Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Spring 2018

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...7”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew

Username

Full

Name

Question | Max Points Grader
1. 10
2. 10
3. 20
4. 20
5. 10

70

Please note that there are system-call and thread-library “cheat sheets” at the end of the
exam.

If we cannot read your writing, we will be unable to assign a high score to your work.

Andrew ID:

1. | 10 points| Short answer.

Give a definition of each of the following terms as it applies to this course. We are expecting three
to five sentences or “bullet points” for each definition. Your goal is to make it clear to your grader
that you understand the concept and can apply it when necessary.

(a) Recursion

Page 2

Andrew ID:

(b) “Paradise Lost”

Page 3

Andrew ID:

2. Pair matching.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in P2 by mutexes) and long-term voluntary descheduling
(provided by condition variables). As you know, these can be combined to produce higher-level
objects such as semaphores or readers/writers locks.

One such object is a “pair matcher.” The idea is that some jobs must be worked on by pairs of
threads, and the threads need some (dynamic) way to pick a partner to work with. After a pair
matcher is initialized, an even number of threads will invoke the match operation. The match
operation involves some amount of thread synchronization, potentially including blocking, and
then returns to each thread, in a reasonably timely fashion, the thread identification number of the
thread it has been matched with. A match object does not know how many threads will invoke
it, though it can depend on the number being even. Once a program is sure that no more threads
will invoke the match operation on a particular object, the destroy operation can and should be
invoked.

A small example program using a pair matcher is displayed on the next page. You should assume
that the example program is correct. The threads in this program don’t do anything useful, since
it is just a test. Each time a thread is matched, if it and its partner don’t have equally even/odd
thread i.d.’s, then it (and its partner) will exit. Even if a thread is repeatedly matched with “the
right kind of thread” it will exit after 10 matches; thus, all threads will eventually exit and the
program will complete.

On the page after the example program is code for a broken pair-matcher implementation. Your
job will be to diagnose a bug. When this implementation is used, occasionally a nonsensical result
is observed—maybe two threads are partnered with the same other thread, maybe some thread is
not issued as a partner to somebody... you will be telling us!

The remainder of this page is intentionally blank.

Page 4

Andrew ID:

#define NTHREADS 410

int tids[NTHREADS];

pmatch_t matcher;

void *threadbody(void *ignored) ;

int main(int argc, char** argv)

{
thr_init(4096); // exam: no failures

pmatch_init(&matcher); // exam: no failures

for (int t = 0; t < NTHREADS; t++) {
tids[t] = thr_create(threadbody, (void *) t); // exam: no failures
}
for (int t = 0; t < NTHREADS; t++) {
thr_join(tids[t], NULL);
}
printf ("Done\n");
pmatch_destroy(&matcher) ;
thr_exit(0);

void *threadbody(void *ignored)
{

int me = thr_getid();

int partner;

int done = O, rounds = O;

while (!done) {
int coolpartner;

partner = pmatch_match(&matcher) ;
printf ("I am %d, my partner is %d\n", me, partner);
coolpartner = (me&l) == (partner&l);
if (coolpartner) {
printf ("Whee! That was so much fun I might do it again.\n");
}
if ((++rounds == 10) || !coolpartner) {

done = 1;

}

return O;

Page 5

Andrew ID:

Below is the broken pair-matcher implementation. Note that because this is “exam-mode code”
you should assume that all correct invocations of thread-library primitives always succeed, and that
all invocations of the pair-matcher functions will be legal.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

typedef struct pmatch {
mutex_t m;
int t1;
int t2;
cond_t xfer;
} pmatch_t;

int pmatch_init(pmatch_t *pmp) {
mutex_init (&pmp->m); // exam: no failure
pmp->tl = pmp->t2 = -1;
cond_init (&pmp->xfer); // exam: no failure
return (0);

void pmatch_destroy(pmatch_t *pmp) {
mutex_destroy (&pmp->m) ;
pmp—>tl = pmp->t2 = -2;
cond_destroy (&pmp->xfer) ;

int pmatch_match(pmatch_t *pmp) {
int ret;

mutex_lock (&pmp->m) ;

if (pmp->tl == -1) {
// we are first
pmp—>t1 = thr_getid();
cond_wait (&pmp->xfer, &pmp->m);
ret = pmp->t2;
pmp—>tl = -1;

pmp—>t2 = -1;
mutex_unlock (&pmp->m) ;
} else {

// we are second
pmp—>t2 = thr_getid();
ret = pmp->ti;
cond_signal (&pmp->xfer) ;
mutex_unlock (&pmp->m) ;

}

return (ret);

Page 6

Andrew ID:

First, briefly describe in words something that is wrong with this code; then present a trace which
supports your claim.

