

323246

Minimal Intel

Architecture Boot

Loader

Bare Bones Functionality

Required for Booting an

Intel Architecture Platform

 January 2010

White Paper

Jenny M Pelner

James A Pelner

Firmware Architects

Intel Corporation

Minimal Boot Loader for Intel® Architecture

2

Minimal Boot Loader for Intel® Architecture

 3

Executive Summary

The intent of this White paper is to describe the minimal initialization

steps that are necessary in order to boot to an Intel Architecture (IA)

platform.

The Intel® Embedded Design Center provides qualified developers with

web-based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions,

training, Intel’s tool loaner program, and connect with an e-help desk

and the embedded community. Design Fast. Design Smart. Get started

today. www.intel.com/embedded/edc. §

http://www.intel.com/embedded/edc

Minimal Boot Loader for Intel® Architecture

4

Contents

Business Challenge (or Background) ... 6

Solution (Pilot Study or Proof of Concept) .. 6

Initializing an Intel Architecture Platform from Reset .. 6

Power-Up (Reset Vector) Handling ... 7

Mode Selection .. 7
Real Mode ... 7
Flat Protected Mode .. 7
Segmented Protected Mode ... 8
Initial Processor Mode ... 8

Preparation for Memory Initialization .. 8
Processor Microcode Update .. 8
Processor Initialization .. 8
Chipset Initialization ... 9

Memory Initialization .. 9
Technical Resources ... 9
MRC Dependencies ... 10

Post Memory Initialization ... 10
Memory Test ... 11
Firmware Shadow .. 11
Memory Transaction Re-Direction ... 11
Stack Setup .. 12
Transfer to DRAM ... 12

Miscellaneous Platform Enabling .. 12

Interrupt Enabling .. 12
Programmable Interrupt Controller (PIC) 12
Local Advanced Programmable Interrupt Controller (LAPIC) 13
I/O Advanced Programmable Interrupt Controller (IOxAPIC) 13
Message Signaled Interrupt (MSI) .. 13

Processor Interrupt Modes ... 13
PIC Mode .. 13
Virtual Wire Mode .. 13

Interrupt Vector Table (IVT) .. 14

Interrupt Descriptor Table (IDT) ... 14
Exceptions .. 14
Real Mode Interrupt Service Routines (ISRs) 14

Timers 14
Programmable Interrupt Timer (PIT)... 14
High Precision Event Timer (HPET) ... 14
Real Time Clock (RTC) .. 15
System Management TCO Timer .. 15

Minimal Boot Loader for Intel® Architecture

 5

Local APIC (LAPIC) Timer .. 15
Memory Caching Control ... 15

Processor Discovery and Initialization ... 16
CPUID – Threads and Cores ... 16
Startup Inter-Processor Interrupt (SIPI) .. 17
AP Wakeup State ... 17
Wakeup Vector Alignment ... 17
Caching Considerations ... 17
AP Idle State ... 17

I/O Devices ... 18
Embedded Controller (EC) ... 18
Super IO (SIO) .. 18
Legacy Free Systems .. 18
Miscellaneous IO Devices .. 18

PCI Device Discovery .. 18

Booting a Legacy OS .. 20

Memory Map ... 21
Region Types ... 21
Region Locations .. 22

Non-Volatile (NV) Storage ... 22
Complimentary Metal-Oxide Semiconductor (CMOS) 22
Non-Volatile Flash .. 22

References .. 23

Conclusion .. 24

323246

Business Challenge (or Background)

If a developer wants to write their own BIOS on IA architecture, then they
have to gather the appropriate documents (which aren’t always known) and
guess the order that the items listed must be done in.

There currently isn’t one document that describes all the items that need to
be done in one place, nor is the order of initialization described anywhere.

There are also many legacy devices that must be initialized and finding
documentation on them is challenging.

This document is an attempt to document the order, the minimum steps
required, and generate a central repository of the various documents that
contain the technical details of each technology / component of a typical
platform.

Solution (Pilot Study or Proof of

Concept)

There are two approaches that are typically taken by Intel when a new
platform is developed and a boot loader solution is required.

 A BIOS is employed

 A custom boot loader is developed

The driving factor for the decision between the two is typically based on the
features that are desired. BIOS has all the features and configurability
available, whereas, a custom boot loader may work only for a specific board
with specific hardware.

Initializing an Intel Architecture

Platform from Reset

The bare minimum firmware requirements for making an IA platform
operational and booting an OS are presented here in an order recommended
by the authors. There may be design-based or segment-based requirements
which would add/delete/re-order many of the items presented in this paper.
However, for the vast majority of system designs, these steps in this order
are sufficient.

