15-410

“My other car is a cdr” -- Unknown

Exam #1
Mar. 3, 2014

Dave Eckhardt

L21 Exam 15-410, S'14

Synchronization

Checkpoint 2 - Wednesday, in cluster
= Arrival-time hash function will be different

Checkpoint 2 - alerts

= Reminder: context switch # timer interrupt!
= Timer interrupt is a special case
= Looking ahead to the general case can help you later
= Please read the handout warnings about context switch
and mode switch and IRET very carefully

= Each warning is there because of a big mistake which was
very painful for previous students

15-410, S'14

Synchronization

Asking for trouble

= If your code isn't in your 410 AFS space every day, you are
asking for trouble
= Roughly half of groups have blank REPOSITORY
directories...
= If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble
= If you aren't using source control, that is probably a
mistake
= GitHub sometimes goes down!
= S$'13: on P4 hand-in day (really!)

15-410, S'14

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

15-410, S'14

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

Ym_:r problem just got bigger.
I'hink, what have you done?

Image credit: Kartik Subramanian

15-410, S'14

Synchronization

Crash box

= How many people have had to wait in line to run code on
the crash box?
= How long?

15-410, S'14

Upcoming Events

Google “Summer of Code”

= http://code.google.com/soc/
= Hack on an open-source project
= And get paid (possibly get recruited, probably not a lot)
= Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?
15-412 (Fall)

= If you want more time in the kernel after 410...
= If you want to see what other kernels are like, from the
inside

15-410, S'14

A Word on the Final Exam

Disclaimer
= Past performance is not a guarantee of future results

The course will change

= Up to now: “basics” - What you need for Project 3
= Coming: advanced topics

= Design issues

= Things you won't experience via implementation

Examination will change to match

= More design questions
= Some things you won't have implemented (text useful!!)
= Still 3 hours, but more stuff (~100 points, ~7 questions)

15-410, S'14

“See Course Staff”

If your paper says “see course staff”...
= ...you should!

This generally indicates a serious misconception...

= ...which we fear will seriously harm code you are writing
now...

= ...which we believe requires personal counseling, not just
a brief note, to clear up.

15-410, S'14

10

Outline

Question 1
Question 2
Question 3
Question 4
Question 5

15-410, S'14

Q1a - “Deadlock Prevention”

For full credit
= Here are the deadlock ingredients
= Deadlock prevention passes a static law against one
ingredient

= Either
= Explain why some of them are hard, or
= Mention one or two that are typically used, or
= Briefly summarize how other approaches work

Typical issues

= Describing a non-prevention approach
= Using language which makes it unclear the concept was
grasped (e.g., well enough to distinguish it from other

approaches)

15-410, S'14

12

Q1b - “User mode”

For full credit

= User mode protects kernel data structures
= User mode protects hardware
= User mode is enforced by hardware

Most-common notable issue

= Describing some mechanism (RPL bits; “different code
segments) without reference to goals

15-410, S'14

13

Q2 - Deadlock

Good news
= Lots of people identified the deadlock

15-410, S'14

14

Q2 - Deadlock

Good news
= Lots of people identified the deadlock

Better news

= We thought there was one deadlock, but the class found
three

15-410, S'14

Q2 - Deadlock

Good news
= Lots of people identified the deadlock

Better news

= We thought there was one deadlock, but the class found
three

Key issues

= Misunderstandings about semaphores

= sem_signal () before sem wait () is generally not a
deadlock

= A process/resource graph is a specific tool (three circles
with lines connecting them isn't that tool)

= Be careful that traces can actually happen!

15 15-410, S'14

16

Q3 - “Channels”

Question goal

= Slight modification of typical “write a synchronization
object” exam question

What we asked for

= mutex, cvar
= Common mutex issues
= “Total exclusion”, “Total inclusion”, deadlock
= Worrisome: limit on maximum number of threads
= Common/key cvar issues
= Limit on maximum number of threads — “anti-pattern”
= Mis-handling of “world mutex” (e.g., drop immediately)
= Deadlock
= “Anti-FIFO” (e.g., stack)
= broadcast () not implemented, or seriously flawed

15-410, S'14

Q3 - “Channels”

Higher-level issues/suggestions

= cond_ signal () shouldn't block indefinitely
= Try to avoid holding a lock while doing an O(N) operation

= Avoid “check for something bad happening; if so, return
silently”

Meta-issues/suggestions

= In the async-send case, should “full buffer” mean “fail” or
“block”?

17 15-410, S'14

Q3 - “Channels”

Higher-level issues/suggestions

= cond_ signal () shouldn't block indefinitely
= Try to avoid holding a lock while doing an O(N) operation

= Avoid “check for something bad happening; if so, return
silently”

Meta-issues/suggestions

= In the async-send case, should “full buffer” mean “fail” or
“block”?

= There are other options too!

18 15-410, S'14

Q3 - “Channels”

Higher-level issues/suggestions

= cond_ signal () shouldn't block indefinitely
= Try to avoid holding a lock while doing an O(N) operation

= Avoid “check for something bad happening; if so, return
silently”

Meta-issues/suggestions
= In the async-send case, should “full buffer” mean “fail” or
“block™?
= There are other options too!
» Return silently
» Delete oldest item
» Delete all items in buffer

» ams
= How to think about this?

