
Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Fall 2023

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below.

3. PLEASE DO NOT WRITE FAINTLY WITH PENCIL. Please write in
ink, or, if writing in pencil, please ensure that zero strokes in zero words
are faint. Using a mechanical pencil with thin lead is probably unwise.

4. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

5. If you have a clarification question, please write it down on the card we have
provided. Please don’t ask us questions of the form “If I answered like this,
would it be ok?” or “Are you looking for ...?”

6. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

7. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 15

3. 15

4. 20

5. 10

70

Please note that there are system-call and thread-library “cheat sheets” at the end of the
exam.

If we cannot read your writing, we will be unable to assign a high score to your work.

1. 10 points Short answer.

(a) 3 points According to the 15-410 orthodoxy, there are three kinds of error. Briefly
present them: for each, provide a name, describe in a general high-level sense what should
be done in response to that kind of error, and explain why that reponse is what should
be done about that kind of error. We are expecting approximately two sentences for each
kind.

Page 2

(b) 4 points Please present, based on your P2 thread library, an example of two of the three
kinds of error. For each, briefly describe what the code was trying to do, how the failure
qualifies as that particular kind of error, and the action that your P2 implementation
should have taken. We are not expecting you to provide code (we are interested in your
description/analysis).

Page 3

In lecture we discussed two ways that a virtual memory system could implement least-recently-
used page replacement (don’t worry, this isn’t a virtual-memory implementation question!). The
problem statement is: every time a page is referenced, an operation reference(page number) is
invoked; every now and then the page daemon invokes lru which(void), which returns the number
of the page which was least recently referenced (note that calling lru which() twice in a row should
generally return two different page numbers, not the same page number twice).

The two approaches we discussed were a doubly-linked list of blobbies (where each blobby consisted
of previous and next pointers and a page number) and a big array of per-page timestamps. In lecture
we examined a design matrix in accordance with the 15-410 design orthodoxy, including two time
metrics, with the values shown below. For the purposes of this problem, you may assume that
those values are accurate even if some seem potentially suspicious (e.g., perhaps the blobbies live
in an array, or perhaps there is a hash table somewhere).

15-410, S'2234

LRU Page Replacement

Blobby
Queue

Page
Stamps

Reference
Work

7(?) stores 1 store

Eviction
Work

3(?) stores O(N)

(c) 3 points In the lecture, we didn’t decide between these two options, because instead we
studied a third option. But if you were required to pick one of these two options which
one would you pick, and why? Please note that scoring will be based primarily on the
rationale expressed.

Page 4

You may use this page as extra space for the “LRU” question if you wish.

Page 5

2. 15 points Bridge problem

As you may know, Pittsburgh is known as “the city of bridges,” by which we don’t mean the
“north bridge” and the “south bridge,” but instead the Smithfield Street Bridge, the Fort Duquesne
Bridge, etc. In this problem we will be studying a lesser-known bridge, the “Dinky Bridge,” so
called because it has only one lane (just one—not one in each direction). In addition to being
narrow, the Dinky Bridge has a weight limit which allows only one car to be driving on it at any
given time.

As each car approaches the Dinky Bridge, it invokes either request(NORTH) or request(SOUTH);
these operations may block the car for some time until the bridge is allocated to the car. When
the request() operation returns, the car is allowed to drive across the bridge, at which point it
invokes complete() (which does not take a parameter). So the standard control flow is

request(NORTH); drive(); complete();

or
request(SOUTH); drive(); complete();

You can imagine that drive() “takes a while,” potentially being modelled via sleep(15∗100);.

In this problem we will ask you to evaluate two proposed implementations of request() and
complete(). While reading each one, you may assume that all synchronization objects are properly
initialized and that mutexes begin in the unlocked state. It is probably in your best interest to
study both implementations before beginning to write your solution to any part of this problem.