Minimal Boot Loader for Intel® Architecture

 7

Power-Up (Reset Vector) Handling

When an IA bootstrap processor (BSP) powers on, the first address that is
fetched and executed is at physical address 0xFFFFFFF0, also known as the
reset vector. This accesses the ROM / Flash device at the top of the ROM –
0x10. The boot loader must always contain a jump to the initialization code
in these top 16 bytes.

Mode Selection

The processor must be placed into one of the following modes:

 Real Mode

 Flat Protected Mode

 Segmented Protected Mode – Not Recommended for Firmware

Refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual
Volume 3A section titled “Mode Switching” for more details.

Real Mode

Real Mode is 16-bit code with 16-bit registers. The physical address is
calculated by SS << 4 + IP. Real Mode only allows accessing 1MB of
memory.

In Real Mode, interrupt handling is through the Interrupt Vector Table (IVT).

For supporting legacy Operating Systems, some form of Real Mode code must
be present during system run-time to handle requests from the Operating
System. Discussion of these services is out of the scope of this paper.

Flat Protected Mode

Flat Protected Mode (Flat Mode) is 32-bit code where the physical addresses
map one to one to the logical addresses.

The Interrupt Descriptor Table (IDT) is used for interrupt handling. For more
information on the IDT, refer to the Intel® 64 and IA-32 Architectures
Software Developer’s Manual.

This is the recommended mode for Firmware.

Minimal Boot Loader for Intel® Architecture

8

Segmented Protected Mode

Segmented Protected Mode is typically used by Operating Systems in
conjunction with paging mode. It is not practical for use by Firmware.

Initial Processor Mode

When the processor is first powered-on, it will be in a special mode similar to
Real Mode, but with the top 12 address lines being asserted high, allowing
boot code to be accessed directly from NVRAM (physical address
0xFFFxxxxx). Upon execution of the first long jump, these 12 address lines
will be driven according to instructions by firmware. If one of the Protected
Modes is not entered before the first long jump, the processor will enter Real
Mode, with only 1MB of addressability. In order for Real Mode to work
without memory, the chipset needs to be able to alias memory below 1MB to
just below 4GB, to continue to access NVRAM. Some chipsets do not have
this aliasing and a forcible switch to a normal operating mode will be required
before performing the first long jump.

Preparation for Memory Initialization

The following code is executed from the ROM / Flash since memory is not
available yet. The least amount of code in this section the better, since
executing from ROM is slow.

The following are steps that are taken to get the system ready to initialize
memory:

 Processor Microcode Update

 Processor Initialization

 Chipset Initialization

Processor Microcode Update

Refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual
Volume 3A section titled “Microcode Update Facilities” for details on applying
a processor microcode update.

Processor Initialization

Refer to the applicable processor BIOS/Firmware Writer’s Guide for details on
things that must be initialized prior to memory initialization, as well as, refer
to the chipset Memory initialization Reference Code (MRC) documentation for
any processor modes that must be initialized prior to calling the MRC.

The following are all different requirements that may be applicable:

Minimal Boot Loader for Intel® Architecture

 9

 Non-Evict Mode (NEM)

 SRAM

 Register Storage

 Stack-less Setup

Chipset Initialization

Refer to the Chipsets BIOS Writer’s Guides (BWG) for details on all
initialization steps that must be performed prior to memory initialization.

In general, all Base Address Registers (BARs) should be initialized prior to
memory initialization.

On most Integrated Controller Hubs / Integrated Output Hubs (ICHs / IOHs),
there is a Watch Dog Timer (WDT) that must be disabled prior to the
execution of memory initialization. If the WDT is not disabled, then a random
reset can occur.

Memory Initialization

Technical Resources

Memory initialization for Intel platforms differs widely from chipset to chipset.
The details about how to initialize the memory subsystem is considered
restricted collateral. It comes in two forms:

 Documentation (Chipset BIOS Writer’s Guide)

 Memory initialization Reference Code (MRC)

The BIOS/Firmware Writer’s Guide documents the minimal steps required to
initialize the memory subsystem as well as the boundaries/restrictions of the
subsystem. This is useful for vendors that choose to write the memory
initialization code themselves.

The MRC is distributed in different forms (depending on the owning Intel
division and the platform). Each form that may be available is a fully-
functioning implementation of the algorithm in the BIOS/Firmware Writer’s
Guide. The MRC may be ported into any firmware stack with a minimal
amount of effort. Since the MRC supports all technologies and configurations
allowed on a platform, it is possible to trim down the MRC to fit a vendor’s
design in a minimal amount of code space. This is the vendor’s responsibility
and not directly supported by Intel.

