
Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (B), Spring 2022

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

Andrew
Username

Full
Name

Question Max Points Grader

1. 15

2. 10

3. 15

4. 20

60

Please note that there are system-call and thread-library “cheat sheets” at the end of the
exam.

If we cannot read your writing, we will be unable to assign a high score to your work.

I have not received advance information on the content of this 15-410/605 mid-term exam
by discussing it with anybody who took part in the main exam session or via any other avenue.

Signature: Date

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

If we cannot read your writing, we will be un-
able to assign a high score to your work.

Page 2

1. 15 points Short answer.

(a) 6 points When designing a body of code, at times one finds oneself thinking, “I wonder if I can
assume X?” According to the 15-410 design orthodoxy, immediately upon having such a thought
one is required to ask oneself two questions. Please state those questions. It is probably worthwhile
to include specific examples and/or to briefly explain why these two replacement questions are
important.

Page 3

You may use this page as extra space for the “assume” question if you wish.

Page 4

(b) 5 points Register dump.

Below is a register dump produced by the “Pathos” P2 reference kernel when it decided to kill a
user-space thread. Your job is to carefully consider the register dump and:

1. Determine which “wrong register value(s)” caused the thread to run an instruction which
resulted in a fatal exception. You should say why/how the wrong value led to an exception,
i.e., merely claiming a register has a “wrong” value will not receive full credit.

2. Briefly state the most plausible way you think that register could have taken on that value
(i.e., try to describe a bug which could have this effect).

3. Then write a small piece of code which would plausibly cause the thread to die in the fashion
indicated by the register dump. This code does not need to implement exactly the set of steps
that you identified as “most plausible” above, or result in the same register values; you should
aim to achieve “basically the same effect.” Code may be written in either C or assembly
language. Your code should assume execution begins in main(), which has been passed the
typical two parameters in the typical fashion.

Please be sure that your description of the fatality and the code, taken together, clearly support
your diagnosis.

Registers:

eax: 0x9fb102cd, ebx: 0x00000000, ecx: 0xffffe0d4,

edx: 0xffffef00, edi: 0x0000ffff, esi: 0x00000080,

ebp: 0xffffe0f0, esp: 0xffffe0c8, eip: 0x9fb102cd,

ss: 0x002b, cs: 0x0023, ds: 0x002b,

es: 0x002b, fs: 0x002b, gs: 0x002b,

eflags: 0x00000282

Page 5

You may use this page for your register-dump answer.

Page 6

(c) 4 points readline() buffer.

In Project 1 the readline() call is specified as follows:

int readline(char *buf, int len) –
Reads a line of characters into a specified buffer.

If the keyboard buffer does not already contain a line of input, readline() will spin until
a line of input becomes available. If the line is smaller than the buffer, then the complete
line, including the newline character, is copied into the buffer. If the length of the line
exceeds the length of the buffer, only len characters should be copied into buf[].

Available characters should not be committed into buf[] until there is a newline character
available, so the user has a chance to backspace over typing mistakes.

Characters not placed into the specified buffer should remain available for other calls to
readline() and/or readchar().

While a readline() call is active, the user should receive ongoing visual feedback in
response to typing, so that it is clear to the user what text line will be returned by
readline().

Returns: the number of characters stored into the specified buffer, or -1 if there is an error,
such as len being invalid or unreasonably large. In the case of an error, readline() makes
no changes to the specified buffer.

It is possible (indeed, one hopes it is frequent!) that the line typed by the user is genuinely shorter
than len characters. Let’s consider that case — maybe the line length is 1, or len/2, or len − 4.
The text above is silent about what to do with the part of buf[] which occurs after the newline
character is placed.

Please propose an addition to the text of the readline() specification that details what — if
anything — readline() should be required to do with any leftover space in buf[]. You must
justify your answer; a substantial fraction of the point value of the question will be awarded
based on the justification. We are not expecting a long, complicated addition to the readline()

specification, and justifications of one or two sentences may be fine.

The remainder of this page is intentionally blank.

Page 7

This page is for your readline() solution.