/* First implementation -- minimal! */

mutex_t bm;

cond_t done;

int available = 1;

void request(int direction) {

(void) direction; // not used

mutex_lock(&bm);

while (!available)

cond_wait(&done, &bm);

available = 0;

mutex_unlock(&bm);

}

void complete(void) {

mutex_lock(&bm);

available = 1;

cond_signal(&done);

mutex_unlock(&bm);

}

Page 6

/* Second implementation - high quality! */

mutex_t bm;

cond_t done;

int next_ticket = 1;

int ready_for = 1;

extern void log_debug(char *s, ...); // log_debug() is thread-safe

void request(int direction) {

(void) direction; // neither used nor needed!

int me, my_ticket;

me = thr_getid();

mutex_lock(&bm);

my_ticket = next_ticket++;

if (ready_for == my_ticket) {

mutex_unlock(&bm);

log_debug("%d happily crossing\n", me);

return;

} else {

// I/O is not a "short instruction sequence"!

mutex_unlock(&bm);

log_debug("%d eagerly waiting\n", me);

mutex_lock(&bm);

while (ready_for != my_ticket)

cond_wait(&done, &bm);

mutex_unlock(&bm);

log_debug("%d happily crossing\n", me);

}

}

void complete(void) {

mutex_lock(&bm);

++ready_for;

cond_signal(&done);

mutex_unlock(&bm);

}

Page 7

(a) 6 points Briefly and clearly state the most problematic thread-synchronization problem

you believe the first implementation suffers from. Show a clear and compelling execution
trace which supports your claim.

Page 8

You may use this page as extra space for the first trace if you wish.

Page 9

(b) 7 points Briefly and clearly state the most problematic thread-synchronization prob-

lem you believe the second implementation suffers from. Show a clear and compelling
execution trace which supports your claim.

Page 10

You may use this page as extra space for the second trace if you wish.

Page 11

(c) 2 points Please clearly describe a simple code change which solves the problem with the

second implementation which you identified in part (b). It should be possible for you to
unambiguously describe the change in one sentence—or maybe two. You may show code if
you wish, but you probably shouldn’t: we are looking for a fix to one of these algorithms,
not a new algorithm. Once you have described the change, also briefly describe why it
works.

Page 12

3. 15 points Parallel-sorting deadlock.

For this problem, we will be considering a parallel sorting algorithm, though not a particularly good
one. The program provided seeks to sort a randomly-generated array of size SLOTS. It spools up
NTHREADS threads, each of which runs for a fixed number of iterations. In each iteration, a thread
attempts to acquire two different slots with indices x and y. After acquiring them, it swaps them if
necessary, then releases them. While acquiring the first slot, the thread will block if it has already
been acquired. For anti-deadlock purposes, while acquiring the second slot, the thread may decide
to release the first slot and start over. Unfortunately, this sorting program can deadlock!

You will find that main() does not do anything particularly interesting: it initializes the thread
library, rand lock, and array, then creates and joins the worker threads. You will also find that
rand int() is not particularly interesting; it simply generates a random number in a thread-safe
manner (genrand() is not thread-safe).

int main() {

thr_init(4096); // exam: no failure

sgenrand(get_ticks());

mutex_init(&rand_lock); // exam: no failure

for (int i = 0; i < SLOTS; i++) {

mutex_init(&array[i].mtx); // exam: no failure

cond_init(&array[i].cvar); // exam: no failure

array[i].owner = -1;

array[i].waiters = 0;

array[i].value = rand_int();

}

int tids[NTHREADS];

for (int i = 0; i < NTHREADS; i++)

tids[i] = thr_create(sorter, (void *)i); // exam: no failure

for (int i = 0; i < NTHREADS; i++)

thr_join(tids[i], NULL); // exam: no failure

int inversions = 0;

for (int i = 0; i < SLOTS; i++) {

for (int j = i+1; j < SLOTS; j++)

if (array[i].value > array[j].value)

inversions++;

mutex_destroy(&array[i].mtx);

cond_destroy(&array[i].cvar);

}

printf("inversions: %d\n", inversions);

mutex_destroy(&rand_lock);

thr_exit(0);

}

Page 13

#define SLOTS 25

#define NTHREADS 20

#define ITERS 100

#define MAX(x,y) (((x) < (y)) ? (y) : (x))

#define MIN(x,y) (((x) < (y)) ? (x) : (y))

typedef struct {

int owner;

unsigned int value;

int waiters; // bit-vector

mutex_t mtx;

cond_t cvar;