Minimal Boot Loader for Intel® Architecture

10

MRC Dependencies

In order to use MRC distributed by Intel, care needs to be taken to provide
the appropriate operating environment for the code. The operating
environment requirements may include (but may not be limited to):

 Processor Operating Mode

 Cache Configuration

 Memory Geometry Information

MRC may be written to run in 16-bit Real Mode, 32-bit Flat Mode, or
(unlikely) a 32-bit Segmented Mode. If the adopted code does not have the
appropriate operating environment, performance cannot be guaranteed.

With the higher DRAM speeds and the need for RCOMP and DLL calibration,
typical chipsets do not have enough scratchpad space in the register sets.
Therefore, it is common for MRC to have cache configuration requirements,
such that the MRC has a “chalkboard” to write on during initialization.

PC-based memory configurations are based on removable memory modules
(DIMMs). These configurations are dynamically detectable through tiny
EPROM chips on the DIMMs. These chips contain specification-defined
information about the capability of the DRAM configuration on the DIMM
(Serial Presence Detect Data, or SPD data), and is readable through an I2C
interface. For chipsets that are intended to be used in PC-based systems and
support DIMMs, the MRC will usually have native SPD detection support
included. For non-PC-based systems, it may not be present. In these
configurations, it is required to hardcode the memory configuration or provide
access to the memory geometry information through any vendor-defined
mechanism. For memory-down designs, it may be necessary to generate
several bytes of SPD data based on the DRAM datasheets and the schematics
for the platform, and provide that to the MRC.

All of these dependencies should be documented along with the code that
comprises the MRC.

Post Memory Initialization

There are certain things that must be done after MRC but before jumping and
executing from memory. The following is a list of things that should be
performed:

 Memory Test

 Shadow Firmware

 Memory Transaction Re-Direction (PAMs)

 Stack Setup

Minimal Boot Loader for Intel® Architecture

 11

 Transfer to DRAM

Memory Test

At the end of memory initialization is the perfect time to attempt to perform some
kind of memory integrity test. Some releases of MRC contain a memory test, and
some do not. BIOS vendors typically provide some kind of memory test on a cold
boot as well. Writing custom firmware will require the authors to choose a balance
between thoroughness and speed, as highly embedded/mobile devices require
extremely fast boot times.

Why is this the best time to perform memory tests? Simply because memory errors
manifest themselves in very random ways, sometimes very inconsistently. Not

checking memory integrity immediately after initializing memory increases complexity
of firmware debug immensely, as any of the memory manipulation steps or firmware
execution from DRAM is suspect to corruption.

There are several types of memory tests that are done in industry. Typically simple
memory tests are performed in BIOS. Simple because it decreases code
size/complexity and is easy to implement in assembly language to be executed out of
NVRAM. Server-based platforms may implement much more thorough and complex
memory tests. This paper does not promote any algorithm in specific.

Firmware Shadow

The concept of shadowing is simple: take code from slow non-volatile
storage and copy it to DRAM. Why? Simply put, executing from DRAM is
much faster. Cache misses that cause frequent fetches to non-volatile
storage slows systems down greatly. Therefore it is recommended that
system firmware is copied from non-volatile storage to DRAM as soon as
possible after memory is initialized. Then, the non-volatile latency hit is only
felt once.

For PC-based systems, the shadow must be from non-volatile storage to
somewhere in the upper part of the lower 1MB of system memory. For non-
PC systems, the end location is arbitrary, and up to the vendor and the
requirements of the overlying software stack. For most applications, it’s
recommended to keep firmware code below 1MB.

Memory Transaction Re-Direction

Intel chipsets usually come with memory aliasing capabilities that allow reads
and writes to sections of memory below 1MB to be either routed to/from
DRAM or non-volatile storage located just under 4GB. The registers that
control this aliasing are typically referred to as PAMs (Programmable Attribute
Maps). Manipulation of these registers may be required before, during and
after firmware shadowing. The control over the redirection of memory access
varies from chipset to chipset. For example, some chipsets allow control over
reads and writes, while others only allow control over reads. Consult the
chipset datasheet for details on the memory redirection feature controls
applicable to the target platform.

Minimal Boot Loader for Intel® Architecture

12

Stack Setup

The stack must be setup before jumping into memory. A memory location
must be chosen for stack space. The stack will count down so the top of the
stack must be entered and enough memory must be allocated for the
maximum stack.

If the system is in real mode, then SS:SP must be set with the appropriate
values. If Protected Flat Mode is used, then SS:ESP must be set to the
correct memory location.

Transfer to DRAM

This is where the code makes the jump into memory. As mentioned before, if
a memory test has not been performed up until this point, the jump could
very well be to garbage. System failures indicated by a POST code between
“end of memory initialization” and the first following POST code, almost
always indicates a catastrophic memory initialization problem.

