15-410

“My other car is a cdr” -- Unknown

Exam #1
Mar. 4, 2013

Dave Eckhardt

122 Exam 15-410, S'13

Synchronization

Checkpoint schedule

= Wednesday during class time
= Meet in Wean 5207
= If your group number ends with
» 0-2 try to arrive 5 minutes early
» 3-5 arrive at 10:42:30
» 6-9 arrive at 10:59:27
= Preparation
= Your kernel should be in mygroup/p3ck1
= It should load one program, enter user space, gettid()
» ldeally Iprintf() the result of gettid()
= We will ask you to load & run a test program we will name
= Explain which parts are “real”, which are “demo quality”

15-410, S"13

Synchronization

Asking for trouble
= If your code isn't in your 410 AFS space every day, you are
asking for trouble
= “Many” groups have blank REPOSITORY directories...

= If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

= If you aren't using source control, that is probably a
mistake

15-410, S"13

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

15-410, S"13

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

Ym_:r problem just got bigger.
I'hink, what have you done?

Image credit: Kartik Subramanian

15-410, S"13

Synchronization

Crash box

= How many people have had to wait in line to run code on
the crash box?
= How long?

15-410, S"13

Upcoming Events

Google “Summer of Code”

= http://code.google.com/soc/
= Hack on an open-source project
= And get paid (possibly get recruited, probably not a lot)
= Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?
15-412 (Fall)

= If you want more time in the kernel after 410...
= If you want to see what other kernels are like, from the
inside

15-410, S"13

A Word on the Final Exam

Disclaimer
= Past performance is not a guarantee of future results

The course will change

= Up to now: “basics” - What you need for Project 3
= Coming: advanced topics

= Design issues

= Things you won't experience via implementation

Examination will change to match

= More design questions
= Some things you won't have implemented (text useful!!)
= Still 3 hours, but more stuff (~100 points, ~7 questions)

15-410, S"13

“See Course Staff”

If your paper says “see course staff”...
= ...you should!

This generally indicates a serious misconception...

= ...which we fear will seriously harm code you are writing
now...

= ...which we believe requires personal counseling, not just
a brief note, to clear up.

15-410, S"13

10

Outline

Question 1
Question 2
Question 3
Question 4
Question 5

15-410, S"13

11

Q1a - “Runnable”

Expected

= A scheduler state for a thread
= Not running
= Not blocked

= “Could be running except that we don't have enough
processors right now”

15-410, S"13

Q1b - “Starvation”

Hoping to see
= A resource allocation problem
= A thread or class of threads might never get what it needs
= Meanwhile, other threads are getting what they need
= Not a deadlock (there is no circular wait, etc.)

Problematic answers

= “Starvation is another name for 'bounded waiting failure'”
= “Starvation is: #include <bounded_waiting_failure.h>"

The conceptual problem

= Starvation is related to bounded-waiting failures
= But lots of things are related to each other
= Ideally, we use a different name to convey a different concept
= Using different names for different bad things helps us
diagnose and avoid them
12 15-410, S'13

13

Q1b - “Starvation”

“Bad thing” list

= Some thread grabs a lock and never releases it

= When a bunch of threads try to grab a lock they all get
stuck forever (“progress failure”)

= When a bunch of threads try to grab a lock maybe one
gets stuck forever (“bounded-waiting failure”)

15-410, S"13

14

Q1b - “Starvation”

“Bad thing” list

= Some thread grabs a lock and never releases it
= This is not a problem with the locking protocol (no protocol
can overcome abuse)
= When a bunch of threads try to grab a lock they all get
stuck maybe-forever (“progress failure”)
= Horrible bug in low-level lock code used by all threads
= Threads may be running continuously
= Must fix right away
= When a bunch of threads try to grab a lock maybe some
get stuck for maybe-forever (“bounded-waiting failure”)
= Bad problem in low-level lock code used by all threads
= One thread may be running continuously
= Needs to be fixed or at least “seriously argued away”

15-410, S"13

15

Q1b - “Starvation”

“Bad thing” list

= When a bunch of threads with different needs try to
satisfy their needs, threads with some needs might never
be satisfied (“starvation”)

15-410, S"13

Q1b - “Starvation”

“Bad thing” list

= When a bunch of threads with different needs try to
satisfy their needs, threads with some needs might never
be satisfied (“starvation”)

= Serious problem

= Usually application-level, not in low-level lock/synch code

= Happens even if low-level synch code is perfect!

= Fix usually involves adding an application-specific scheduler

16 15-410, S'13

Q1b - “Starvation”

“Bad thing” list

= When a bunch of threads with different needs try to

satisfy their needs, threads with some needs might never
be satisfied (“starvation”)

= Serious problem

= Usually application-level, not in low-level lock/synch code
= Happens even if low-level synch code is perfect!

