15-410

“My other car is a cdr” -- Unknown

Exam #1
Mar. 5, 2018

Dave Eckhardt
Brian Railing

L2 1_Exam

15-410, S'18

Synchronization

Checkpoint schedule

= Wednesday during class time
= Meet in Wean 5207
= If your group number ends with
» 0-2 try to arrive 5 minutes early
» 3-5 arrive at 10:42:30
» 6-9 arrive at 10:59:27
= Preparation
= Your kernel should be in mygroup/p3cki1
= It should load one program, enter user space, gettid()
» ldeally Iprintf() the result of gettid()
= We will ask you to load & run a test program we will name
= Explain which parts are “real”, which are “demo quality”

15-410, S'18

Synchronization

Book report!
= Hey, “Mid-Semester Break” is just around the corner!

15-410, S'18

Synchronization

Asking for trouble?

= If you aren't using source control, that is probably a
mistake
= If your code isn't in your 410 AFS space every day, you are
asking for trouble
= GitHub sometimes goes down!
» $'13: on P4 hand-in day (really!)
= Roughly 1/2 of groups have blank REPOSITORY directories...
= If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

15-410, S'18

Synchronization

Google “Summer of Code”

= http:/code.google.com/soc/

= Hack on an open-source project
= And get paid
= And quite possibly get recruited

= Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?

15-410, S'18

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

15-410, S'18

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

?Ff”_” problem just got higga_r.
I'hink, what have you done?

Image credit: Kartik Subramanian

15-410, S'18

A Word on the Final Exam

Disclaimer
= Past performance is not a guarantee of future results

The course will change

= Up to now: “basics” - What you need for Project 3

= Coming: advanced topics
= Design issues
= Things you won't experience via implementation

Examination will change to match

= More design questions
= Some things you won't have implemented (text useful!!)

= Still 3 hours, but could be more stuff (~100 points,
~7 questions)

15-410, S'18

“See Course Staff”

If your exam says “see course staff”...
= ...you should!

This generally indicates a serious misconception...

= ...which we fear will seriously harm code you are writing
now...

= ...which we believe requires personal counseling, not just
a brief note, to clear up.

15-410, S'18

10

Outline

Question 1
Question 2
Question 3
Question 4
Question 5

15-410, S'18

11

Q1a - Recursion

Purpose: demonstrate suspicion of a dangerous
practice

= Baseline definition: self-calling (maybe via another
function: mutual recursion)

= Key ideas: consumes stack space, sfack space is tight in
most kernel run-time environments

Outcomes

= Many reasonable answers
= Good scores were not rare

15-410, S'18

12

Q1b - “Paradise Lost”

Purpose: Demonstrate understanding of a
concurrency anti-pattern

= Key points
= A condition was true; then revoked; expected to be true later
= |t is possible to be unlucky and observe while revoked
= Can often be fixed by replacing “if” with “while”

Outcomes

= Many solid answers
= Some alarming answers
= “Something involving 3 threads and dequeue()”
= “Paradise Lost == TOCTTOU == race condition”
» Arguably there is a subset relationship
» But causes and fixing are very different

e “Add locks” != “Change 'if' to 'while"
15-410, S'18

13

Q2 - Pair-matcher race

What we were testing

= Find a race condition
= Write a convincing trace

Good news
= 2/3 of the class got 8/10 or better (it was an easy race)

Other news
= 1/3 of the class got 9/10 or 10/10... not a lot

Common issues

= Omitting part of the trace, e.g., unlock
= Not making state changes clear
= Not stating the problem in words before writing the trace

15-410, S'18

Q3 - “Reducing deadlock”

Question goals

= Diagnose a deadlock situation, based on deadlock
principles
= Design (state) a solution

Good news / bad news
L] A/B: 20°/o
- A/B/C: 42%

Observations

= The deadlock was not easy to find
= Finding it without applying principles was probably

infeasible
14 15-410, S'18

15

Q3 - “Reducing deadlock”

Approach

= “Just trying out traces” isn't likely to work
= Too many threads are required
= Threads have too many options

15-410, S'18

Q3 - “Reducing deadlock”

Approach

= “Just trying out traces” isn't likely to work
= Too many threads are required
= Threads have too many options

= Part (a) — “list deadlock elements” — is an opportunity
= There are multiple hold&wait sites in the code (~5)

= A detailed list enables careful evaluation of which sites
can be involved in a cycle

= Some things look suspicious but can be proven to be
safe

15-410, S'18

Q3 - “Reducing deadlock”

Approach

= “Just trying out traces” isn't likely to work
= Too many threads are required
= Threads have too many options

= Part (a) — “list deadlock elements” — is an opportunity
= There are multiple hold&wait sites in the code (~5)

= A detailed list enables careful evaluation of which sites
can be involved in a cycle

= Some things look suspicious but can be proven to be
safe

= Once you know how/where threads can deadlock, getting
the necessary setup is a much simpler problem

= Partial credit was assigned for “setup” problems

15-410, S'18

Q3 - “Reducing deadlock”

Notes
= One frequent mistake asserted a 3-thread deadlock that
requires the reservation system to be broken..
= But we don't think it is
= This was a partial-credit case too

= The 0'th operand is special, so handling it in a trace
requires care

Alarming
= Some answers relied on misunderstanding of how
semaphores work (“early” signals are stored)
= This is an important thing to clear up!