Page 8

2. 10 points Faulty Mutex

In this question you will examine some mutex code submitted for your consideration by your project
partner. You should assume that atomic exchange() works correctly (as described below) and
that the gettid() system call never “fails.” You should also assume “traditional x86-32 memory
semantics,” i.e., not “wacky modern memory.”

/**

* Atomically:

* (1) fetches the old value of the memory location pointed to by "target"

* (2) places the value "source" into the memory location pointed to by "target"

* Then: returns the old value (that was atomically fetched)

*

* Equivalently:

* /* START ATOMIC SEQUENCE */

* int previous_target = *target;

* *target = source;

* /* END ATOMIC SEQUENCE */

* return previous_target;

*/

extern int atomic_exchange(int *target, int source);

The remainder of this page is intentionally blank.

Page 9

typedef struct {

int last_requested; // tid of thread who most recently requested this lock

int last_owner; // tid of thread who most recently acquired this lock

int locked; // flag indicating lock is currently held

} lock_t;

int mutex_init(lock_t* lock) {

lock->last_requested = -1;

lock->last_owner = -1;

lock->locked = 0;

return 0;

}

void mutex_lock(lock_t* lock) {

int me = gettid();

int before_me = atomic_exchange(&(lock->last_requested), me);

while (lock->last_owner != before_me) {

continue;

}

while (lock->locked) {

continue;

}

lock->locked = 1;

lock->last_owner = me;

}

void mutex_unlock(lock_t* lock) {

lock->locked = 0;

}

/* ... remainder omitted, e.g., mutex_destroy() ... */

There is a problem with the mutex code shown above. That is, it does not ensure that all
three critical-section algorithm requirements are always met. Identify a requirement which is
not met and lay out a scenario which demonstrates your claim. Use the format presented in
class, i.e.,

T1 T2

me = 1;

me = 2;

...

You may introduce temporary variables or other obvious notation as necessary to improve the
clarity of your answer. Be sure that the execution trace you provide us with is easy to read and
conclusively demonstrates the claim you are making. It is possible to answer this question with
a brief, clear trace, so you should do what is necessary to ensure that you do.

Page 10

This page is for your faulty-mutex solution.

Page 11

You may use this page as extra space for the faulty-mutex question if you wish.

Page 12

3. 15 points Graders’ Algorithm.

The Operating Systems course staff are grading a mid-term exam. Wassim and Jeremy are
working together to grade a particularly tough question.

Initially the grading procedure is quite simple. Jeremy and Wassim share a large “input stack”
of exams to be graded. Each grader repeatedly takes an exam off of the input stack, places it
in front of himself, grades that exam’s answer to their question, and then places the exam on
their shared “output stack.”

This procedure doesn’t work for very long, however. Since the question they are grading is quite
tricky, and since various students provide a wide variety of incorrect answers, sometimes one
grader needs to ask the other grader to “sign off” on a proposed score. They agree to extend
the grading procedure as follows: if, while grading an exam, one grader needs input from the
other grader, he will write a note on the exam, place the exam next to the other grader, and
then take the next exam from the input pile and continue grading. Neither Wassim nor Jeremy
wishes to appear excessively demanding of the other’s time, so they agree on this rule: if one
grader wishes to place a half-graded exam next to the other grader, but there is already an
exam pending review next to the other grader, the grader requesting a new review will not
place the new exam until the one previously waiting has been reviewed. Each time a grader
pulls an exam from the shared input stack and successfully grades it solo (without consulting
the other grader), he will check his personal “pending review” area to see if it contains an
exam. In our model, once an exam has been examined by both graders it is definitely done,
i.e., there is never a case when one exam needs to be handed back and forth.

Once they settle on this protocol, Andrew decides to code it up for simulation purposes. Here is
what he comes up with. Note that this simulation doesn’t move exam objects around; instead,
each exam is represented by a small integer.