Miscellaneous Platform Enabling

Miscellaneous things in the system must be configured in the boot loader for
proper operation. The only way to know what has to be programmed is to
review the schematics. The following things are typically required to be
programmed, but it is platform dependent:

 Clock Chip programming

 GPIO configuration – Refer to the Chipset BIOS Writers Guide for more
details.

Interrupt Enabling

IA has several different methods of interrupt handling. The following or a
combination of the following can be used to handle interrupts:

 Programmable Interrupt Controller (PIC) or 8259

 Local Advanced Programmable Interrupt Controller (APIC)

 Input / Output Advanced Programmable Interrupt Controller (IOxAPIC)

 Messaged Signaled Interrupt (MSI)

Programmable Interrupt Controller (PIC)

The PIC contains two cascaded 8259s with fifteen available IRQs. IRQ2 is not
available since it is used to connect the 8259s.

Minimal Boot Loader for Intel® Architecture

 13

Refer to the Chipset BIOS Writers Guide for more information on initializing
the PIC.

Local Advanced Programmable Interrupt Controller

(LAPIC)

The local APIC is contained inside the processor and controls the interrupt
delivery to the processor. Each local APIC contains is own set of associated
registers as well as a Local Vector Table (LVT). The LVT specifies the manner
in which the interrupts are delivered to each processor core.

Refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual
for more information on initializing the local APIC.

I/O Advanced Programmable Interrupt Controller

(IOxAPIC)

The IOxAPIC is contained in the ICH / IOH and expands the number of IRQs
available to 24. Each IRQ has an associated redirection table entry that can
be enabled / disabled and selects the IDT vector for the associated IRQ. This
mode is only available when running in protected mode.

Refer to the Chipset BIOS Writers Guide for more information on initializing
the IOxPIC.

Message Signaled Interrupt (MSI)

The boot loader does not typically use MSI for interrupt handling.

Processor Interrupt Modes

PIC Mode

When the PIC is the only interrupt device enabled, it is referred to as PIC
Mode. This is the simplest mode where the PIC handles all the interrupts. All
APIC components are bypassed and the system operates in single-thread
mode using LINT0.

Virtual Wire Mode

Virtual Wire Mode uses the one of the APICs to create a virtual wire and
operates the same as PIC mode. Refer to the Intel® 64 and IA-32
Architectures Software Developer’s Manual Volume 3A for more details.

Minimal Boot Loader for Intel® Architecture

14

Interrupt Vector Table (IVT)

The IVT is the Interrupt Vector Table located at memory location 0p and
containing 256 interrupt vectors. The IVT is used in real mode. Each vector
address is 32 bits and consists of the CS:IP for the interrupt vector. Refer to
the Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
3A section titled “Exception and Interrupt Reference” for a list of Real Mode
interrupts / exceptions.

Interrupt Descriptor Table (IDT)

The IDT is the Interrupt Descriptor Table and contains the exceptions /
interrupts in Protected Mode. There are also 256 interrupt vectors and the
exceptions / interrupts are defined in the same locations as the IVT. Refer to
the Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
3A for a detailed description of the IDT.

Exceptions

Exceptions are routines that run to handle error conditions. Examples are
page fault, general protection fault, etc. At a minimum placeholders (dummy
functions) should be used for each exception handler. Otherwise the system
could exhibit unwanted behavior if an exception is encountered that isn’t
handled.

Real Mode Interrupt Service Routines (ISRs)

Real mode ISRs are used to communicate information between the boot
loader and the OS. For example INT10h is used for video services such as
changing video modes, resolution, etc.

There are some legacy programs and drivers that assume these real mode
ISRs are available and directly call the INT routine.

Timers

Programmable Interrupt Timer (PIT)

The PIT (8254) resides in the IOH / ICH and contains the system timer also
referred to as IRQ0. Refer to Chipset Datasheet for more details.

High Precision Event Timer (HPET)

HPET resides in the IOH / ICH and contains three timers. Typically the boot
loader does not need to do any initialization of HPET and the functionality is
used only by the OS.

Minimal Boot Loader for Intel® Architecture

 15

Refer to Chipset BIOS Writers Guide for more details.

Real Time Clock (RTC)

The RTC resides in the IOH / ICH and contains the system time (seconds /
minutes / hours / etc). These values are contained in CMOS which is
explained later in the document. The RTC also contains a timer that can be
utilized by Firmware.

Refer to the appropriate Chipset Datasheet for more details.

System Management TCO Timer

The TCO timers reside in the IOH / ICH and contain the Watch Dog Timer
(WDT). The WDT can be used to detect system hangs and will reset the
system.