You may introduce temporary variables or other obvious notation as necessary to improve the
clarity of your answer. Be sure that the execution trace you provide us with is easy to
read and conclusively demonstrates the claim you are making. It is to your advantage to

use scrap paper or the back of some page to experiment with draft traces, so that the answer you
write below is easy for us to read.

Page 7

Andrew ID:

You may use this page for the pair-matcher question.

Page 8

Andrew ID:

3. Reducing Deadlock.

For this problem, we will be considering a parallel program loosely inspired by the “reduce” part of
the “map-reduce” paradigm. The program works on a pool of data objects (integers in the example,
but in a real system they would be more complicated). Each worker thread repeatedly tries to lock
two data objects. If it can, it performs a computational “operation” on the two objects, producing
a single value as the answer (the example uses addition, a simple and fast associative operator, but
in a real system the operations would be more complicated and would take longer). The worker
thread will update one of the objects so its value reflects the result of the operation, and will mark
the other object as no longer usable for the rest of the computation. If a worker thread succeeds
in locking one object but can’t get a lock on a second object, but the computation isn’t over yet,
it will “bail out” of the attempted computation by releasing the object it has and trying again.
Meanwhile, if a thread detects that an object is about to be updated, it “reserves” the object, waits
for the update to finish, and then proceeds as described above. Eventually all of the objects except
for object 0 should be “used up;” object 0 should contain the final result of the computation; and
the threads should exit. Unfortunately, this code can deadlock!

Summary:

1. Each thread attempts to acquire two operands, combines them using some operation, and
then stores the result in one and invalidates the other.

2. If the thread acquires an operand object “for updating,” it will store the result of the operation
back into that specific operand. The object’s state will go from AVAILABLE to UPDATING
and then back to AVAILABLE.

3. If the thread acquires an operand “for vanishing,” it means that it will not store the result
of the operation back into that operand. The object’s state will go from AVAILABLE to
VANISHING to GONE.

4. If the thread can’t acquire a second operand, the state of the first one will go from AVAILABLE
to UPDATING and then back to AVAILABLE.

5. In principle, the operation step could be much more expensive than addition. Because of this,
a semaphore is used while a value is being updated. Operands which are UPDATING can be
“reserved” by another during the computation step.

You may note that done () is needlessly inefficient, and that near the end of the computation many
of the threads will be wasting effort. However, these poor design decisions allow for the code to be
more compact for the purposes of this exam.

Here is a state-transition diagram.

2nd acquire

The code will begin with the main() function, which is straightforward: it initializes the data,
spins up worker threads, joins all of them, and then exits. Then we present some helper functions,
followed by the key parts of the code: operator(), acquire(), and release().

Page 9

Andrew ID:

#define POOL_SIZE 32
#define NUM_THREADS 10
#define STACK_SIZE 4096

void *operator(void *arg);

typedef enum {
AVATLABLE, VANISHING, UPDATING, GONE
} state_t;

struct operand {
mutex_t guard;
state_t state;
bool reserved;
sem_t ready;
int val;

} pool[POOL_SIZE];

int main(int argc, char**x argv) {
thr_init(STACK_SIZE); // exam: no failures

for (int i = 0; i < POOL_SIZE; i++) {
mutex_init (&pool[i].guard); // exam: no failures
sem_init (&pool[i] .ready, 1); // exam: no failures
pooll[i] .val = i;
pool[i].state = AVAILABLE;
pool[i] .reserved = false;

int tids[NUM_THREADS] ;
for (int i = 0; i < NUM_THREADS; i++)

tids[i] = thr_create(operator, NULL); // exam: no failures
for (int i = 0; i < NUM_THREADS; i++)

thr_join(tids[i], NULL);

for (int i = 0; i < POOL_SIZE; i++) {
mutex_destroy (&pool[i] .guard);
sem_destroy (&pool[i] .ready);
}
int actual = pool[0].val;
int expected = POOL_SIZE * (POOL_SIZE - 1) / 2;
return actual == expected 7 0 : -1;