// locked_printf() is a version of printf() with internal locking

/* Begin: exam-grading data structures */

typedef struct grader {

volatile int waiting;

cond_t removed;

} grader_t;

int total_exams;

mutex_t table_lock;

volatile int table_exams; // "input stack"

volatile int graded_exams; // "output stack"

grader_t graders[2];

/* End: exam-grading data structures */

// grader-thread "body function"

void *run_grader(void *id);

// examine_exam_number() code is not shown.

// It returns a negative number when a grader can’t assign a final score.

extern int examine_exam_number(int en);

Page 13

int main(int argc, char *argv[])

{

total_exams = 50; // should come from command line

affirm(thr_init(64*1024) == 0);

affirm(mutex_init(&table_lock) == 0);

affirm(cond_init(&graders[0].removed) == 0);

affirm(cond_init(&graders[1].removed) == 0);

table_exams = total_exams; graded_exams = 0;

graders[0].waiting = -1;

graders[1].waiting = -1;

affirm(thr_create(run_grader, (void*) 0) > 0);

affirm(thr_create(run_grader, (void*) 1) > 0);

thr_exit(0);

exit(0); // placate compiler

}

// This can take a while, so we enter and leave with the table unlocked.

int handle_exam(int i, int j, int e)

{

if (examine_exam_number(e) >= 0) {

// I was able to assign a score myself!

// Note that this is ALWAYS true if I am the second reader.

locked_printf("Grader %d graded exam %d.\n", i, e);

mutex_lock(&table_lock);

++graded_exams;

mutex_unlock(&table_lock);

return 1;

} else {

// I wrote down some comments, now my partner will finish grading.

locked_printf("Grader %d perplexed by exam %d.\n", i, e);

mutex_lock(&table_lock);

while (graders[j].waiting > 0) {

cond_wait(&graders[j].removed, &table_lock);

}

graders[j].waiting = e;

mutex_unlock(&table_lock);

locked_printf("Grader %d handed off exam %d.\n", i, e);

return 0;

}

}

Page 14

void *run_grader(void *vid)

{

int i = (int) vid;

int j = 1 - i;

while (graded_exams < total_exams) {

int e;

int succeeded = 1;

mutex_lock(&table_lock);

if (table_exams > 0) {

e = table_exams--;

mutex_unlock(&table_lock);

succeeded = handle_exam(i, j, e);

mutex_lock(&table_lock);

}

if (succeeded && graders[i].waiting > 0) {

e = graders[i].waiting;

graders[i].waiting = -1;

mutex_unlock(&table_lock);

cond_signal(&graders[i].removed);

handle_exam(i, j, e);

} else {

mutex_unlock(&table_lock);

}

}

locked_printf("Grader %d is DONE GRADING!\n", i);

thr_exit(0);

exit(0); // placate compiler

}

Suggestions for working on this problem:

1. When tracing the execution of the code, we recommend a tabular format very similar to
this:

Grader 0 Grader 1
wait;

lock;
...
unlock;
signal(1)

2. It is strongly recommended that you write down a draft version of any execution trace
using the scrap paper provided at the end of the exam, or on the back of some other page,
before you start to write your solution on the next page. If we cannot understand the
solution you provide, your grade will suffer!

Page 15

(a) 8 points Unfortunately, this exam-grading procedure can deadlock. Show a clear, con-

vincing execution trace that yields a deadlock (missing, unclear, or unconvincing traces
will result in only partial credit).

Page 16

You may use this page as extra space for the first part of the exam-grading question if you wish.

Page 17

(b) 7 points Briefly describe how to fix or restructure the code so that it does not deadlock.
It is not necessary for your answer to include code for it to receive full credit if it is clear
and convincing (be sure to indicate how your solution addresses one or more deadlock
ingredient(s)).

Page 18

4. 20 points Event manager.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in Project 2 by mutexes) and long-term voluntary de-
scheduling (provided by condition variables). As you know, these can be combined to produce
higher-level objects such as semaphores or readers/writers locks, which you implemented in P2.
But concurrent programs may use a variety of other synchronization objects.