= Fix usually involves adding an application-specific scheduler

Starvation example
= One lock for a pool of N things
= Different people need 1..N things

= Plan: grab lock; loop on “things freed” cvar until N free

= This works great for 1-clients, 2-clients ... not so good for N
= Fix?

17 15-410, S'13

18

Q1b - “Starvation”

Starvation example
= One lock for a pool of N things
Different people need 1..N things

Plan: grab lock; loop on “things freed” cvar until N free
= This works great for 1-clients, 2-clients ... not so good for N

Fix?

= “Be strictly FIFO” = greatly reduces concurrency

= “Some sort of age policy” = code is complicated
Anyway, this is not the same problem as unfair locks

15-410, S"13

Q2 - “Exceptional Throwing”

Good news
= Lots of high scores (people found the bug and showed it)

Bad news
= Also lots of low scores

Common issues

= Showing impossible outcomes
= Often by forgetting that some line is executed, e.g., a
cond_signal()

= Missing initial part of trace
= Showing something that would indeed go wrong if a non-
obvious state were in place

Rare, but more serious
= Misconceptions about how condition variables work

15-410, S"13

Q3 - Cluster Deadlock

Good news

= Most people found the deadlocks
= Lofts of full-credit answers, lots of “very close”

Things to be careful of

= Some people were unclear about deadlock requirements

= “Everything would be ok if the whole room were protected
by a mutex”

= Danger! Please review Dining Philosophers lecture example!
= Test-taking oops — if we write “Assume X is ok”, it is
unwise to claim X leads to a problem

20 15-410, S'13

Q4 - “Banking”

Question goal

= Slight modification of typical “write a synchronization
object” exam question

Outcome
= Scores varied widely!

Structural hazards
= Interactions between long-waiting threads and object
deactivation require care

= Interactions between fast operations and slow operations
require care

= The simplistic transfer () can deadlock if two people try
to transfer money into each other's accounts

= close() can't finish (mutex_destroy()) while threads
are still awakening and finding out bad news

21 15-410, $'13

22

Q4 - “Banking”

Things to watch out for

= Fundamentally wrong plan
= No condition variables (e.g., yield()-loop “synchronization”)

= This is very serious: key course concepts were not
understood; it is absolutely necessary to fix this problem

= malloc ()/pointer misunderstandings

= Very serious: It is difficult to imagine how students can write
passing kernels while confused about these issues

= “Paradise Lost” (if you were dinged for this, definitely
review that lecture!)
= broadcast () where signal () should be used
= A pattern for serious inefficiency
= signal () where broadcast () should be used
= A pattern for getting threads stuck forever
= Lock leaks

- mutex_unlock(&a—>m); return (a->balance) ;15 410. S'13

Q5 - “get esp()”

Question goals
= Verify basic assembly-language skills, stack
understanding
= Discourage people from calling get_esp ()

= You can write the code, but what can you do with the answer
you get?

Expected solutions

= Delta of 0: push/call/pop
= Delta of 4: push/call/no-need-to-pop-right-away

= Sometimes the Part B code wasn't “structurally different”
from Part A (only a constant changed) — not what we were
hoping for, given the vast diversity of possible code

Outcomes

= Lots of A & B scores
23 = If not, make sure you figure out what went wrong 15.410, 5'13

24

Q5 - “get esp()”

Common problems

= Clobbering callee-saved registers we used

= Forgetting that our callers clobber our caller-save
registers

= Forgetting to restore %ebp

= Corrupting various registers, corrupting our return
address, etc.

= Fracturing credibility (PUSHA)
= Returning y-x instead of x-y

An alarming common code sequence
= movl $4, %eax
= pushl %eax

15-410, S"13

25

Breakdown

90% = 67.5 13 students (66 and up)
80% = 60.0 23 students
70% = 52.5 16 students
60% = 45.0 6 students
50% = 37.5 4 students
<50% 2 students

Comparison/calibration
= Not obviously “too hard” / “too easy”

15-410, S"13

Implications

Score 45..52?

= Form a theory of “what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved?

= Probably plan to do better on the final exam

Score below 45?

= Something went dangerously wrong

= It's important to figure out what!
= Passing the final exam may be a serious challenge
= Passing the class may not be possible!

= To pass the class you must demonstrate proficiency on
exams (not just project grades)

= See instructor
26 15-410, S'13

27

Implications

“Special anti-course-passing syndrome”:

= You got only the “mercy points” on several questions

= Extreme case: no question was convincingly answered

= It is very important that you don't have two exams without
evidence that some topics have been mastered!

15-410, S"13

28

“Design” In this exam

Reminder...

= Final exam will focus more on “design”
= On this exam, design was best represented by
» Q4 (Banking)

= But there wasn't a lot of design (so you will want to review
other mid-term exams if you didn't while studying)

15-410, S"13

