
Q1 Directions/assurance
0 Points

1. Please read the entire exam before starting to write. This should help

you avoid getting bogged down on one problem.

2. We believe this is approximately two "exam hours" of content.

However, you will have four hours to work on the exam, starting from

when you begin it. The extra time is intended to correct for potential

logistical issues and also to reduce stress during a time when we all

likely have more than we need.

3. The exam will be open-book/open-notes in the following sense:

A. You may use any edition of either textbook.

B. You may refer to materials we provided you with, including the Intel

PDFs on the course web site, the lecture slides we provided you with,

the project handouts (the kernel specification and the thread-library

handout may be particularly useful), and the lecture videos from this

semester---in other words, materials on this semester's course web

site.

C. You may use notes you have taken.

D. You may refer to your P0, P1, and P2 submissions.

4. But you are not authorized to get help from other people, or to use

online resources that are not part of this semester's course web site.

5. You are not authorized to use compilers, assemblers, linkers, loaders,

simulation engines, virtualization systems, proof checkers, etc.

6. The exam will not be proctored, i.e., you will be operating on the honor

system in terms of resources we have said you can consult.

7. If you have a question while taking the exam, please check the

published Zoom schedule. You may also send mail to the staff mailing

list.

8. The weight of each question is indicated on the exam. Weights of

question parts are estimates which may be revised during the grading

process and are for your guidance only.

9. Please be concise in your answers. You will receive partial credit for

partially correct answers, but truly extraneous remarks may count

against your grade.

I certify that my exam submission is my own work,

in compliance with the rules stated above.

Name:

Name

Date:

Date

Q2 Design
6 Points

When designing a body of code, at times one finds oneself thinking, "I

wonder if I should use Approach A or Approach B?" According to the

15-410 design orthodoxy, you should follow a specific process to resolve

your question.

Please document a design decision you made while working on your

Project 2 thread library. For the purposes of this question we will be

scoring based on your description of the decision, not whether we agree

or disagree with what you chose.

Begin with a brief description of the problem (one to three sentences)

and then show us your design decision---answers that correctly use the

15-410 approved data structure will receive higher scores.

Brief description:

Design decision (we will accept answers in reasonable form, text or

image, e.g., PDF, PNG; please avoid color combinations that are difficult

to read, such as purple text on a black background).

No files uploaded

Q3 Register dump
4 Points

Below is a register dump produced by the "Pathos" P2 reference kernel

when it decided to kill a user-space thread. Your job is to carefully

consider the register dump and:

1. Determine which "wrong register value(s)" caused the thread to run an

instruction which resulted in a fatal exception. You should say why/how

the wrong value led to an exception, i.e., merely claiming a register has

a "wrong" value will not receive full credit.

2. Briefly state the most plausible way you think that register could have

taken on that value (i.e., try to describe a bug which could have this

effect).

3. Then write a small piece of code which would plausibly cause the

thread to die in the fashion indicated by the register dump. This code

does not need to implement exactly the set of steps that you

identified as "most plausible" above, or result in the same register

values; you should aim to achieve "basically the same effect." Most

answers will probably be in assembly language, but C is acceptable as

well. Your code should assume execution begins in main() , which

has been passed the typical two parameters in the typical fashion.

Please be sure that your description of the fatality and the code, taken

together, clearly support your diagnosis.

Registers:
eax: 0x00000001, ebx: 0x000f2020, ecx: 0x0000004c,
edx: 0x00800000, edi: 0x01002004, esi: 0x00008086,
ebp: 0xffffffff, esp: 0xfffffffe, eip: 0x01000023,
 ss: 0x002b, cs: 0x0023, ds: 0x002b,
 es: 0x002b, fs: 0x002b, gs: 0x002b,
eflags: 0x00000282

Wrong register value(s) and exception/fault reason:

!

How the register(s) got the wrong value(s):

Code: if possible, please upload a text file containing your code, ideally

with spaces rather than tabs. But we will also accept PDF or PNG -- if

possible, please provide us with black text on a white background, and

please avoid white text on a black background or stranger things (purple

text on a black background, etc.).

No files uploaded

Q4 Semaphore problem
20 Points

Having heard that one of the 410 course staff very much enjoys

semaphores, your partner has implemented a "small extension" to the

standard semaphore design which increases the similarity between

semaphores and condition variables. In particular, your partner's code

tracks how many threads are waiting on a semaphore and provides a

primitive, sem_broadcast() , designed to increment the semaphore's

count by the number of waiting threads, and to wake up those threads.

typedef struct {
 int count;
 int waiters;
 mutex_t count_lock;
 mutex_t waiters_lock;
 cond_t cv;
} sem_t;

/* code omitted for exam purposes */
int sem_init(sem_t *sem, int count);
int sem_destroy(sem_t *sem);

!