Page 10

bool done(void) {
for (int i = 1; i < POOL_SIZE; i++) {

}

mutex_lock(&pool[i].guard);

if (pool[i].state != GONE) {
mutex_unlock(&pool[i].guard);
return false;

}

mutex_unlock(&pool[i].guard);

return true;

int do_operation(int a, int b) {

int result = a + b;
printf (" (%d, %d) -> %d\n", a, b, result); // exam: no failures
return result;

int acquire(state_t desired, int avoid);
void release(int slot, state_t next_state);

void *operator(void *arg) {
while (!done()) {

3

int i = acquire(UPDATING, -1);
if (1 == -1) {

continue;
}
int j = acquire(VANISHING, i);
if (j == -1) {
release(i, AVAILABLE);
continue;
}

int vall = pooll[i].val;
int val2 = pooll[j].val;
release(j, GONE);

pool[i] .val = do_operation(vall, val2);

release(i, AVAILABLE);

return NULL;

Page 11

Andrew ID:

Andrew ID:

int acquire(state_t desired, int avoid) {
for (int i = 0; i < POOL_SIZE; i++) {
// pool[0] should only be updated, never consumed
if (desired == VANISHING && i == 0) {
continue;
}
// skip the slot the caller already holds
if (i == avoid) {
continue;

mutex_lock(&pool[i] .guard);

if (!pooll[i].reserved) {
if (pool[i].state == UPDATING) {
pooll[i].reserved = true;
mutex_unlock(&pool[i] .guard) ;

sem_wait (&pool[i] .ready);

mutex_lock(&pooll[i] .guard) ;
pool[i] .state = desired;
pool[i] .reserved = false;
mutex_unlock(&pool[i] .guard) ;
return i;

} else if (pool[i].state == AVAILABLE) {
sem_wait (&pool[i] .ready);
pool[i] .state = desired;
mutex_unlock(&pool[i] .guard) ;

return i;
}
}
mutex_unlock(&pool[i] .guard) ;
}
return -1;

void release(int slot, state_t next_state) {
mutex_lock(&pool[slot] .guard) ;
pool[slot] .state = next_state;
mutex_unlock(&pool[slot].guard);

sem_signal (&pool[slot] .ready);

Page 12

Andrew ID:

(a) Describe in detail how each of the deadlock ingredients is present. You may
find it particularly useful to list all instances of each ingredient carefully. This problem is
complicated, so properly organizing your thoughts will help you achieve a solution.

Page 13

Andrew ID:

(b) | 14 points | Show clear, convincing evidence of deadlock. Begin by describing the problem
in one or two sentences; then clearly specify a scenario. You should provide an execution

trace resulting in a deadlock. The deadlock trace may require more threads than you are
used to! Not all of these threads must participate in the actual deadlock. Use this hint
carefully; first try to understand the mechanism by which the deadlock occurs, then fill in
what each thread must do. It is to your advantage to use scrap paper or the back of some
page to experiment with draft traces, so that the answer you write below is easy for us to
read.

Page 14

Andrew ID:

You may use this page as extra space for the deadlock trace.

Page 15

Andrew ID:

You may use this page as extra space for the deadlock trace if you wish.

Page 16

Andrew ID:

(c) Explain in detail (though code is not required!) how the program could be
modified to not deadlock. Be sure to explain (in a theoretical / conceptual sense) why your

solution works. Solutions judged as higher-quality by your grader will receive more points.
This means that it is probably better to “genuinely fix” some problem than to replace a
sensible assumption/parameter with an unrealistic assumption/parameter, though we will
consider any solution you clearly describe.