} slot_t;

static slot_t array[SLOTS];

static mutex_t rand_lock;

unsigned int rand_int() {

mutex_lock(&rand_lock);

int res = genrand();

mutex_unlock(&rand_lock);

return res;

}

void swap_slots(unsigned int x, unsigned int y) {

int less = MIN(array[x].value, array[y].value);

int more = MAX(array[x].value, array[y].value);

array[x].value = x < y ? less : more;

array[y].value = x < y ? more : less;

}

void release(int idx) {

slot_t *s = &array[idx];

mutex_lock(&s->mtx);

s->owner = -1;

mutex_unlock(&s->mtx);

cond_broadcast(&s->cvar);

}

Page 14

bool acquire(int desired_idx, int owned_idx, int id) {

slot_t *desired = &array[desired_idx];

slot_t *owned = owned_idx == -1 ? NULL : &array[owned_idx];

int acquired = true;

mutex_lock(&desired->mtx);

if (desired->owner != -1) {

desired->waiters |= (1 << id);

while (desired->owner != -1) {

if (owned && (owned->waiters & (1 << desired->owner))) {

acquired = false;

break;

}

cond_wait(&desired->cvar, &desired->mtx);

}

desired->waiters &= ~(1 << id);

}

if (acquired)

desired->owner = id;

mutex_unlock(&desired->mtx);

return acquired;

}

void *sorter(void *arg) {

int id = (int)arg;

for (int iter = 0; iter < ITERS; iter++) {

unsigned int x = rand_int() % SLOTS;

unsigned int y = rand_int() % SLOTS;

if (x == y) continue;

acquire(x, -1, id); // first grab can’t fail

if (acquire(y, x, id)) {

swap_slots(x, y);

release(y);

}

release(x);

}

return NULL;

}

Page 15

(a) 4 points Show clear, convincing evidence of deadlock. Begin by describing the problem
in one or two sentences; then clearly specify a scenario. Explicitly indicate how each
necessary deadlock ingredient is present in the scenario you describe.

Page 16

(b) 8 points Now provide an execution trace resulting in a deadlock. It is to your advantage
to use scrap paper or the back of some page to experiment with draft traces, so that the
answer you write below is easy for us to read.

Page 17

You may use this page as extra space for the deadlock question if you wish.

Page 18

(c) 3 points Explain in detail (though code is not required!) how the program could be

modified to not deadlock. Be sure to explain (in a theoretical / conceptual sense) why your
solution works. Solutions judged as higher-quality by your grader will receive more points.
This means that it is probably better to “genuinely fix” some problem than to replace a
sensible assumption/parameter with an unrealistic assumption/parameter, though we will
consider any solution you clearly describe.

Page 19

4. 20 points Abortable condition variables.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in P2 by mutexes) and long-term voluntary descheduling
(provided by condition variables). As you know, these can be combined to produce higher-level
objects such as semaphores or readers/writers locks.

In this question you will implement a synchronization object called an “abortable condition vari-
able” (abbreviated ACV). It is like a regular condition variable, with two key differences. First,
a thread can decide that a failure or emergency state exists and can invoke an operation which
causes all threads waiting on an ACV to stop waiting. Second, each time a thread waits on an
ACV, the return value from the wait() operation indicates whether the wait ended because the
condition became true, i.e., because a thread invoked signal(), or whether the wait ended due to
the declaration of an abort situation.

As an example, consider the following trace which which demonstrates the relationship between
acv abort() and acv signal().

Time Thread 0 Thread 1 Thread 2

0 i = acv wait(a)

1 ...wait... j = acv wait(a)

2 ...wait...

3 acv signal(a)

4 acv abort(a)

5 j == -1

6 i == 0

Here is a second illustative trace.

Time Thread 0 Thread 1 Thread 2

0 i = acv wait(a)

1 ...wait... acv signal(a)

2 thr create(T2)

3 j = acv wait(a)

4 acv abort(a)

5 j == -1

6 i == 0

A small example program using an abortable condition variable is displayed on the next page.