/* code omitted for exam purposes */

int sem_wait(sem_t *sem) {
mutex_lock(&sem->count_lock);
if (sem->count > 0) {

sem->count--;
mutex_unlock(&sem->count_lock);

 return 0;
 } else {

mutex_lock(&sem->waiters_lock);
sem->waiters++;
mutex_unlock(&sem->waiters_lock);

 }
cond_wait(&sem->cv, &sem->count_lock);
sem->count--;
mutex_unlock(&sem->count_lock);
mutex_lock(&sem->waiters_lock);
sem->waiters--;
mutex_unlock(&sem->waiters_lock);

 return 0;
}

int sem_signal(sem_t *sem) {
mutex_lock(&sem->count_lock);
sem->count++;
cond_signal(&sem->cv);
mutex_unlock(&sem->count_lock);

 return 0;
}

int sem_broadcast(sem_t *sem) {
 int i, w;

// lock: we want only *existing* waiters
mutex_lock(&sem->waiters_lock);
w = sem->waiters;
for (i = 0; i < w; i++)

 sem_signal(sem);
mutex_unlock(&sem->waiters_lock);

 return 0;
}

There are (at least) two synchronization problems found in the code

presented above. To receive full credit, identify two different problems

(rather than two instances of the same mistake). Do not present more

than two. The problems are found in the code presented to you (in other

words, we are not looking for claims that sem_init() might be

implemented incorrectly). You should assume that invocations of thread-

library primitives (e.g., mutex_lock()) succeed rather than detecting

inconsistency or otherwise failing.

If you have correctly identified a sychronization problem, you will be able

to briefly and clearly summarize it and show a clear and compelling

execution trace using the tabular execution format from the lectures and

homework assignment. Confusing descriptions and unclear execution

traces will be read as evidence of incomplete understanding and will be

graded as such. This means that it is to your advantage to think your

answers through before beginning to write.

Q4.1 First problem
12 Points

Briefly and clearly describe the first synchronization problem you have

identified with the code above.

Show a clear and compelling execution trace. We will accept a picture

(PDF, PNG), or a text file containing one line per event (each event should

consist of a thread i.d. and an action, e.g., T0: x=3).

No files uploaded

Q4.2 Second problem
8 Points

Briefly and clearly describe a second synchronization problem with the

code above, which should be "a different kind of problem."

Show a clear and compelling execution trace. We will accept a picture

(PDF, PNG), or a text file containing one line per event (each event should

!

consist of a thread i.d. and an action, e.g., T0: x=3).

No files uploaded

Q5 Condition variables
20 Points

The "condition variable" is an important concurrency primitive that

encapsulates the notion of "stop running, so that other threads may use

the processor, until the world changes in a way which probably enables

me to continue working." A necessary part of implementing condition

variables is solving the "atomic unlock-and-deschedule" problem: a

waiting thread must release a lock and ask the kernel to block it; if

another thread is trying to awaken the waiting thread, the "awaken"

operation must not be lost just because its execution is interleaved in a

troublesome way with the "release, then block" sequence.

The Pebbles kernel specification provides user code with two system

calls which can be combined to solve the atomic-blocking problem,

deschedule() and make_runnable() . Other systems provide other

primitives, some of which are quite different. Linux provides "futexes"

and signals; Plan 9 provides a primitive called "rendezvous."

void *rendezvous(void *tag, void *value)} -

Synchronize, and exchange values between, two threads in the same

task. Two threads wishing to synchronize invoke rendezvous()

specifying the same tag parameter and arbitrary value parameters. The

first thread specifying a particular tag value will suspend execution until

a second thread invokes rendezvous() with the same tag parameter.

The two threads that rendezvous each obtain the value parameter

specified by the other one. After the exchange, both threads are

runnable. The return value of the system call is the value parameter

specified by the other thread. The kernel places no interpretation on the

values of the tag and value parameters except when it performs

equality testing on the tag parameters.

Assumptions:

!

1. To implement condition variables you may use mutexes and the

rendezvous() system call described above.

2. You may not use other atomic or thread-synchronization

synchronization operations, such as, but not limited to: semaphores,

reader/writer locks, deschedule() / make_runnable() , or any atomic

instructions (XCHG , LL/SC).

3. You may assume that callers of your routines will obey the rules. But

you must be careful that you obey the rules as well!

4. You must comply with the published interfaces of synchronization

primitives, i.e., you cannot inspect or modify the internals of any thread-

library data objects.

5. You may not use assembly code, inline or otherwise.

6. For the purposes of the exam, you may assume that library routines

and system calls don't "fail" (unless you indicate in your comments

that you have arranged, and are expecting, a particular failure).

7. You may not rely on any data-structure libraries such as splay trees,

red-black trees, queues, stacks, or skip lists, lock-free or otherwise, that

you do not implement as part of your solution.

8. You may use non-synchronization-related thread-library routines in the

" thr_xxx() family," e.g., thr_getid() (note that the P2 handout

documents the thread-library interface). If you wish, you may assume

that thr_getid() is "very efficient" (for example, it invokes no system

calls).

Please upload a single text file containing your declaration for a

struct cond and your code for cond_init() , cond_wait() , and

cond_signal() (you do not need to implement either

cond_broadcast() or cond_destroy()). If you wish, you may also

declare an auxiliary structure, struct aux , but this is strictly optional.

Ideally the text file will use spaces rather than tabs. But we will also

accept PDF or PNG -- if possible, please provide us with black text on a

white background, and please avoid white text on a black background or

stranger things (purple text on a black background, etc.).

typedef struct cond {

} cond_t;

typedef struct aux {

} aux_t; /* optional */

Code file:

No files uploaded!