In this question, you will implement a synchronization object called an “event manager.” The basic
idea is that there is a collection of objects, and various threads wish to operate on those objects
at various times. It is fine (and actually desirable) if two threads can operate on two different
objects in parallel, but it is disastrous if two threads operate on the same object at the same time.
If two or more threads do try to operate on the same object in an overlapping fashion, the first
thread performs the operation and is informed that it has done so; any other threads wait until
the operation is complete, and then are informed that the operation was completed by the first
thread. So each “event manager” object wants to allow multiple threads when possible, but also
must serialize threads when necessary.

Operations on objects are represented by function pointers. It is expected that typically if two
threads operate on the same target object that they will use the same function to do so, but the
“event manager” does not enforce that expectation.

So there might be two functions, void (*fuel)(void *objptr) and void (*orbit)(void *objptr)

which could be applied to rocket objects; the event manager would try to run (*fuel)(rocket A)

and (*fuel)(rocket B) in parallel but would need to serialize (*orbit)(rocket A) against
(*orbit)(rocket A): the first thread to invoke (*orbit)(rocket A) would trigger the launch se-
quence and liftoff and, presumably, monitor the progress of the rocket until it reached orbit; the
second thread to invoke (*orbit)(rocket A) would wait a while and then be told “somebody
already did it.”

The “event manager” doesn’t “understand” anything about function pointers and “understands”
object pointers only in terms of equality testing. An “event manager” doesn’t know up front the
identities of the objects in a set and, indeed, threads can start invoking functions on new objects, and
stop invoking functions on previously-used objects, without informing the “event manager.” When
a thread asks an “event manager” to invoke a function on an object, the “event manager” returns
a status code indicating whether it was the first thread, and performed the operation, or whether
it was a non-first thread, and waited. Once all threads operating/waiting on an object are done,
the “event manager” retains no memory of the object: two invocations of (*orbit)(rocket A)

that are separated by “long enough” will result in two launches (assuming the rocket in question
is reusable and refueled, etc.).

It is expected that the number of objects that a given “event manager” object is tracking operation
invocations on will typically be “fairly small,” and it is ok if an “event manager” experiences
“reasonable slowdown” if the number of simultaneous operation requests is atypically large.

The remainder of this page is intentionally blank.

Page 19

Below are prototypes for the “event manager” functions.

typedef enum {

EM_RAN,

EM_WAITED

} em_status_t;

// Initializes a new event manager object.

// It is illegal for an application to use the event manager before

// it has been initialized or to initialize one when it is already

// initialized and in use. em_init() shall return 0 on success or

// a negative error code on failure.

// Because this is an exam, you may assume that allocating and

// initializing the necessary state will succeed.

int em_init(em_t *em);

// Destroys the given event manager object.

// It is illegal for a program to invoke em_destroy() if any

// threads are operating on it.

void em_destroy(em_t *em);

// Checks if any operation is running on the target object.

// If so, wait until the operation is done and then return EM_WAITED.

// If not, run the operation (*fn)(target) and return EM_RAN.

em_status_t em_request(em_t *em, void (*fn)(void*), void *target);

/* ** */

/* map.h

* You may use these functions in your solution.

* They do NOT contain locking.

* For the purposes of this exam, assume map functions cannot fail.

*/

// initializes a map (to empty)

int map_init(map_t *m);

// adds mapping from key, to val -- only one mapping per key is legal

void map_insert(map_t *m, void *key, void *val);

// lookup - returns non-zero if key was found and *val_ptr was filled in

int map_lookup(map_t *m, void *key, void **val_ptr);

// removes mapping from key

void map_remove(map_t *m, void *key);

// frees any resources used by map

void map_destroy(map_t *m);

Page 20

Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables, semaphores,
readers/writer locks, etc.

2. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule()/make runnable(), or any atomic instructions (XCHG,
LL/SC).

3. You may assume that callers of your routines will obey the rules. But you must be careful
that you obey the rules as well!

4. You must comply with the published interfaces of synchronization primitives, i.e., you cannot
inspect or modify the internals of any thread-library data objects.