Page 20

#define NTHREADS 10

#define NROUNDS 100

acv_t acv;

mutex_t mutex;

bool terminate = false;

int counter = 0;

void* work(void* index_arg);

void* control(void* ignored);

int main(int argc, char** argv) {

int tids[NTHREADS];

thr_init(4096); // exam: no failure

acv_init(&acv); // exam: no failure

mutex_init(&mutex); // exam: no failure

tids[0] = thr_create(control, NULL); // exam: no failure

for (int t = 1; t < NTHREADS; t++)

tids[t] = thr_create(work, (void*)t); // exam: no failure

for (int t = 0; t < NTHREADS; t++)

thr_join(tids[t], NULL);

mutex_destroy(&mutex); // don’t need to destroy acv

thr_exit(0);

}

void* control(void* ignored) {

char c;

while ((c = getchar()) != ’q’) {

int wakeupCount;

if (isdigit(c))

wakeupCount = c - ’0’;

for (int i = 0; i < wakeupCount; i++) // Let some people do work based on user input

acv_signal(&acv);

}

printf("Aborting Computation\n");

mutex_lock(&mutex);

terminate = true;

acv_abort(&acv);

acv_destroy(&acv);

mutex_unlock(&mutex);

return NULL;

}

Page 21

void* work(void* index_arg) {

int index = (int)index_arg;

int result = 0;

for (int r = 0; r < NROUNDS && result == 0; r++) {

// Do work

sleep(genrand() % 100);

mutex_lock(&mutex);

if (terminate) {

printf("Terminating without abort: %d\n", index);

mutex_unlock(&mutex);

break;

} else {

int myCount = counter;

counter++;

printf(

"Thread: %d done with round %d count: %d\n", index, r, myCount);

result = acv_wait(&acv, &mutex);

}

mutex_unlock(&mutex);

}

if (result != 0)

printf("Thread: %d aborted!\n", index);

return NULL;

}

Page 22

Your task is to implement an abortable condition variable with the following interface. Note
that you will not need to implement a broadcast() operation.

• int acv init(acv t *a)

The abortable condition variable shall be initialized. It is illegal for an application to use
the abortable condition variable before it has been initialized or to initialize an abortable
condition variable when it is already initialized and in use. acv init shall returns 0 on
success or a negative error code on failure. Because this is an exam, you may assume
that allocating and initializing the necessary state will succeed (thus, this declaration
shows the function returning a value so that the declaration matches what a non-exam
implementation would declare).

• void acv destroy(acv t *a)

The abortable condition variable shall be destroyed. It is illegal for a program to in-
voke acv destroy() if any threads are operating on it. A common pattern is to call
acv abort() before calling acv destroy().

• int acv wait(acv t *a, mutex t *mp)

The abortable condition variable shall wait until signaled (acv signal()) or aborted
(acv abort()). The mutex mp should be released when waiting and reacquired upon
returning. The mutex should be reacquired even if the wait was aborted. acv wait()

shall return 0 if successfully signaled (acv signal()) or a negative value if aborted
(acv abort()).

• void acv signal(acv t *a)

The abortable condition variable shall be signaled, waking up a single waiting thread if
one exists.

• void acv abort(acv t *a)

The abortable condition variable shall be aborted. All threads waiting on the abortable
condition variable should be awakened. acv abort() should not return until the abortable
condition variable is no longer in use by any of the waiting threads. After a condition
variable has been aborted, it is illegal for other threads to call acv wait(), acv signal(),
acv abort() on that condition variable.

The remainder of this page is intentionally blank.

Page 23

Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables,
semaphores, readers/writer locks, etc.

2. You may assume that callers of your routines will obey the rules. But you must be
careful that you obey the rules as well!

3. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule()/make runnable(), or any atomic instructions (XCHG,
LL/SC).

4. You must comply with the published interfaces of synchronization primitives, i.e., you
cannot inspect or modify the internals of any thread-library data objects.

5. You may not use assembly code, inline or otherwise.

6. For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and
are expecting, a particular failure).

7. You may not rely on any data-structure libraries such as splay trees, red-black trees,
queues, stacks, or skip lists, lock-free or otherwise, that you do not implement as part of
your solution.

8. You may use non-synchronization-related thread-library routines in the “thr xxx() fam-
ily,” e.g., thr getid(). You may wish to refer to the “cheat sheets” at the end of the
exam. If you wish, you may assume that thr getid() is “very efficient” (for example, it
invokes no system calls). You may also assume that condition variables are strictly FIFO
if you wish.

