
	Slide 15: Cartoon Compiler
	Slide 16: Translating AST to IR
	Slide 17: Tree Patterns (aka Tiles)
	Slide 18: Tree Patterns
	Slide 19: Tree Patterns
	Slide 20: Tiling a Tree
	Slide 21: Better Tiles
	Slide 22: Today
	Slide 23: Maximal Munch
	Slide 25: Maximal Munch
	Slide 26: Maximal Munch
	Slide 27: Maximal Munch
	Slide 28: Maximal Munch
	Slide 29: Maximal Munch
	Slide 30: codegen
	Slide 31: codegen
	Slide 34: Example
	Slide 35: Result
	Slide 36: Example Goal
	Slide 37
	Slide 38: How Can we Improve this?
	Slide 39: How Can we Improve this?
	Slide 40: Generating Destinations
	Slide 41: Example
	Slide 42: Special Cases
	Slide 43: The “don’t bother” case
	Slide 44
	Slide 45: Constant Propogation
	Slide 46: Copy Propogation
	Slide 47: Have to be careful
	Slide 48: Have to be careful
	Slide 49: Have to be careful
	Slide 50: Today
	Slide 51: Static Single Assignment
	Slide 52: Static Single Assignment
	Slide 53: Static Single Assignment
	Slide 54: SSA for Straight-line code
	Slide 55: SSA for Straight-line code
	Slide 56: SSA for Straight-line code
	Slide 57: SSA for Straight-line code
	Slide 58: SSA for Straight-line code
	Slide 59: Now easy
	Slide 60: Today
	Slide 61: Real Assembly on x86
	Slide 62: Real Assembly on x86
	Slide 63: Real Assembly on x86
	Slide 64: From AST to Machine Assembly