Note: It is important to note that for debugging any type of firmware on IA
chipsets that implement a TCO Watch Dog Timer that it should be disabled by
firmware as soon as possible coming out of reset. Halting system for debug
prior to disabling this Watch Dog Timer on chipsets that power-on with this
timer enabled will result in system resets, which doesn’t allow firmware
debug. The OS will re-enable the Watch Dog if it so desires. Consult the
chipset datasheet for details on the specific implementation of the TCO Watch
Dog Timer.

Refer to the Chipset BIOS Writer’s Guide for more details.

Local APIC (LAPIC) Timer

The Local APIC contains a timer that can be used by Firmware. Refer to the
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A
for a detailed description of the Local APIC timer.

Memory Caching Control

Memory regions that must have different caching behaviors applied will vary
from design to design. In the absence of detailed caching requirements for a
platform, the following guidelines provide a “safe” caching environment for
typical systems:

 Default Cache Rule – Uncached.

 00000000-0009FFFF – Write Back.

Minimal Boot Loader for Intel® Architecture

16

 000A0000-000BFFFF – Write Combined or Uncached.

 000C0000-000FFFFF – Write Back or Write Protected.

 00100000-TopOfMemory – Write Back.

 TSEG – Uncached.

 Graphics Stolen Memory – Write Combined or Uncached.

 Hardware Memory-Mapped I/O (e.g. PCI devices) – Uncached.

The Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
3A section on “Memory Cache Control” contains all the details on configuring
caching for all memory regions.

See the appropriate Chipset BIOS Writer’s Guide for caching control
guidelines specific to the chipset.

Processor Discovery and Initialization

CPUID – Threads and Cores

Since Intel processors are packaged in various configurations, there are
different terms that must be understood when considering processor
initialization:

 Thread – A logical processor that shares resources with another logical
processor in the same physical package.

 Core – A processor that coexists with another processor in the same
physical package that does not share any resources with other processors.

 Package – A “chip” that contains any number of cores and threads.

Threads and Cores on the same package are detectable by executing the
CPUID instruction. See the Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volume 2A for details on the information available with
the CPUID instruction on various processor families.

Detection of additional packages must be done “blindly”. If a design must
accommodate more than one physical package, the BSP needs to wait a
certain amount of time for all potential APs in the system to “log in”. Once a
timeout occurs or the maximum expected number of processors “log in”, it
can be assumed that there are no more processors in the system.

Minimal Boot Loader for Intel® Architecture

 17

Startup Inter-Processor Interrupt (SIPI)

In order to wake up secondary threads or cores, the BSP sends a SIPI to each
thread and core. This SIPI is sent by using the BSP’s LAPIC, indicating the
physical address that the Application Processor (AP) should start executing
from. This address must be below 1MB of memory and be aligned on a 4KB
boundary.

AP Wakeup State

Upon receipt of the SIPI, the AP will start executing the code pointed to by
the SIPI message. As opposed to the BSP, when the AP starts code execution
it is in Real Mode. This requires that the location of the code that the AP
starts executing is located below 1MB.

Wakeup Vector Alignment

The starting execution point of the AP has another architectural restriction
that is very important and is commonly forgotten. The entry point to the AP
initialization code must be aligned on a 4KB boundary. Refer to the Intel®
64 and IA-32 Architectures Software Developer’s Manual Volume 3A section
titled “MP Initialization Protocol Algorithm for Intel Xeon Processors.”

The Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
3A section labeled “Typical AP Initialization Sequence” illustrates what is
typically done in by the APs after receiving the SIPI.

Caching Considerations

Because of the different types of processor combinations and different
attributes of shared processing registers between threads, care must be taken
to ensure that the caching layout of all processors in the entire system remain
consistent such that there are no caching conflicts.

The Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
3A contains a section labeled “MTRR Considerations in MP Systems” that
outlines a safe mechanism for changing the cache configuration in all systems
that contain more than one processor. It is recommended that this be used
for any system with more than one processor present.

AP Idle State

Behavior of APs during firmware initialization is dependent on the firmware
implementation, but is most commonly restricted to short durations of
initialization followed by entering a halt state with a HLT instruction, awaiting
direction from the BSP for another operation.

Minimal Boot Loader for Intel® Architecture

18

Once the firmware is ready to attempt to boot an OS, all AP processors must
be placed back in their power-on state (“Wait-for-SIPI”), which can be
accomplished by the BSP sending an INIT ASSERT IPI followed by an INIT
DEASSERT IPI to all APs in the system (all except self). See the Intel® 64
and IA-32 Architectures Software Developer’s Manual Volume 3A for details
on the INIT IPI, and the MultiProcessor Specification 1.4 for details on BIOS
AP requirements.

