
15-410, S'191

Exam #1
Mar. 4, 2019

Dave EckhardtDave Eckhardt

Brian RailingBrian Railing

L19_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, S'192

Synchronization

Checkpoint 2 – Wednesday, in Wean 5207 clusterCheckpoint 2 – Wednesday, in Wean 5207 cluster
 Arrival-time hash function will be different

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case
 Looking ahead to the general case can help you later

 Please read the handout warnings about context switch
and mode switch and IRET very carefully

 Each warning is there because of a big mistake which was
very painful for previous students

15-410, S'193

Synchronization

Book report!Book report!
 Hey, “Mid-Semester Break” is just around the corner!

15-410, S'194

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 1/2 of groups have blank REPOSITORY directories...

 If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

15-410, S'195

Synchronization

Google “Summer of Code”Google “Summer of Code”
 http://code.google.com/soc/
 Hack on an open-source project

 And get paid
 And quite possibly get recruited

 Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?CMU SCS “Coding in the Summer”?

15-410, S'196

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, S'197

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, S'198

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~100 points,

~7 questions)

15-410, S'199

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

15-410, S'1910

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S'1911

Q1a – “The Three Kinds of Error”

Purpose: demonstrate grasp of a design toolPurpose: demonstrate grasp of a design tool
 Hopefully P2 involved deliberate design
 Hopefully P3 is involving deliberate design
 “Robust code is structurally different than fragile code”
 P3 requires not just code but structurally non-fragile

code.

If you were lost on this question...If you were lost on this question...
 We had a lecture on this topic (February 4)
 Other “odd” lectures to possibly review

 Questions
 #define, #include

15-410, S'1912

Q1b – Register Dump

Question goalQuestion goal
 Stare at a register dump and form a plausible hypothesis

 Why? Debugging P3 will require staring at bits to figure out
what's wrong... this is a good way to figure out if some
practice is needed

HintHint
 A register that is definitely a pointer is pointing

somewhere definitely wrong

Common issuesCommon issues
 Some seemed to suggest that the processor compares

two pointer-like registers and declares a fault based on
that

 There were claims that a fairly pointer-like register was
pointing to a wrong place (when it was pointing to a very
plausible place)

15-410, S'1913

Q1 – Overall

ScoresScores
 11/59 students (~20%) scored 8/10 or better
 10/59 students (~20%) scored 2/10 or worse

15-410, S'1914

Q2 – Critical-section protocol

What we were testingWhat we were testing
 Find a race condition (important skill)
 Write a convincing trace (demonstrates understanding)

Good newsGood news
 52/59 students scored 12/15 (80%) or better

Minor issuesMinor issues
 Trace doesn't have an exactly-repeating part
 Trace doesn't clearly identify the exactly-repeating part

Alarming issuesAlarming issues
 Trace requires a thread to “run at zero speed”
 Trace can't happen

AdviceAdvice
 Don't “just start writing a trace” (ok on scrap paper)

15-410, S'1915

Q3 – “Mockchain” Deadlock

Question goalsQuestion goals
 Diagnose a deadlock situation, based on deadlock

principles
 Show a trace
 Design (state) a solution

15-410, S'1916

Q3 – “Mockchain” Deadlock

Question goalsQuestion goals
 Diagnose a deadlock situation, based on deadlock

principles
 Show a trace
 Design (state) a solution

ObservationsObservations
 Showing circular wait, by itself, is not enough to show a

deadlock
 In particular, showing two miners in a cycle overlooks that

other miners may release them
 Hold&wait isn't about only mutexes/semaphores

 “Wait” can be for an abstract condition change
 “Global mutex” is an emergency solution to deadlock

 Not a good solution
 Not all “tabular traces” were tabular

15-410, S'1917

Q3 – “Mockchain” Deadlock

ScoresScores
 27/59 students (~45%) scored 11/15 (73%) or better
 16/59 students (~25%) scored 5/15 or worse

15-410, S'1918

Q4 – Double-condition variables

Question goalQuestion goal
 Variant of typical “write a synchronization object” exam

question
 This was was probably “hard” (not “easy”, nor “killer”)

Some workable architecturesSome workable architectures
 One explicit queue, with search

 This doesn't perform super-well, and doesn't scale well past
double-cond to triple-cond etc.

