
15-410, S'181

Exam #1
Mar. 5, 2018

Dave EckhardtDave Eckhardt

Brian RailingBrian Railing

L21_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, S'182

Synchronization

Checkpoint scheduleCheckpoint schedule
 Wednesday during class time
 Meet in Wean 5207

 If your group number ends with

» 0-2 try to arrive 5 minutes early

» 3-5 arrive at 10:42:30

» 6-9 arrive at 10:59:27
 Preparation

 Your kernel should be in mygroup/p3ck1
 It should load one program, enter user space, gettid()

» Ideally lprintf() the result of gettid()
 We will ask you to load & run a test program we will name
 Explain which parts are “real”, which are “demo quality”

15-410, S'183

Synchronization

Book report!Book report!
 Hey, “Mid-Semester Break” is just around the corner!

15-410, S'184

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 1/2 of groups have blank REPOSITORY directories...

 If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

15-410, S'185

Synchronization

Google “Summer of Code”Google “Summer of Code”
 http://code.google.com/soc/
 Hack on an open-source project

 And get paid
 And quite possibly get recruited

 Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?CMU SCS “Coding in the Summer”?

15-410, S'186

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, S'187

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, S'188

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~100 points,

~7 questions)

15-410, S'189

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

15-410, S'1810

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S'1811

Q1a – Recursion

Purpose: demonstrate suspicion of a dangerousPurpose: demonstrate suspicion of a dangerous
practicepractice

 Baseline definition: self-calling (maybe via another
function: mutual recursion)

 Key ideas: consumes stack space, stack space is tight in
most kernel run-time environments

OutcomesOutcomes
 Many reasonable answers
 Good scores were not rare

15-410, S'1812

Q1b – “Paradise Lost”

Purpose: Demonstrate understanding of aPurpose: Demonstrate understanding of a
concurrency anti-patternconcurrency anti-pattern

 Key points
 A condition was true; then revoked; expected to be true later
 It is possible to be unlucky and observe while revoked
 Can often be fixed by replacing “if” with “while”

OutcomesOutcomes
 Many solid answers
 Some alarming answers

 “Something involving 3 threads and dequeue()”
 “Paradise Lost == TOCTTOU == race condition”

» Arguably there is a subset relationship

» But causes and fixing are very different

• “Add locks” != “Change 'if' to 'while'”

15-410, S'1813

Q2 – Pair-matcher race

What we were testingWhat we were testing
 Find a race condition
 Write a convincing trace

Good newsGood news
 2/3 of the class got 8/10 or better (it was an easy race)

Other newsOther news
 1/3 of the class got 9/10 or 10/10... not a lot

Common issuesCommon issues
 Omitting part of the trace, e.g., unlock
 Not making state changes clear
 Not stating the problem in words before writing the trace

15-410, S'1814

Q3 – “Reducing deadlock”

Question goalsQuestion goals
 Diagnose a deadlock situation, based on deadlock

principles
 Design (state) a solution

Good news / bad newsGood news / bad news
 A/B: 20%
 A/B/C: 42%

ObservationsObservations
 The deadlock was not easy to find
 Finding it without applying principles was probably

infeasible

15-410, S'1815

Q3 – “Reducing deadlock”

ApproachApproach
 “Just trying out traces” isn't likely to work

 Too many threads are required
 Threads have too many options

15-410, S'1816

Q3 – “Reducing deadlock”

ApproachApproach
 “Just trying out traces” isn't likely to work

 Too many threads are required
 Threads have too many options

 Part (a) – “list deadlock elements” – is an opportunity
 There are multiple hold&wait sites in the code (~5)
 A detailed list enables careful evaluation of which sites

can be involved in a cycle
 Some things look suspicious but can be proven to be

safe

15-410, S'1817

Q3 – “Reducing deadlock”

ApproachApproach
 “Just trying out traces” isn't likely to work

 Too many threads are required
 Threads have too many options

 Part (a) – “list deadlock elements” – is an opportunity
 There are multiple hold&wait sites in the code (~5)
 A detailed list enables careful evaluation of which sites

can be involved in a cycle
 Some things look suspicious but can be proven to be

safe
 Once you know how/where threads can deadlock, getting

the necessary setup is a much simpler problem
 Partial credit was assigned for “setup” problems

15-410, S'1818

Q3 – “Reducing deadlock”

NotesNotes
 One frequent mistake asserted a 3-thread deadlock that

requires the reservation system to be broken..
 But we don't think it is
 This was a partial-credit case too

 The 0'th operand is special, so handling it in a trace
requires care

AlarmingAlarming
 Some answers relied on misunderstanding of how

semaphores work (“early” signals are stored)
 This is an important thing to clear up!