Page 17

Andrew ID:

4. Abortable condition variables.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in P2 by mutexes) and long-term voluntary descheduling
(provided by condition variables). As you know, these can be combined to produce higher-level
objects such as semaphores or readers/writers locks.

In this question you will implement a synchronization object called an “abortable condition vari-
able” (abbreviated ACV). It is like a regular condition variable, with two key differences. First,
a thread can decide that a failure or emergency state exists and can invoke an operation which
causes all threads waiting on an ACV to stop waiting. Second, each time a thread waits on an
ACYV, the return value from the wait() operation indicates whether the wait ended because the
condition became true, i.e., because a thread invoked signal (), or whether the wait ended due to
the declaration of an abort situation.

As an example, consider the following trace which which demonstrates the relationship between
acv_abort() and acv_signal().

Time || Thread 0 Thread 1 Thread 2
0 || i = acv_wait(a)
1| ...wait... j = acv_wait(a)
2 ...wait...
3 acv_signal(a)
4 acv_abort(a)
) j==-1
6| 1i==

A small example program using an abortable condition variable is displayed on the next page.

The remainder of this page is intentionally blank.

Page 18

Andrew ID:

#define NTHREADS 10
#define NROUNDS 100

acv_t acv;

mutex_t mutex;

bool terminate = false;
0;

int counter

void* work(void* index_arg) ;
void* control(void* ignored);

int main(int argc, char** argv) {
int tids[NTHREADS];

thr_init(4096); // exam: no failure
acv_init(&acv); // exam: no failure
mutex_init (&mutex); // exam: no failure

tids[0] = thr_create(control, NULL); // exam: no failure

for (int t = 1; t < NTHREADS; t++)

tids[t] = thr_create(work, (void*)t); // exam: no failure
for (int t = 0; t < NTHREADS; t++)

thr_join(tids[t], NULL);

mutex_destroy(&mutex); // don’t need to destroy acv
thr_exit (0);

}
void* control(void* ignored) {
char c;
while ((c = getchar()) != ’q’) {

int wakeupCount;
if (isdigit(c))
wakeupCount = ¢ - ’0’;
for (int i = 0; i < wakeupCount; i++) // Let some people do work based on user input
acv_signal (&acv);
}
printf ("Aborting Computation\n");
mutex_lock(&mutex) ;
terminate = true;
acv_abort (&acv) ;
acv_destroy(&acv) ;
mutex_unlock(&mutex) ;
return NULL;

Page 19

Andrew ID:

void* work(void* index_arg) {
int index = (int)index_arg;

int result = 0;

for (int r = 0; r < NROUNDS && result == 0; r++) {
// Do work
sleep(genrand() % 100);
mutex_lock (&mutex) ;

if (terminate) {
printf ("Terminating without abort: %d\n", index);
mutex_unlock (&mutex) ;
break;
} else {
int myCount = counter;
counter++;

printf (
"Thread: %d done with round %d count: %d\n", index, r, myCount);
result = acv_wait(&acv, &mutex);

mutex_unlock (&mutex) ;

}
if (result !'= 0)
printf ("Thread: %d aborted!\n", index);

return NULL;

Page 20

Andrew ID:

Your task is to implement an abortable condition variable with the following interface. Note
that you will not need to implement a broadcast() operation.

e int acv_init(acv_t *a)

The abortable condition variable shall be initialized. It is illegal for an application to use
the abortable condition variable before it has been initialized or to initialize an abortable
condition variable when it is already initialized and in use. acv_init shall returns 0 on
success or a negative error code on failure. Because this is an exam, you may assume
that allocating and initializing the necessary state will succeed (thus, this declaration
shows the function returning a value so that the declaration matches what a non-exam
implementation would declare).

e void acv_destroy(acv_t *a)
The abortable condition variable shall be destroyed. It is illegal for a program to invoke
acv_destroy() if any threads are operating on it. A common pattern is to call acv_abort
before calling acv_destroy

e int acv_wait(acv_t *a, mutex_t *mp)
The abortable condition variable shall wait until signaled (acv_signal) or aborted (acv_abort).
The mutex mp should be released when waiting and reacquired upon returning. The mutex
should be reacquired even if the wait was aborted. acv_wait shall return 0 if successfully
signaled (acv_signal) or a negative value if aborted (acv_abort).

e void acv_signal(acv_t *a)
The abortable condition variable shall be signaled waking up a single waiting thread if
one exists.

e void acv_abort(acv_t *a)
The abortable condition variable shall be aborted. All threads waiting on the abortable
condition variable should be woken. acv_abort should not return until the abortable
condition variable is no longer in use by any of the waiting threads. It is illegal for other
threads to call acv_wait, acv_signal, or another acv_abort after the condition variable
has been aborted.