I/O Devices

Refer to the board schematics to determine which IO devices are in the
system. Typically a system will contain one or more of the following:

Embedded Controller (EC)

An Embedded controller is typically used in mobile or low power systems.
The EC contains separate FW that controls the power management functions
for the system as well as PS2 keyboard functionality. Refer to the specific EC
data sheet for more details.

Super IO (SIO)

An SIO typically controls the PS2, serial, parallel, etc interfaces. Most
systems still support some of the legacy interfaces rather than implementing
a legacy free system. Refer to the specific SIO datasheet for details on
programming information.

Legacy Free Systems

Legacy free systems use USB as the input device. If pre-OS keyboard
support is required, then the legacy keyboard interfaces must be trapped.
Refer to the IOH / ICH BIOS Specification for more details on legacy free
systems.

Miscellaneous IO Devices

There may be other IO devices that require initialization by the boot loader.
Refer to those device’s datasheets for programming information.

PCI Device Discovery

Peripheral Connect Interface (PCI) device discovery is a generic term that
refers to detecting which PCI compliant devices are in the system. The
discovery process assigns the resources needed by each device including the
following:

Minimal Boot Loader for Intel® Architecture

 19

 IO space

 Memory Mapped IO (MMIO) space

 IRQ assignment

 Expansion ROM detection and execution

PCI device discovery applies to all the newer (non-legacy) interfaces such as
PCI Express (PCIe), USB, SATA, SPI, etc devices. These newer interfaces all
comply to the PCI specification.

Refer to PCI Specification for more details. A list of all the applicable
specifications is in the References section.

Resource allocation. Resource allocation is the method of searching
through the possible range of buses / devices / functions.

1 When a Vendor ID (VID) / Device ID (DID) is found that is not all
0xFFFFs, then resources are defined as follows:

a. Write all 0xFFFFFFFFs to all Base Address

Registers (BAR)s. Read the BAR back. Bit 0

will give an indication as to whether this is an

MMIO or IO request.

i. If MMIO is requested (bit 0 is a 0),

then the value read back indicates how

much memory is requested. Reserve

the appropriate memory and write the

address assigned into the BAR.

ii. IO – If IO is requested (bit 0 is a 1),

then the value read back indicates how

many bytes of IO are requested.

Reserve that amount of IO and write

the IO address assigned to the BAR.

b. IRQs

i. Refer to the Schematics to determine

how the IRQ routing should occur for

any PCI / PCIe slots or onboard

devices.

ii. For chipset PCI devices, the routing

may be pre-determined in the Chipset

Datasheet. Some chipsets allow

control of the internal routing as well.

Refer to the Chipset Datasheet for

more details.

iii. There are multiple things involved in

IRQ routing when using the PIC. The

devices are assigned to INTA – INTD

which in turn gets assigned to PIRQA –

Minimal Boot Loader for Intel® Architecture

20

PIRQH which gets mapped to IRQs in

chipset specific registers (0x60-0x63,

0x68-0x6B). Refer to the IOH / ICH

BIOS Writers Guide and Chipset

Datasheet for more details.

a. Read the Expansion ROM address register. If

it is non-zero, then there is an Expansion ROM

(also referred to as an Option ROM, OROM)

that needs executed.

i. Video BIOS (vBIOS) is handled

differently than typical OROMs.

Typically it is executed prior to PCI

enumeration in order to give certain

display devices time to warm up. The

vBIOS is 16-bit code that needs to run

in real mode. The boot loader loads

the vBIOS at C000:0 and jumps to

address C000:3.

ii. Typical OROMs get loaded after the

vBIOS starting at C800:0 and can

continue up to E000:0. This limits the

number and size of OROMs that can

exist in a particular system.

iii. Some OROMs are also bootable such

as Ethernet OROMs that have PXE

support.

Booting a Legacy OS

Booting a legacy OS (non-EFI) consists of loading the first stage OS or OS
boot loader in to memory location 7C0:0 and jumping to that location while
the processor is in Real Mode.

Master Boot Record (MBR). The MBR is located on the first sector of a
partitioned mass storage device. It contains the partition table as well as
code. The Internet has details and can be reference at
http://en.wikipedia.org/wiki/Master_boot_record.

OS Handover Requirements. Depending on the desired features that are
enabled by the boot loader, there are different tables that the OS needs. The
following is a list of those tables:

 Memory Map (INT15h / Function E820h)

 Programmable Interrupt Routing ($PIR)

 Multi-Processor Specification (_MP_)

http://en.wikipedia.org/wiki/Master_boot_record

Minimal Boot Loader for Intel® Architecture

 21

 Simple Firmware Interface (SFI)

 Advanced Configuration and Power Interface (ACPI)

SFI and ACPI tables are only needed if those features are enabled by the boot
loader and required by the OS.