15-410, S'14

Q3 - “Channels”

Higher-level issues/suggestions

= cond_ signal () shouldn't block indefinitely
= Try to avoid holding a lock while doing an O(N) operation

= Avoid “check for something bad happening; if so, return
silently”

Meta-issues/suggestions

= In the async-send case, should “full buffer” mean “fail” or
“block”?

= There are other options too!

» aus
= How to think about this?
» Claim: “Three kinds of error’...

15-410, S'14

Q3 - “Channels”

Higher-level issues/suggestions

= cond_ signal () shouldn't block indefinitely
= Try to avoid holding a lock while doing an O(N) operation

= Avoid “check for something bad happening; if so, return
silently”

Meta-issues/suggestions

= In the async-send case, should “full buffer” mean “fail” or
“block”?
= There are other options too!

» aus
= How to think about this?
» Claim: “Three kinds of error’...

= “Should our cvars be FIFO?”

21 15-410, S'14

Q3 - “Channels”

Higher-level issues/suggestions

= cond_ signal () shouldn't block indefinitely
= Try to avoid holding a lock while doing an O(N) operation

= Avoid “check for something bad happening; if so, return
silently”

Meta-issues/suggestions

= In the async-send case, should “full buffer” mean “fail” or
“block”?
= There are other options too!

» aus
= How to think about this?
» Claim: “Three kinds of error’...

= “Should our cvars be FIFO?”
= Should they be anti-FIFO?

15-410, S'14

Q3 - “Channels”

Higher-level issues/suggestions

= cond_ signal () shouldn't block indefinitely
= Try to avoid holding a lock while doing an O(N) operation

= Avoid “check for something bad happening; if so, return
silently”

Meta-issues/suggestions
= In the async-send case, should “full buffer” mean “fail” or
“block”?
= There are other options too!
» aus
= How to think about this?
» Claim: “Three kinds of error”...
= “Should our cvars be FIFO?”
= Should they be anti-FIFO?

= In many situations “pretty darn FIFO” is all that can be done
15-410, S'14

24

Q4 - “Imprecise Peterson's”

Key idea
= Many algorithms are not ok if steps are taken out of order

= Imprecise interrupts result in steps being completed out
of order

= Show how Peterson's Solution breaks if steps are taken
out of order

How to solve (a)
= Find nearby things which must be in order

= Make them “less in order”
= Subject to requirements stated in problem

= There are two breakable sequences (that we know of)

15-410, S'14

25

Q4 - “Imprecise Peterson's”

Selected common/dangerous issues (a)

= Trace shown doesn't contain a race

= Trace shown requires hardware to misbehave in a way
that would break single-threaded programs

Common issues (b)
= Proposed solution fixes exactly this code, but other code
with the same problem would not be fixed

= Proposed solution would work, but only if it were
deployed differently than described

= Proposed solution fixes a non-problem identified in (a)

15-410, S'14

26

Q5 - Blocking

For full credit

= Blocked thread can't run until a specific event
= Blocked thread is not in a run queue

Dangerous idea

= “If a thread invokes gettid (), the thread's execution is
suspended until the system call returns.”
= This is dangerously wrong.
= The thread isn't suspended: it's running gettid()!

15-410, S'14

27

Q5 - Blocking

For full credit

= Blocked thread can't run until a specific event
= Blocked thread is not in a run queue

Dangerous idea

= “If a thread invokes gettid (), the thread's execution is
suspended until the system call returns.”
= This is dangerously wrong.
= The thread isn't suspended: it's running gettid()!

The “hierarchy”

Running and doing useful work (user mode or kernel
mode)

[Running and doing “locking work”]

Runnable but not running (in scheduler “run queue”)
Blocked = not running and not runnable

15-410, S'14

Q5 - Blocking

Common misconception

= Question text reminds: especially on a multiprocessor,
“might need a lock” does not mean “likely to block”

= Remember that we assume most locks are usually not
contested and are held briefly

Common glitches

= Vagueness about non-runnability (common deduction:
“_1 OOQH)

= Explaining why half of what swexn () does shouldn't block

28 15-410, S'14

29

Breakdown

90% = 63.0
80% = 56.0
70% = 49.0
60% = 42.0
50% = 35.0
<50%

15-410, S'14

30

Breakdown

90% = 63.0 13
80% = 56.0 22
70% = 49.0 17
60% = 42.0 7
50% = 35.0 5
<50% 2
Comparison

students (68/70 is top)

students
students
students
students
students

= Median grade was a low B, so this probably wasn't a

“Killer exam”

15-410, S'14

Implications

Score “sub-C” (40..49)?

= Form a “theory of what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved?

= Probably plan to do better on the final exam

Score below 40?

= Something went dangerously wrong

= It's important to figure out what!
= Passing the final exam may be a serious challenge
= Passing the class may not be possible!

= To pass the class you must demonstrate proficiency on
exams (not just project grades)

= See instructor
31 15-410, S'14

32

Implications

“Special anti-course-passing syndrome”:

= Only “mercy points” received on several questions

= Extreme case: no question was convincingly answered

= Itis not possible to pass the class if both exams show no
evidence that the core topics were mastered!

15-410, S'14