5. You may not use assembly code, inline or otherwise.

6. For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and are
expecting, a particular failure).

7. You may not rely on any data-structure libraries such as splay trees, red-black trees, queues,
stacks, or skip lists, lock-free or otherwise, that you do not implement as part of your solution.
However, you may use the map functions documented above.

8. You may use non-synchronization-related thread-library routines in the “thr xxx() family,”
e.g., thr getid(). You may wish to refer to the “cheat sheets” at the end of the exam. If you
wish, you may assume that thr getid() is “very efficient” (for example, it invokes no system
calls). You may also assume that condition variables are strictly FIFO if you wish.

The remainder of this page is intentionally blank.

Page 21

Please declare a struct em and implement:

• int em init(em t *em),

• void em destroy(em t *em), and

• em status t em request(em t *em, void (*fn)(void*), void *target)

If you wish, you may also declare an auxiliary structure, struct aux, but this is strictly op-
tional.

It is strongly recommended that you rough out an implementation on the scrap paper provided
at the end of the exam, or on the back of some other page, before you write anything here. If
we cannot understand the solution you provide on this page, your grade will suffer!

typedef struct em {

} em_t;

typedef struct aux {

} aux_t;

Page 22

...space for “event manager” implementation...

Page 23

You may use this page as extra space for your “event manager” solution if you wish.

Page 24

You may use this page as extra space for your “event manager” solution if you wish.

Page 25

You may use this page as extra space for your “event manager” solution if you wish.

Page 26

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t)(void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 27

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

void mutex_destroy(mutex_t *mp);

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);

void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);

void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 28

Ureg Cheat-Sheet

#define SWEXN_CAUSE_DIVIDE 0x00 /* Very clever, Intel */

#define SWEXN_CAUSE_DEBUG 0x01

#define SWEXN_CAUSE_BREAKPOINT 0x03

#define SWEXN_CAUSE_OVERFLOW 0x04

#define SWEXN_CAUSE_BOUNDCHECK 0x05

#define SWEXN_CAUSE_OPCODE 0x06 /* SIGILL */

#define SWEXN_CAUSE_NOFPU 0x07 /* FPU missing/disabled/busy */

#define SWEXN_CAUSE_SEGFAULT 0x0B /* segment not present */

#define SWEXN_CAUSE_STACKFAULT 0x0C /* ouch */

#define SWEXN_CAUSE_PROTFAULT 0x0D /* aka GPF */

#define SWEXN_CAUSE_PAGEFAULT 0x0E /* cr2 is valid! */

#define SWEXN_CAUSE_FPUFAULT 0x10 /* old x87 FPU is angry */

#define SWEXN_CAUSE_ALIGNFAULT 0x11

#define SWEXN_CAUSE_SIMDFAULT 0x13 /* SSE/SSE2 FPU is angry */

#ifndef ASSEMBLER

typedef struct ureg_t {

unsigned int cause;

unsigned int cr2; /* Or else zero. */

unsigned int ds;

unsigned int es;

unsigned int fs;

unsigned int gs;

unsigned int edi;

unsigned int esi;

unsigned int ebp;

unsigned int zero; /* Dummy %esp, set to zero */

unsigned int ebx;

unsigned int edx;

unsigned int ecx;

unsigned int eax;

unsigned int error_code;

unsigned int eip;

unsigned int cs;

unsigned int eflags;

unsigned int esp;

unsigned int ss;

} ureg_t;

#endif /* ASSEMBLER */

Page 29

Useful-Equation Cheat-Sheet

cos2 θ + sin2 θ = 1

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

eix = cos(x) + i sin(x)

cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i

∫
lnx dx = x lnx− x+ C∫ ∞
0

√
x e−x dx =

1

2

√
π∫ ∞

0
e−ax

2
dx =

1

2

√
π

a∫ ∞
0

x2e−ax
2
dx =

1

4

√
π

a3
when a > 0

Γ(z) =

∫ ∞
0

tz−1e−t dt

ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t)

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t)

E = hf =
h

2π
(2πf) = h̄ω

p =
h

λ
=

h

2π

2π

λ
= h̄k

∇ ·E =
ρ

ε0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E

∂t

Page 30

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 31

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 32