The _MP_ table is needed if there is more than one Intel processing agent
(thread or core) in the system. Details on the _MP_ table may be found in
the MultiProcessor Specification.

The $PIR table and interrupt-based Memory Map are almost always needed.
Details on the $PIR table may be found in the $PIR Specification. The
Memory map is discussed in more detail in the following sections.

Memory Map

In addition to defining the caching behavior of different regions of memory for
consumption by the OS, it is also firmware’s responsibility to provide a “map”
of the system memory to the OS so that it knows what regions are actually
available for its consumption.

The most widely used mechanism for a boot loader or an OS to determine the
system memory map is to use Real Mode interrupt service 15h, function E8h,
sub-function 20h (INT15/E820), which firmware must implement (one
example of this is detailed at http://www.uruk.org/orig-
grub/mem64mb.html).

Region Types

There are several general types of memory regions that are described by this
interface:

 Memory (1) – General DRAM available for OS consumption.

 Reserved (2) – DRAM address not for OS consumption.

 ACPI Reclaim (3) – Memory that contains all ACPI tables that firmware does not
require run-time access to. See the applicable ACPI specification for details.

 ACPI NVS (4) – Memory that contains all ACPI tables that firmware requires run-

time access to. See the applicable ACPI specification for details.

 ROM (5) – Memory that decodes to non-volatile storage (e.g. flash).

 IOAPIC (6) – Memory that is decoded by IOAPICs in the system (must also be
uncached).

 LAPIC (7) – Memory that is decoded by Local APICs in the system (must also be
uncached).

http://www.uruk.org/orig-grub/mem64mb.html
http://www.uruk.org/orig-grub/mem64mb.html

Minimal Boot Loader for Intel® Architecture

22

Region Locations

The following regions are typically reserved in a system memory map:

 00000000-0009FFFF – Memory

 000A0000-000FFFFF – Reserved

 00100000-???????? – Memory (The ???????? indicates that the top of
memory changes based on “reserved” items listed below and any other
design-based reserved regions.)

 TSEG – Reserved

 Graphics Stolen Memory – Reserved

 FEC00000-FEC01000* – IOAPIC

 FEE00000-FEE01000* – LAPIC

See the applicable Chipset BIOS Writer’s Guide for details on chipset-specific
memory map requirements. See the appropriate ACPI specification for details
on ACPI-related memory map requirements.

Non-Volatile (NV) Storage

There are two types of NV storage in typical IA systems; CMOS and Flash.

Complimentary Metal-Oxide Semiconductor (CMOS)

CMOS is part of the RTC and consists of two banks of 128 bytes each for a
total of 256 bytes. The first 14 bytes are reserved for the RTC data. The rest
of the bytes are available for any data that needs retained after the system is
powered-off. The typical things that are stored are setup options to allow the
user to select the primary boot device for example.

Refer to the Chipset Datasheet for more details on CMOS / RTC.

Non-Volatile Flash

Flash can also be used to store NV data as well. The boot loader must have
routines to erase and write the data if Flash is to be used. Refer to the
specific Flash datasheet for more details.

§

Minimal Boot Loader for Intel® Architecture

 23

References

 Advanced Configuration and Power Interface Specification
http://www.acpi.info/spec.htm

 Applicable Chipset Datasheets
http://www.intel.com/products/embedded/chipsets.htm?iid=embed_porta
l+hdprod_chipsets#s1=all&s2=Intel%AE%20QM57%20Express%20Chips
et&s3=all

 ATA/ATAPI Command Set Specifications

http://www.t13.org/Documents/MinutesDefault.aspx?keyword=atapi

 Chipset BIOS Writers Guides. See your Intel account representative. If
you don’t have an Intel account representative click here to get help
online (http://edc.intel.com/Get-Help/).

 Intel® 64 and IA-32 Architectures Software Developer’s Manual
http://developer.intel.com/products/processor/manuals/index.htm

 JEDEC DRAM Specifications http://www.jedec.org/

 Memory Reference Code. See your Intel account representative. If you
don’t have an Intel account representative click here to get help online
(http://edc.intel.com/Get-Help/).