The remainder of this page is intentionally blank.

Page 21

Andrew ID:

Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables,
semaphores, readers/writer locks, etc.

2. You may assume that callers of your routines will obey the rules. But you must be
careful that you obey the rules as well!

3. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule() /make _runnable (), or any atomic instructions (XCHG,
LL/SC).

4. You must comply with the published interfaces of synchronization primitives, i.e., you

cannot inspect or modify the internals of any thread-library data objects.

5. You may not use assembly code, inline or otherwise.

For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and
are expecting, a particular failure).

You may not rely on any data-structure libraries such as splay trees, red-black trees,
queues, stacks, or skip lists, lock-free or otherwise, that you do not implement as part of
your solution.

You may use non-synchronization-related thread-library routines in the “thr_xxx() fam-
ily,” e.g., thr_getid(). You may wish to refer to the “cheat sheets” at the end of the
exam. If you wish, you may assume that thr_getid() is “very efficient” (for example, it
invokes no system calls). You may also assume that condition variables are strictly FIFO
if you wish.

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on the next page.
If we cannot understand the solution you provide, your grade will suffer!

Page 22

Andrew ID:

(a) Please declare your acv_t here. If you need one (or more) auxilary structures,
you may declare it/them here as well.

typedef struct {

} acv_t;

Page 23

Andrew ID:

(b) | 15 points | Now please implement acv_init (), acv_wait (), acv_signal(), acv_abort(),
and acv_destroy().

Page 24

Andrew ID:

...space for abortable condition variable implementation ...

Page 25

Andrew ID:

...space for abortable condition variable implementation ...

Page 26

Andrew ID:

...space for abortable condition variable implementation ...

Page 27

Andrew ID:

5. |10 points | Nuts & Bolts.

Below are excerpts from the Pebbles specifications of the fork() and exec() system calls, lightly
edited for brevity.

e int fork(void) - Creates a new task. The new task receives an exact, coherent copy of
all memory regions of the invoking task. The new task contains a single thread which is
a copy of the thread invoking fork() except for the return value of the system call. If
fork() succeeds, the invoking thread will receive the ID of the new task’s thread and the
newly created thread will receive the value zero. Errors are reported via a negative return
value, in which case no new task has been created.

e int exec(char *execname, char **argvec) - Replaces the program currently running

in the invoking task with the program stored in the file named execname. The argument
argvec points to a null-terminated vector of null-terminated string arguments.
The number of strings in the vector and the vector itself will be transported into the
memory of the new program where they will serve as the first and second arguments of
the the new program’s main (), respectively. Before the new program begins, %EIP will be
set to the “entry point” (the first instruction of the main() wrapper, as advertised by the
ELF linker). The stack pointer, 4ESP, will be initialized appropriately so that the main()
wrapper receives four parameters:

1. int argc - count of strings in argv

o

char *argv[] - argument-string vector
void *stack high - highest legal (byte) address of the initial stack
void *stack_low - lowest legal (byte) address of the initial stack

- W

You will note that the text for fork() specifies (in a very brief fashion) the values all general-
purpose registers in the new program, but the text for exec () specifies values for only some of the
registers. In this question we will explore this curious difference.

The remainder of this page is intentionally blank.

Page 28

Andrew ID:

(a) Explain why it is ok for the description of exec() to ignore lots of general-
purpose register values. Your explanation should probably include some specific examples.

Page 29

Andrew ID:

(b) Because the description of exec() is silent about the values of some registers,
kernel implementors have the opportunity to make a natural mistake with potential secu-
rity implications. Explain.

