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Synchronization

Checkpoint scheduleCheckpoint schedule
 Wednesday during class time
 Meet in GHC 3000 (not Wean 5207!) 

 If your group number ends with

» 0-2 try to arrive 5 minutes early

» 3-5 arrive at 10:42:30

» 6-9 arrive at 10:59:27
 Preparation

 Your kernel should be in mygroup/p3ck1
 It should load one program, enter user space, gettid()

» Ideally lprintf() the result of gettid()
 We will ask you to load & run a test program we will name
 Explain which parts are “real”, which are “demo quality”
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Synchronization

Asking for trouble?Asking for trouble?
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 Roughly 2/3 of groups have blank REPOSITORY directories...

 If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

 If you aren't using source control, that is probably a
mistake

 GitHub sometimes goes down!
 S'13: on P4 hand-in day (really!)
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Synchronization

Google “Summer of Code”Google “Summer of Code”
 http://code.google.com/soc/
 Hack on an open-source project

 And get paid
 And quite possibly get recruited

 Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”CMU SCS “Coding in the Summer”
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Synchronization

Book report!Book report!
 Hey, “Mid-Semester Break” is just around the corner!
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Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune
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Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian
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A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~100 points, ~7

questions)
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“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.
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Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5
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Q1a – runnable/blocked threads

What we were testingWhat we were testing
 Definitions of runnable, blocked
 Understanding of typical kernel entry/exit paths
 [What “kernel entry” means]

Conceptual mayhem ensuedConceptual mayhem ensued
 A trap is not an interrupt
 “Leave the kernel” does not mean “become descheduled”

(or “become scheduled”); “enter the kernel” likewise
 Entering the kernel does not change a thread from

running to runnable – it keeps running!
 Scheduling a thread does not cause it to leave the kernel –

it keeps running in the kernel, at least for a while, maybe
for a long while – memmove()

 “Runnable” means not running – getpid() can't make that
happen
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Q1a – runnable/blocked threads

Specific alarming itemsSpecific alarming items
 “A runnable thread enters the kernel because it invokes

some system call”
 Fundamentally, the running-to-runnable transition is about a

surprise loss of the CPU the thread was running on 
 “An I/O interrupt blocks a thread”

 Typically, an I/O interrupt unblocks a thread

Concepts to be very clear onConcepts to be very clear on
 Entering the kernel (trap/exception/interrupt)
 Leaving the kernel (after trap/exception/interrupt)
 Definition of running/runnable/blocked, also transitions:

user/kernel, running/runnable/blocked
 Very soon you will be implementing these, so it is important

that you have a crisp sense of what they mean!

Please heed context-switch warnings in handout!!!Please heed context-switch warnings in handout!!!
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Q1b – “Thread cancellation”

Many high scores on this partMany high scores on this part
 Good!

A few common issuesA few common issues
 Voluntary exiting isn't what thread cancellation is about
 The kernel suddenly deciding to slay a thread isn't what

thread cancellation is about
 BTW kernels should not capriciously slay threads!
 It might feel that way as a novice programmer, but as an OS

expert you should form an organized understanding of
causality
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Q2 – Critical-Section Problem

What we were testingWhat we were testing
 Ability to find a bounded-waiting problem
 Ability to write a clear execution trace
 Ability to solve a bounded-waiting problem

Odd feature of the problemOdd feature of the problem
 This code was discussed in class!

Many scores were highMany scores were high
 Good!
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Q2 – Critical-Section Problem

Some disturbing features were observedSome disturbing features were observed
 Many traces were not easy to read

 It is to your benefit to be good about thinking
scenarios through, and notation matters

 Plus, you still have a final exam to take...
 A few people misinterpreted the code (that can happen)
 Roughly 10% of suggestions for fixing the problem made

it worse
 Spin-waiting
 Deadlock

If you had trouble with this question...If you had trouble with this question...
 ...please figure out why and how to practice.  This is

core material.
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Q3 – Deadlock

Parts of the problemParts of the problem
 Explain how deadlock can happen

 4 necessary conditions
 Deadlock avoidance
 Deadlock prevention
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Q3 – Deadlock

Explain how deadlock can happenExplain how deadlock can happen
 4 necessary conditions
 Most people did well on this
 Common mistakes:

 Poor explanations of:

» Cyclic waiting

» No preemption
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Q3 – Deadlock

Deadlock Deadlock avoidanceavoidance  
 Many people struggled with at least some parts of this
 First sub-part: resource pre-declarations for R13, R7

 Full path to exit
 Most people got this
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Q3 – Deadlock

Deadlock Deadlock avoidanceavoidance  
 Second sub-part:

specific resource
scenarios

 (a) show safe sequence?
 Proceed sequentially 
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Q3 – Deadlock

Deadlock Deadlock preventionprevention  
 Well-reasoned discussion of 4 requirements is important
 Arguing that it is not possible:

 Ok if reasoning is sound
 Breaking the computation up into phases (e.g., top then

bottom):
 Ok if clear that implementation is practical and does not

deadlock, etc.
 Many people did poorly on this one

 Confusing prevention with avoidance
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Q4 – “CountDown latches”

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy 

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 Everything must be initialized and destroyed
 See course staff about any general conceptual problems

revealed by this specific exam
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Q4 – “CountDown latches”

““Be careful out there”Be careful out there”
 Deadlock scenarios
 Memory leaks
 Busy-wait/spin-loop – use an accepted synch object!
 Waking up threads when it really doesn't make sense

 Use cond_broadcast() rarely – one “ok case” is when the
number of threads to awaken is genuinely uncertain

Question-specific conceptual problemsQuestion-specific conceptual problems
 If a data structure is full of threads, it can't be destroyed

without some kind of synchronization
 Clearly stated in the problem text: abort()/destroy() problem
 Also available: countdown()/destroy()

 Count must peg instead of going negative or threads can
get stuck
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Q5 – swexn() return protocol

Question goalsQuestion goals
 Test understanding of thread execution state

QuestionQuestion
 Why don't swexn() handlers just return (the way Unix

signal handlers do)?
 Note implicit assumption: we frequently want to re-

execute the troubled instruction
 This is true!  Not just for page faults, not just in user mode
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Q5 – swexn() return protocol

The key problem with “return”The key problem with “return”
 Execution state consists of more than just %EIP!

 Instructions depend on (potentially) every bit of every
register as inputs

OutcomesOutcomes
 Many answers discussed why/how to not re-run the

troubled instruction
 Warning: much of what an OS does is supposed to be

invisible!

WarningWarning
 Some answers discussed running swexn() handlers in

kernel mode
 This is a serious conceptual misunderstanding!
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Breakdown

90% = 58.590% = 58.5  4 students 4 students (57.0 and up)  (57.0 and up) 

80% = 52.080% = 52.0  8 students 8 students (51.5 and up)  (51.5 and up) 

70% = 45.570% = 45.5 12 students12 students

60% = 39.060% = 39.0 26 students26 students

50% = 32.550% = 32.5 12 students12 students

40% = 26.040% = 26.0  5 students 5 students (25.0 and up) (25.0 and up)

<40%<40%  0 students 0 students

Comparison/calibrationComparison/calibration
 These scores are low – maybe 10% too low?
 Some adjustment is possible after detailed analysis
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Implications

Score below 39?Score below 39?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion: draft plan, see instructor
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Implications

Score below 32?Score below 32?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on deadlock and CDL and critical-section

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

» This was a comparatively easy critical-section question
 Passing the final exam may be a serious challenge
 Passing the class may not be possible! 

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 See instructor
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Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!
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