 Multiprocessor Specification 1.4

http://www.intel.com/design/pentium/datashts/24201606.pdf

 PCI Express® Base Specification
http://www.pcisig.com/specifications/pciexpress/base2/

 PCI Firmware Specification
http://www.pcisig.com/specifications/conventional/pci_firmware/

 PCI Local Bus Specification
http://www.pcisig.com/specifications/conventional/

 $PIR Specification http://www.microsoft.com/whdc/archive/pciirq.mspx

 SD Specifications Part 1 Physical Layer Simplified Specification
http://www.sdcard.org/developers/tech/sdcard/pls/

 SD Specifications Part 2A SD Host Controller Simplified Specification
http://www.sdcard.org/developers/tech/host_controller/simple_spec/

 SD Specifications Part E1 SDIO Simplified Specification
http://www.sdcard.org/developers/tech/sdio/sdio_spec/

 Serial ATA http://www.sata-io.org/

 Simple Firmware Interface Specification http://www.simplefirmware.org

 Universal Serial Bus Specification http://www.usb.org/developers/docs/

http://www.acpi.info/spec.htm
http://www.intel.com/products/embedded/chipsets.htm?iid=embed_portal+hdprod_chipsets#s1=all&s2=Intel%AE%20QM57%20Express%20Chipset&s3=all
http://www.intel.com/products/embedded/chipsets.htm?iid=embed_portal+hdprod_chipsets#s1=all&s2=Intel%AE%20QM57%20Express%20Chipset&s3=all
http://www.intel.com/products/embedded/chipsets.htm?iid=embed_portal+hdprod_chipsets#s1=all&s2=Intel%AE%20QM57%20Express%20Chipset&s3=all
http://www.t13.org/Documents/MinutesDefault.aspx?keyword=atapi
http://edc.intel.com/Get-Help/
http://developer.intel.com/products/processor/manuals/index.htm
http://www.jedec.org/
http://edc.intel.com/Get-Help/
http://www.intel.com/design/pentium/datashts/24201606.pdf
http://www.pcisig.com/specifications/pciexpress/base2/
http://www.pcisig.com/specifications/conventional/pci_firmware/
http://www.pcisig.com/specifications/conventional/
http://www.microsoft.com/whdc/archive/pciirq.mspx
http://www.sdcard.org/developers/tech/sdcard/pls/
http://www.sdcard.org/developers/tech/host_controller/simple_spec/
http://www.sdcard.org/developers/tech/sdio/sdio_spec/
http://www.sata-io.org/
http://www.simplefirmware.org/
http://www.usb.org/developers/docs/

Minimal Boot Loader for Intel® Architecture

24

Conclusion

This document is an attempt to document the order, the minimum steps
required, and generate a central repository of the various documents that
contain the technical details of each technology / component of a typical
platform.

The Intel® Embedded Design Center provides qualified developers with web-
based access to technical resources. Access Intel Confidential design
materials, step-by step guidance, application reference solutions, training,
Intel’s tool loaner program, and connect with an e-help desk and the
embedded community. Design Fast. Design Smart. Get started today.
http://intel.com/embedded/edc.

Authors

Jenny M Pelner is a Firmware Architect with ECG at Intel
Corporation.

James A Pelner is a Firmware Architect with the Ultra-Mobile
Group (UMG) at Intel Corporation.

Acronyms

ACPI Advanced Configuration and Power Interface

AP Application Processor

BAR Base Address Register

BSP Boot Strap Processor

BWG BIOS Writer’s Guide

CMOS Complimentary Metal-Oxide Semiconductor

DID Device ID

EC Embedded Controller

EDC Embedded Design Center

GDT Global Descriptor Table

GPIO General Purpose IO

HPET High Precision Event Timers

IA Intel Architecture

ICH Integrated Controller Hub

IDT Interrupt Descriptor Table

IOH Integrated Output Hub

http://intel.com/embedded/edc

Minimal Boot Loader for Intel® Architecture

 25

ISR Interrupt Service Routing

IVT Interrupt Vector Table

LVT Local Vector Table

MBR Master Boot Record

MMIO Memory Mapped IO

MP Multi-Processor

MRC Memory initialization Reference Code

MSI Message Signaled Interrupt

NEM Non-Evict Mode

NV Non-Volatile

PAM Programmable Attribute Maps

PIC Programmable Interrupt Controller

PIT Programmable Interval Timer

PCI Peripheral Component Interface

PCIe Peripheral Component Interface Express

RTC Real Time Clock

SIO Super IO

SIPI Startup Inter-Processor Interrupt

SPI Serial Peripheral Interface

SATA Serial ATA

SFI Simple Firmware Interface

USB Universal Serial Bus

VID Vendor ID

WDT Watch Dog Timer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Minimal Boot Loader for Intel® Architecture

26

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including

liability for infringement of any proprietary rights, relating to use of information in this specification.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted

herein.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, Dialogic, FlashFile, i960,

InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core,

Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel

NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel EP80579 Integrated

Processor, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS,

MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey

Inside, VTune, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation

or its subsidiaries in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010 Intel Corporation. All rights reserved.

§