 Some answers asserted patterns of acquire() and release()
that ignored how the code in operator() calls them

15-410, S'1819

Q4 – Abortable condition variables

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question
 This was toward the easier end of questions in this class

Alarming core issueAlarming core issue
 When you signal a thread because you want it to run, it

will run right away (before any other thread)
 Note that Q2 was about this being false!

Less alarming but commonLess alarming but common
 Excessive use of the “world mutex” passed into the acv

results in excessive serialization

15-410, S'1820

Q4 – Abortable condition variables

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 See course staff about any general conceptual problems
revealed by this specific exam question

15-410, S'1821

Q4 – Abortable condition variables

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 See course staff about any general conceptual problems
revealed by this specific exam question

Alarming thingsAlarming things
 Spinning is not ok
 Yield loops are “arguably less wrong” than spinning

 Motto: “When a thread can't do anything useful for a while, it
should block; when a thread is unblocked, there should be a
high likelihood it can do something useful.”

 Special case: mutexes should not be held for genuinely
indefinite periods of time

15-410, S'1822

Q4 – Abortable condition variables

Important general advice!Important general advice!
 It's a good idea to trace through your code and make sure

that at least the simplest cases work without races or
threads getting stuck

Other things to watch out forOther things to watch out for
 Memory leaks
 Memory allocation / pointer mistakes
 Forgetting to shut down underlying primitives
 Parallel arrays (use structs instead)

15-410, S'1823

Q4 – Abortable condition variables

OutcomeOutcome
 ~35% of the class “did ok” (scored 70% or better)
 There were a lot of 8/20 (== 40%), some below that”

15-410, S'1831

Q5 – Nuts & Bolts: exec() vs. registers

Question goalsQuestion goals
 Test understanding of process model

 fork(), exec(), how values get into registers

Expectations – Part AExpectations – Part A
 Descriptions of how the non-specified registers get

initialized naturally by the new program
 Straightforward: %eax, %ebx, etc.
 Important case: %ebp

» Need not be initialized by exec(); handled by prologue

Expectations – Part BExpectations – Part B
 Description of how a program could launch with access to

information it should not know

15-410, S'1832

Q5 – Nuts & Bolts: exec() vs. registers

Alarming claims – Part AAlarming claims – Part A
 “exec() is a function” - discussion based on caller-save

and callee-save registers
 But exec() is very much not a function
 And the question's focus was on getting the right values into

registers before the first actual C function is called
 “The new program doesn't need any values from the old

program”
 But part of exec()'s job is providing values from the old

program to the new program

Alarming claims – Part BAlarming claims – Part B
 If %ebp is not initialized, the program/kernel might crash

15-410, S'1833

Breakdown

90% = 63.090% = 63.0 0 students 0 students

80% = 56.080% = 56.0 1 student 1 student (58/70 is top) (58/70 is top)

70% = 49.070% = 49.0 11 students11 students

60% = 42.060% = 42.0 11 students11 students

50% = 35.050% = 35.0 7 students 7 students

<50%<50% 3 students 3 students

ComparisonComparison
 Top score was low, so this wasn't an easy exam
 Median grade was 67%, so this wasn't an easy exam

15-410, S'1834

Implications

Some “curving” seems likelySome “curving” seems likely
 Details TBD

Score below 47?Score below 47?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion: draft plan, see instructor

15-410, S'1835

Implications

Score below 40?Score below 40?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on all three “middle” questions

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

 Passing the final exam may be a serious challenge
 Passing the class may not be possible!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 See instructor

15-410, S'1836

Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!

15-410, S'1837

Implications

Special note for S'18Special note for S'18
 If you didn't get 13/20 on either Q3 or Q4 we should

probably talk