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on the next page.
If we cannot understand the solution you provide, your grade will suffer!

Page 24

(a) 5 points Please declare your acv_t here. If you need one (or more) auxilary structures,

you may declare it/them here as well.

typedef struct {

} acv_t;

Page 25

(b) 15 points Now please implement acv init(), acv wait(), acv signal(), acv abort(),
and acv destroy().

Page 26

. . . space for abortable condition variable implementation . . .

Page 27

. . . space for abortable condition variable implementation . . .

Page 28

. . . space for abortable condition variable implementation . . .

Page 29

5. 10 points Nuts & Bolts.

The standard C run-time model, and the standard Unix process model, support various memory
regions (because C and Unix grew up together, the similarity between the models is not a coinci-
dence). As a result, a programmer can allocate memory in various “places,” (or perhaps memory of
various “kinds”). For the purposes of this problem, consider a programmer who wishes to allocate
an array of ten int variables, with all elements initialized to zero.

(a) 3 points Show code which will allocate a ten-int array initialized to zeroes in one

area/region/place.

(b) 3 points Show code which will allocate a ten-int array initialized to zeroes in a second

area/region/place.

Page 30

(c) 3 points Show code which will allocate a ten-int array initialized to zeroes in a third

area/region/place.

(d) 1 point Of the allocations you showed above, which one is the most reliable? Why?

Page 31

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t)(void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 32

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

void mutex_destroy(mutex_t *mp);

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);

void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

#define RWLOCK_READ 0

#define RWLOCK_WRITE 1

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);

void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 33

Ureg Cheat-Sheet

#define SWEXN_CAUSE_DIVIDE 0x00 /* Very clever, Intel */

#define SWEXN_CAUSE_DEBUG 0x01

#define SWEXN_CAUSE_BREAKPOINT 0x03

#define SWEXN_CAUSE_OVERFLOW 0x04

#define SWEXN_CAUSE_BOUNDCHECK 0x05

#define SWEXN_CAUSE_OPCODE 0x06 /* SIGILL */

#define SWEXN_CAUSE_NOFPU 0x07 /* FPU missing/disabled/busy */

#define SWEXN_CAUSE_SEGFAULT 0x0B /* segment not present */

#define SWEXN_CAUSE_STACKFAULT 0x0C /* ouch */

#define SWEXN_CAUSE_PROTFAULT 0x0D /* aka GPF */

#define SWEXN_CAUSE_PAGEFAULT 0x0E /* cr2 is valid! */

#define SWEXN_CAUSE_FPUFAULT 0x10 /* old x87 FPU is angry */

#define SWEXN_CAUSE_ALIGNFAULT 0x11

#define SWEXN_CAUSE_SIMDFAULT 0x13 /* SSE/SSE2 FPU is angry */

#ifndef ASSEMBLER

typedef struct ureg_t {

unsigned int cause;

unsigned int cr2; /* Or else zero. */

unsigned int ds;

unsigned int es;

unsigned int fs;

unsigned int gs;

unsigned int edi;

unsigned int esi;

unsigned int ebp;

unsigned int zero; /* Dummy %esp, set to zero */

unsigned int ebx;

unsigned int edx;

unsigned int ecx;

unsigned int eax;

unsigned int error_code;

unsigned int eip;

unsigned int cs;

unsigned int eflags;

unsigned int esp;

unsigned int ss;

} ureg_t;

#endif /* ASSEMBLER */

Page 34

Useful-Equation Cheat-Sheet

cos2 θ + sin2 θ = 1

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

eix = cos(x) + i sin(x)

cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i

∫
lnx dx = x lnx− x+ C∫ ∞
0

√
x e−x dx =

1

2

√
π∫ ∞

0
e−ax

2
dx =

1

2

√
π

a∫ ∞
0

x2e−ax
2
dx =

1

4

√
π

a3
when a > 0

Γ(z) =

∫ ∞
0

tz−1e−t dt

ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t)

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t)

E = hf =
h

2π
(2πf) = h̄ω

p =
h

λ
=

h

2π

2π

λ
= h̄k

∇ ·E =
ρ

ε0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E

∂t

Page 35

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 36

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 37

