
15-410, S'161

Exam #1
Feb. 29, 2016

Dave EckhardtDave Eckhardt

Todd MowryTodd Mowry

L21_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, S'162

Synchronization

Checkpoint scheduleCheckpoint schedule
 Wednesday during class time
 Meet in GHC 3000 (not Wean 5207!)

 If your group number ends with

» 0-2 try to arrive 5 minutes early

» 3-5 arrive at 10:42:30

» 6-9 arrive at 10:59:27
 Preparation

 Your kernel should be in mygroup/p3ck1
 It should load one program, enter user space, gettid()

» Ideally lprintf() the result of gettid()
 We will ask you to load & run a test program we will name
 Explain which parts are “real”, which are “demo quality”

15-410, S'163

Synchronization

Asking for trouble?Asking for trouble?
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 Roughly 2/3 of groups have blank REPOSITORY directories...

 If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

 If you aren't using source control, that is probably a
mistake

 GitHub sometimes goes down!
 S'13: on P4 hand-in day (really!)

15-410, S'164

Synchronization

Google “Summer of Code”Google “Summer of Code”
 http://code.google.com/soc/
 Hack on an open-source project

 And get paid
 And quite possibly get recruited

 Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”CMU SCS “Coding in the Summer”

15-410, S'165

Synchronization

Book report!Book report!
 Hey, “Mid-Semester Break” is just around the corner!

15-410, S'166

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, S'167

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, S'168

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~100 points, ~7

questions)

15-410, S'169

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

15-410, S'1610

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S'1611

Q1a – runnable/blocked threads

What we were testingWhat we were testing
 Definitions of runnable, blocked
 Understanding of typical kernel entry/exit paths
 [What “kernel entry” means]

Conceptual mayhem ensuedConceptual mayhem ensued
 A trap is not an interrupt
 “Leave the kernel” does not mean “become descheduled”

(or “become scheduled”); “enter the kernel” likewise
 Entering the kernel does not change a thread from

running to runnable – it keeps running!
 Scheduling a thread does not cause it to leave the kernel –

it keeps running in the kernel, at least for a while, maybe
for a long while – memmove()

 “Runnable” means not running – getpid() can't make that
happen

15-410, S'1612

Q1a – runnable/blocked threads

Specific alarming itemsSpecific alarming items
 “A runnable thread enters the kernel because it invokes

some system call”
 Fundamentally, the running-to-runnable transition is about a

surprise loss of the CPU the thread was running on
 “An I/O interrupt blocks a thread”

 Typically, an I/O interrupt unblocks a thread

Concepts to be very clear onConcepts to be very clear on
 Entering the kernel (trap/exception/interrupt)
 Leaving the kernel (after trap/exception/interrupt)
 Definition of running/runnable/blocked, also transitions:

user/kernel, running/runnable/blocked
 Very soon you will be implementing these, so it is important

that you have a crisp sense of what they mean!

Please heed context-switch warnings in handout!!!Please heed context-switch warnings in handout!!!

15-410, S'1613

Q1b – “Thread cancellation”

Many high scores on this partMany high scores on this part
 Good!

A few common issuesA few common issues
 Voluntary exiting isn't what thread cancellation is about
 The kernel suddenly deciding to slay a thread isn't what

thread cancellation is about
 BTW kernels should not capriciously slay threads!
 It might feel that way as a novice programmer, but as an OS

expert you should form an organized understanding of
causality

15-410, S'1614

Q2 – Critical-Section Problem

What we were testingWhat we were testing
 Ability to find a bounded-waiting problem
 Ability to write a clear execution trace
 Ability to solve a bounded-waiting problem

Odd feature of the problemOdd feature of the problem
 This code was discussed in class!

Many scores were highMany scores were high
 Good!

15-410, S'1615

Q2 – Critical-Section Problem

Some disturbing features were observedSome disturbing features were observed
 Many traces were not easy to read

 It is to your benefit to be good about thinking
scenarios through, and notation matters

 Plus, you still have a final exam to take...
 A few people misinterpreted the code (that can happen)
 Roughly 10% of suggestions for fixing the problem made

it worse
 Spin-waiting
 Deadlock

If you had trouble with this question...If you had trouble with this question...
 ...please figure out why and how to practice. This is

core material.