= Some answers asserted patterns of acquire() and release()
that ignored how the code in operator() calls them

15-410, S'18

Q4 - Abortable condition variables

Question goal

= Slight modification of typical “write a synchronization
object” exam question

= This was toward the easier end of questions in this class

Alarming core issue

= When you signal a thread because you want it to run, it
will run right away (before any other thread)
= Note that Q2 was about this being false!

Less alarming but common

= Excessive use of the “world mutex” passed into the acv
results in excessive serialization

19 15-410, S'18

Q4 - Abortable condition variables

General conceptual problems
= “x() takes a pointer” does not mean “x() must call
malloc()”

= Assigning to a function parameter changes the /ocal copy
= It has no effect on the calling function's value
= Cisn't C++ or Pascal (luckily!)
= See course staff about any general conceptual problems
revealed by this specific exam question

20 15-410, S'18

Q4 - Abortable condition variables

General conceptual problems

= “x() takes a pointer” does not mean “x() must call
malloc()”
= Assigning to a function parameter changes the /ocal copy
= It has no effect on the calling function's value
= Cisn't C++ or Pascal (luckily!)
= See course staff about any general conceptual problems
revealed by this specific exam question

Alarming things
= Spinning is not ok
= Yield loops are “arguably less wrong” than spinning
= Motto: “When a thread can't do anything useful for a while, it
should block; when a thread is unblocked, there should be a
high likelihood it can do something useful.”

= Special case: mutexes should not be held for genuinely
indefinite periods of time 15-410, S'18

Q4 - Abortable condition variables

Important general advice!

= It's a good idea to trace through your code and make sure
that at least the simplest cases work without races or
threads getting stuck

Other things to watch out for
= Memory leaks
= Memory allocation / pointer mistakes
= Forgetting to shut down underlying primitives
= Parallel arrays (use structs instead)

22 15-410, §'18

23

Q4 - Abortable condition variables

Outcome

= ~35% of the class “did ok” (scored 70% or better)
= There were a /of of 8/20 (== 40%), some below that”

15-410, S'18

Q5 — Nuts & Bolts: exec() vs. registers

Question goals
= Test understanding of process model
= fork(), exec(), how values get into registers
Expectations - Part A

= Descriptions of how the non-specified registers get
initialized naturally by the new program
= Straightforward: %eax, %ebx, etc.
= Important case: %ebp

» Need not be initialized by exec(); handled by prologue

Expectations - Part B

= Description of how a program could launch with access to
information it should not know

15-410, S'18

32

Q5 — Nuts & Bolts: exec() vs. registers

Alarming claims - Part A

= “exec() is a function” - discussion based on caller-save
and callee-save registers
= But exec() is very much not a function
= And the question's focus was on getting the right values into
registers before the first actual C function is called
= “The new program doesn't need any values from the old
program”
= But part of exec()'s job is providing values from the old
program to the new program

Alarming claims - Part B
= If %ebp is not initialized, the program/kernel might crash

15-410, S'18

33

Breakdown

90% = 63.0 0 students
80% 56.0 1l student (58/70 is top)
70% 49.0 11 students
60% = 42.0 11 students

50% = 35.0 7 students
<50% 3 students
Comparison

= Top score was low, so this wasn't an easy exam

= Median grade was 67%, so this wasn't an easy exam

15-410, S'18

34

Implications

Some “curving” seems likely
- Details TBD

Score bhelow 47?

= Form a “theory of what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved?
= |t is important to do better on the final exam

= Historically, an explicit plan works a lot better than “I'll try
harder”

= Strong suggestion: draft plan, see instructor

15-410, S'18

35

Implications

Score below 40?

= Something went dangerously wrong
= It's important to figure out what!
Beware of “triple whammy”
= Low score on all three “middle” questions
» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

Passing the final exam may be a serious challenge
Passing the class may not be possible!

= To pass the class you must demonstrate proficiency on
exams (not just project grades)

See instructor

15-410, S'18

36

Implications

“Special anti-course-passing syndrome”:

= Only “mercy points” received on several questions

= Extreme case: no question was convincingly answered
= Itis not possible to pass the class if both exams show no
evidence that the core topics were mastered!

15-410, S'18

37

Implications

Special note for S'18

= If you didn't get 13/20 on either Q3 or Q4 we should
probably talk

15-410, S'18

