
15-410, S'091

Exam #1
Mar. 16, 2009

Dave EckhardtDave Eckhardt

L23_Exam

15-410
“My other car is a cdr” -- Unknown



15-410, S'093

Synchronization

Checkpoint 2 – FridayCheckpoint 2 – Friday
� Please read the handout warnings about context swit ch 

and mode switch and IRET very carefully  
� Each warning is there because of a big mistake whic h was 

very painful for previous students

Asking for troubleAsking for trouble
� If your code isn't in your 410 AFS space every day you are 

asking for trouble
� If your code isn't built and tested on Andrew Linux  every 

two or three days you are asking for trouble
� If you aren't using source control, that is probabl y a 

mistake



15-410, S'094

Synchronization

Crash boxCrash box
� How many people have had to wait in line to run cod e on 

the crash box?
� How long?



15-410, S'095

Synchronization

Google “Summer of Code”Google “Summer of Code”
� http://code.google.com/soc/ 
� Hack on an open-source project

� And get paid
� And quite possibly get recruited

CMU SCS “Coding in the Summer”CMU SCS “Coding in the Summer”



15-410, S'096

Synchronization

Debugging adviceDebugging advice
� Last year as I was buying lunch I received a fortun e



15-410, S'097

Synchronization

Debugging adviceDebugging advice
� Last year as I was buying lunch I received a fortun e

Image credit: Kartik Subramanian



15-410, S'098

A Word on the Final Exam

DisclaimerDisclaimer
� Past performance is not a guarantee of future resul ts

The course will changeThe course will change
� Up to now: “basics” - What you need  for Project 3
� Coming: advanced topics

� Design issues
� Things you won't experience via implementation

Examination will change to matchExamination will change to match
� More design questions
� Some things you won't have implemented (text useful !!)
� Still 3 hours, but more stuff (~100 points, ~7 ques tions)



15-410, S'099

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5



15-410, S'0910

Q1a – “Blocked”

Many had trouble hereMany had trouble here
� This is a key  concept
� Blocked most vitally means “ executing zero instructions ” 

(until a specific state change happens later)
� It is the state which results from “voluntary desch eduling”

� Blocked is not  spinning, yielding, whistling, etc.
� This is a difficult distinction...
� ...but it is very important for your kernel

� Sometimes some of your threads should block
� If instead they spin, yield, whistle, etc., your ke rnel will lose 

points
» Maybe a lot!



15-410, S'0911

Q1b – “Asynchronous Thread 
Cancellation”
Most-common mistake: defining the Most-common mistake: defining the otherother  thing thing

� No big deal (1 point)

Other misconceptionsOther misconceptions
� Cancellation is what an angry kernel does

� No, it's an operation invoked within an application , e.g., 
pthread_cancel()

� This somehow involves wait() or thr_wait()
� No... cancellation is used exactly when you don't w ant to 

wait.



15-410, S'0912

Q2 – Interrupts/PUSHA

This is an “execution environment” questionThis is an “execution environment” question
� (of the “hardware” variety)

Q2a – Can an interrupt stop a PUSHA “in the middle” ?Q2a – Can an interrupt stop a PUSHA “in the middle” ?
� The general answer, across all instruction sets, is  “no”.
� If you stop an instruction “in the middle”, you nee d to 

write down not just the program counter but a “frac tional 
program counter”, meaning a checklist of which parts  of 
the instruction were completed so you don't re-do t hem.

� Two exceptions
� On x86, mysterious string instructions, starting wi th REP
� A few architectures have “imprecise interrupts”

» This is painful and unpopular
� “Interrupt pending?” is asked between  instructions



15-410, S'0913

Q2 – Interrupts/PUSHA

Q2b – What about a page fault?  Protect via “Q2b – What about a page fault?  Protect via “ CLICLI ”?”?

Three concepts in playThree concepts in play
� A page fault is not an interrupt, so CLI  can't help

� Faults (and traps) are “synchronous” to the instruc tion 
stream: if the instruction gets to execute, then th e fault/trap 
will result.

� PUSHA can  generate a page fault...
� But if/when it does, it does so before  starting to work...

» So PUSHA doesn't need “protection” to work correctly.
� Regardless, there are no page faults in the P1 run- time 

environment!



15-410, S'0914

Q3 – Semaphore Problem

Problem statementProblem statement
� Add sem_broadcast()  to semaphores: “wake up all 

threads waiting on a semaphore”.
� What's wrong with this code?

Two undeniable utter failuresTwo undeniable utter failures
� sem_wait() /sem_signal()  suffer from “paradise lost”
� sem_wait() /sem_broadcast()  deadlock
� It is to your advantage to train yourself to see th ese errors 

in code... such as your partner's code!

Be careful to write a Be careful to write a short, compellingshort, compelling  trace trace



15-410, S'0915

Q4 – Rendezvous

The missionThe mission
� Write a rendezvous object

� Involves locking and synchronization

Common issuesCommon issues
� Confusion about pointers and malloc()

� Message from the universe:  it is really time to ha ve a solid 
grasp on this issue.  As necessary, see course staf f.  Really.

� “Paradise lost”
� If somebody can revoke your happiness, you'd better  check.

» This is a key concept.
» Review lecture if necessary.

� In this question, the “third thread” was generally the first 
thread, “coming around again too quickly”



15-410, S'0916

Q4 – Rendezvous

Other issuesOther issues
� Deadlock, various race conditions, viewing unlocked  data

Having a Having a planplan  is critical is critical
� “3-state” version

� Object contains no value, 1 st value (not 2 nd), 2nd (not 1 st)
� That third state is important, becomes here comes t he next 

thread!
� “2-pointer” version

� Each party provides a pointer, second party does th e swap
� At that point the object is “empty” - don't need a third state

� “2-slot” version often worked; 2-count semaphore, t oo
� With a plan, you can check that other paths don't h appen

� Otherwise, it's easy to get some cases, miss some



15-410, S'0917

Q5 – Process Model

Declare some variables which are named by regionDeclare some variables which are named by region
� const char rodata[] = “Can't touch this!”  

� That string will live in the “read-only data” regio n
� If you can't list the other interesting regions or can't figure 

out how to get a variable “into” one, this is a pro blem with 
your understanding of the C run-time environment

� ...which will hamper debugging your kernel...
� Note that the C run-time environment is simpler tha n that of 

almost any other language... you should really “get ” this 
before leaving this class!



15-410, S'0918

Breakdown

90% = 67.590% = 67.5  3 students 3 students

80% = 60.080% = 60.0 34 students34 students

70% = 52.570% = 52.5 28 students (52 and up)28 students (52 and up)

60% = 45.060% = 45.0 13 students (44 and up)13 students (44 and up)

50% = 37.550% = 37.5 11 students11 students

<50%<50%  0 students 0 students

ComparisonComparison
� Scores are a bit under typical (3-5 points)



15-410, S'0919

Implications

Score 45..50?Score 45..50?
� Figure out what happened

� Not enough textbook time?
� Not enough reading of partner's code?
� Lecture examples “read” but not grasped?

� Probably plan to do better on the final exam

Score below 45?Score below 45?
� Something went very  wrong

� It's important to figure out what!
� Passing the final exam may be a serious challenge
� To pass the class you must demonstrate some 

proficiency on exams (project grades alone are not 
sufficient)