15-410, S'1617

Q3 – Deadlock

Parts of the problemParts of the problem
 Explain how deadlock can happen

 4 necessary conditions
 Deadlock avoidance
 Deadlock prevention

15-410, S'1618

Q3 – Deadlock

Explain how deadlock can happenExplain how deadlock can happen
 4 necessary conditions
 Most people did well on this
 Common mistakes:

 Poor explanations of:

» Cyclic waiting

» No preemption

15-410, S'1619

Q3 – Deadlock

Deadlock Deadlock avoidanceavoidance
 Many people struggled with at least some parts of this
 First sub-part: resource pre-declarations for R13, R7

 Full path to exit
 Most people got this

15-410, S'1620

Q3 – Deadlock

Deadlock Deadlock avoidanceavoidance
 Second sub-part:

specific resource
scenarios

 (a) show safe sequence?
 Proceed sequentially

15-410, S'1622

Q3 – Deadlock

Deadlock Deadlock preventionprevention
 Well-reasoned discussion of 4 requirements is important
 Arguing that it is not possible:

 Ok if reasoning is sound
 Breaking the computation up into phases (e.g., top then

bottom):
 Ok if clear that implementation is practical and does not

deadlock, etc.
 Many people did poorly on this one

 Confusing prevention with avoidance

15-410, S'1623

Q4 – “CountDown latches”

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 Everything must be initialized and destroyed
 See course staff about any general conceptual problems

revealed by this specific exam

15-410, S'1624

Q4 – “CountDown latches”

““Be careful out there”Be careful out there”
 Deadlock scenarios
 Memory leaks
 Busy-wait/spin-loop – use an accepted synch object!
 Waking up threads when it really doesn't make sense

 Use cond_broadcast() rarely – one “ok case” is when the
number of threads to awaken is genuinely uncertain

Question-specific conceptual problemsQuestion-specific conceptual problems
 If a data structure is full of threads, it can't be destroyed

without some kind of synchronization
 Clearly stated in the problem text: abort()/destroy() problem
 Also available: countdown()/destroy()

 Count must peg instead of going negative or threads can
get stuck

15-410, S'1625

Q5 – swexn() return protocol

Question goalsQuestion goals
 Test understanding of thread execution state

QuestionQuestion
 Why don't swexn() handlers just return (the way Unix

signal handlers do)?
 Note implicit assumption: we frequently want to re-

execute the troubled instruction
 This is true! Not just for page faults, not just in user mode

15-410, S'1626

Q5 – swexn() return protocol

The key problem with “return”The key problem with “return”
 Execution state consists of more than just %EIP!

 Instructions depend on (potentially) every bit of every
register as inputs

OutcomesOutcomes
 Many answers discussed why/how to not re-run the

troubled instruction
 Warning: much of what an OS does is supposed to be

invisible!

WarningWarning
 Some answers discussed running swexn() handlers in

kernel mode
 This is a serious conceptual misunderstanding!

15-410, S'1627

Breakdown

90% = 58.590% = 58.5 4 students 4 students (57.0 and up) (57.0 and up)

80% = 52.080% = 52.0 8 students 8 students (51.5 and up) (51.5 and up)

70% = 45.570% = 45.5 12 students12 students

60% = 39.060% = 39.0 26 students26 students

50% = 32.550% = 32.5 12 students12 students

40% = 26.040% = 26.0 5 students 5 students (25.0 and up) (25.0 and up)

<40%<40% 0 students 0 students

Comparison/calibrationComparison/calibration
 These scores are low – maybe 10% too low?
 Some adjustment is possible after detailed analysis

15-410, S'1628

Implications

Score below 39?Score below 39?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion: draft plan, see instructor

15-410, S'1629

Implications

Score below 32?Score below 32?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on deadlock and CDL and critical-section

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

» This was a comparatively easy critical-section question
 Passing the final exam may be a serious challenge
 Passing the class may not be possible!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 See instructor

15-410, S'1630

Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