 Two explicit reference queues
 Mathematics plus two blocking objects

 Also: mathematics plus three blocking objects
 Blocking objects are implicit queues

15-410, S'1919

Q4 – Double-condition variables

Common issuesCommon issues
 Losing signals when multiple waiters are present
 “Seriously non-FIFO” solutions (many can starve)

Various other issuesVarious other issues
 Buffers signals
 Loses signals
 Requires signals in 0-then-1 order
 “Blends signals”

 sig(0) can awaken somebody who needs #1
 Deadlocks
 Various races

15-410, S'1920

Q4 – Double-condition variables

AlarmingAlarming
 Knowing how cvars work is very important!

 World mutex is released and later re-acquired
 Signals are not buffered (due to semantics)
 Leveraging the world mutex for internal use generally goes

wrong (e.g., threads get lost)
 Signalling should not block (this is a deadlock factory)

 Each “multi-threaded field” needs some “lock plan”!

15-410, S'1921

Q4 – Double-condition variables

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 init() functions should not randomly refuse to initialize
certain areas of memory

 See course staff about any general conceptual problems
revealed by this specific exam question

15-410, S'1922

Q4 – Double-condition variables

Synchronization problemsSynchronization problems
 Spinning is not ok
 Yield loops are “arguably less wrong” than spinning

 Motto: “When a thread can't do anything useful for a while, it
should block; when a thread is unblocked, there should be a
high likelihood it can do something useful.”

 Special case: mutexes should not be held for genuinely
indefinite periods of time

 Blocking should use an underlying primitive (cvar,
semaphore) rather than implementing one manually

15-410, S'1923

Q4 – Double-condition variables

Sample cases to trySample cases to try
 W01 / W10
 01W (how many wake up?)
 WW0101 / WW1010
 WW0011 / WW1100
 W00W11 (how many wake up?)

15-410, S'1924

Q4 – Double-condition variables

Important general advice!Important general advice!
 It's a good idea to trace through your code and make sure

that at least the simplest cases work without races or
threads getting stuck

 Maybe figure out which operation is “the hard one” and
pseudo-code that one before coding the easy ones?

Other things to watch out forOther things to watch out for
 Memory leaks
 Memory allocation / pointer mistakes
 Forgetting to shut down underlying primitives
 Parallel arrays (use structs instead)

15-410, S'1925

Q4 – Double-condition variables

OutcomeOutcome
 15/59 students (~25%) scored 14/20 (70%) or better
 23/59 students (~40%) scored 7/20 (35%) or worse

 “Severe tire damage” is typically ~30%

ImplicationsImplications
 Being able to write this kind of code shows understanding

of primitives and also hazards
 Life in P3 (and after) may involve embodying special-

purpose synchronization patterns in code

15-410, S'1932

Q5 – Scheduler states

Question goalsQuestion goals
 Primary: test understanding of blocked vs. runnable
 Secondary: test understanding of trap vs. interrupt

ObservationsObservations
 Parts A & C should be “easy to just write down an

answer”
 Part B may require more thought
 Part D may require genuine thought

15-410, S'1933

Q5 – Scheduler states

OutcomeOutcome
 29/59 students (~50%) scored 7/10 or better
 13/59 students (~20%) scored 3/10 or worse

ImplicationsImplications
 Blocked/running/runnable is a core concept
 Trap/exception/interrupt is a core concept

15-410, S'1934

Breakdown

90% = 63.090% = 63.0 6 students 6 students

80% = 56.080% = 56.0 6 students 6 students

70% = 49.070% = 49.0 8 students 8 students

60% = 42.060% = 42.0 13 students13 students

50% = 35.050% = 35.0 16 students (rounded 34 up)16 students (rounded 34 up)

<50%<50% 10 students10 students

ComparisonComparison
 Median grade was 61%, so this wasn't an easy exam

 But: last semester's median was 61% too

15-410, S'1935

Implications

Some “curving” seems likelySome “curving” seems likely
 Details TBD

Score below 47?Score below 47?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion:

» Identify causes, draft a plan, see instructor

15-410, S'1936

Implications

Score below 34?Score below 34?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on all three “middle” questions

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

 Passing the final exam may be a serious challenge
 Passing the class may not be possible!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 Identify causes, draft a plan, see instructor

15-410, S'1937

Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!

15-410, S'1938

Action plan

Please follow steps in order:Please follow steps in order:
1. Identity causes
2. Draft a plan
3. See instructor

Please do not:Please do not:
 “I am worried about my exam, what should I do?”

 Each person should do something different!
 Thus “identify causes” and “draft a plan” steps are

individual and depend on some things I don't know

General pleaGeneral plea
 Please check to see whether there is something we

strongly recommend that you have been skipping
because you never needed to do that thing before

 This class is different