Page 30

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);
void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */
int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticksQ);

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t) (void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */
int new_pages(void * addr, int len);
int remove_pages(void * addr);

/* Console I/0 */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);
int get_cursor_pos(int *row, int *col);

/* Miscellaneous */
void halt();
int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */
void misbehave (int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 31

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);
void mutex_destroy(mutex_t *mp);
void mutex_lock(mutex_t *mp);
void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);
void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func) (void *), void *arg);
int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);
void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);
void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 32

Andrew ID:

Ureg Cheat-Sheet

#define SWEXN_CAUSE_DIVIDE 0x00 /* Very clever, Intel */
#define SWEXN_CAUSE_DEBUG 0x01

#define SWEXN_CAUSE_BREAKPOINT 0x03

#define SWEXN_CAUSE_OVERFLOW 0x04

#define SWEXN_CAUSE_BOUNDCHECK 0x05

#define SWEXN_CAUSE_OPCODE 0x06 /* SIGILL */

#define SWEXN_CAUSE_NOFPU 0x07 /#* FPU missing/disabled/busy */
#define SWEXN_CAUSE_SEGFAULT 0x0B /* segment not present */

#define SWEXN_CAUSE_STACKFAULT 0xO0C /* ouch */

#define SWEXN_CAUSE_PROTFAULT 0x0D /#* aka GPF */

#define SWEXN_CAUSE_PAGEFAULT O0xOE /#* cr2 is valid! */

#define SWEXN_CAUSE_FPUFAULT 0x10 /* old x87 FPU is angry */
#define SWEXN_CAUSE_ALIGNFAULT Ox11

#define SWEXN_CAUSE_SIMDFAULT 0x13 /* SSE/SSE2 FPU is angry */

#ifndef ASSEMBLER

typedef struct ureg_t {
unsigned int cause;
unsigned int cr2; /* Or else zero. */

unsigned int ds;
unsigned int es;
unsigned int fs;
unsigned int gs;

unsigned int edi;
unsigned int esi;
unsigned int ebp;
unsigned int zero; /* Dummy %esp, set to zero */
unsigned int ebx;
unsigned int edx;
unsigned int ecx;
unsigned int eax;

unsigned int error_code;
unsigned int eip;
unsigned int cs;
unsigned int eflags;
unsigned int esp;
unsigned int ss;

} ureg_t;

#endif /* ASSEMBLER */

Page 33

Andrew ID:

Typing Rules Cheat-Sheet

T = al|7—=7|per | Var

e == x| mT.e|ee]|fix(z:T.e) | foldy.r(e) | unfold(e) | Aa.e | e][T]

I'trmntype T'Fmtype
I'Ht — tatype

istyp-var istyp-arrow

I', atype F atype

. I', atype - T type .
Istyp-rec T Va.r type istyp-forall

I', atype - Ttype
'+ pa.mtype

INx:mkFe:m™ I'kmtype I'ber:mm —> 71 T'Feg
typ-lam

1T
typ-a
I'FXzime:m — 1 I'Feles:m Yp-app

- typ-var
e:7kFa:7 M

e:7ke:r I’I—T’cypet

-fi
'+ fix(z:7e) o 7 ypix
['Fe:fpar/alr T, atype I 7type I'ke:pat
typ-fold typ-unfold
'+ folda.7(€) : pa.T ypo T F unfold(e) : [pa.r/a]r 0 00
I, atypeke: T I'e:Var T'F 1 type
- typ-ta
I'F Aa.e:Va.r typ-tlam TFe[r]: [7/ar yp-tapp
Ner.cvalue val-lam folde,, (¢) value val-fold Ao value val-tlam
el — €} ey value ey — €
—————— steps-app,; ; steps-app,
€1e2 — €162 e1ex — €165
eo value steps-app-3

(Ax:T.e1)es — [ea/x]e;

fix(x:r.e) — [fix(z:7.€)/z]e steps-fix

e e’

—
unfold(e) +— unfold(e)

steps-unfold, steps-unfold,

unfold(fold,.(€)) +— e

e /

= e
elr] — €]

steps-tapp; steps-tapp;

(Aa.e)[r] — [r/ale

Page 34

Andrew ID:

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 35

