Q1 Directions/assurance
0 Points

1. Please read the entire exam before starting to write. This should help
you avoid getting bogged down on one problem.

2. We believe this is approximately two "exam hours" of content.
However, you will have four hours to work on the exam, starting from
when you begin it. The extra time is intended to correct for potential
logistical issues and also to reduce stress during a time when we all
likely have more than we need.

3. The exam will be open-book/open-notes in the following sense:
A. You may use any edition of either textbook.
B. You may refer to materials we provided you with, including the Intel
PDFs on the course web site, the lecture slides we provided you with,
the project handouts (the kernel specification and the thread-library
handout may be particularly useful), and the lecture videos from this
semester---in other words, materials on this semester's course web
site.
C. You may use notes you have taken.
D. You may refer to your PO, P1, and P2 submissions.

4. But you are not authorized to get help from other people, or to use
online resources that are not part of this semester's course web site.

5. You are not authorized to use compilers, assemblers, linkers, loaders,
simulation engines, virtualization systems, proof checkers, etc.

6. The exam will not be proctored, i.e., you will be operating on the honor
system in terms of resources we have said you can consult.

7. If you have a question while taking the exam, please check the
published Zoom schedule. You may also send mail to the staff mailing
list.

8. The weight of each question is indicated on the exam. Weights of
question parts are estimates which may be revised during the grading
process and are for your guidance only.

9. Please be concise in your answers. You will receive partial credit for
partially correct answers, but truly extraneous remarks may count



against your grade.

| certify that my exam submission is my own work,
in compliance with the rules stated above.

Name:

Name

Date:

Date

Q2 Design

6 Points

When designing a body of code, at times one finds oneself thinking, "l
wonder if | should use Approach A or Approach B?" According to the
15-410 design orthodoxy, you should follow a specific process to resolve
your question.

Please document a design decision you made while working on your
Project 2 thread library. For the purposes of this question we will be
scoring based on your description of the decision, not whether we agree
or disagree with what you chose.

Begin with a brief description of the problem (one to three sentences)
and then show us your design decision---answers that correctly use the

15-410 approved data structure will receive higher scores.

Brief description:

Design decision (we will accept answers in reasonable form, text or
image, e.g., PDF, PNG; please avoid color combinations that are difficult



to read, such as purple text on a black background).

@ No files uploaded

Q3 Register dump

4 Points

Below is a register dump produced by the "Pathos" P2 reference kernel
when it decided to kill a user-space thread. Your job is to carefully
consider the register dump and:

1. Determine which "wrong register value(s)" caused the thread to run an
instruction which resulted in a fatal exception. You should say why/how
the wrong value led to an exception, i.e., merely claiming a register has
a "wrong" value will not receive full credit.

2. Briefly state the most plausible way you think that register could have
taken on that value (i.e., try to describe a bug which could have this
effect).

3. Then write a small piece of code which would plausibly cause the
thread to die in the fashion indicated by the register dump. This code
does not need to implement exactly the set of steps that you
identified as "most plausible" above, or result in the same register
values; you should aim to achieve "basically the same effect." Most
answers will probably be in assembly language, but C is acceptable as
well. Your code should assume execution begins in main() , which
has been passed the typical two parameters in the typical fashion.

Please be sure that your description of the fatality and the code, taken
together, clearly support your diagnosis.

Registers:

eax: 0x00000001, ebx: 0x000£2020, ecx: 0x0000004c,

edx: 0x00800000, edi: 0x01002004, esi: 0x00008086,

ebp: Oxffffffff, esp: Oxfffffffe, eip: 0x01000023,
ss: 0x002b, <cs: 0x0023, ds: 0x002b,
es: 0x002b, fs: 0x002b, gs: 0x002b,

eflags: 0x00000282

Wrong register value(s) and exception/fault reason:



How the register(s) got the wrong value(s):

Code: if possible, please upload a text file containing your code, ideally
with spaces rather than tabs. But we will also accept PDF or PNG -- if
possible, please provide us with black text on a white background, and
please avoid white text on a black background or stranger things (purple
text on a black background, etc.).

@ No files uploaded

Q4 Semaphore problem

20 Points

Having heard that one of the 410 course staff very much enjoys
semaphores, your partner has implemented a "small extension" to the
standard semaphore design which increases the similarity between
semaphores and condition variables. In particular, your partner's code
tracks how many threads are waiting on a semaphore and provides a
primitive, sem broadcast() , designed to increment the semaphore's

count by the number of waiting threads, and to wake up those threads.

typedef struct {
int count;
int waiters;
mutex_t count lock;
mutex t waiters lock;
cond_t cv;

} sem t;

/* code omitted for exam purposes */
int sem init(sem t *sem, int count);
int sem destroy(sem t *sem);



/* code omitted for exam purposes */

int sem wait(sem t *sem) {
mutex lock(&sem->count lock);
if (sem->count > 0) {
sem->count--;
mutex unlock(&sem->count lock);
return 0;
} else {
mutex lock(&sem->waiters lock);
sem->waiters++;
mutex unlock(&sem->waiters lock);
}
cond wait(&sem->cv, &sem->count lock);
sem->count--;
mutex unlock(&sem->count lock);
mutex lock(&sem->waiters lock);
sem->waiters--;
mutex unlock(&sem->waiters lock);
return 0;

int sem signal(sem t *sem) {
mutex lock(&sem->count lock);
sem->count++;
cond_ signal (&sem->cv);
mutex unlock(&sem->count_ lock);
return 0;

int sem broadcast(sem t *sem) {
int i, w;
// lock: we want only *existing* waiters
mutex lock(&sem->waiters lock);
w = sem->waiters;
for (i = 0; 1 < w; i++)
sem_signal(sem);
mutex unlock(&sem->waiters lock);
return 0;

There are (at least) two synchronization problems found in the code
presented above. To receive full credit, identify two different problems
(rather than two instances of the same mistake). Do not present more
than two. The problems are found in the code presented to you (in other
words, we are not looking for claims that sem_init() might be

implemented incorrectly). You should assume that invocations of thread-



library primitives (e.g., mutex_lock() ) succeed rather than detecting

inconsistency or otherwise failing.

If you have correctly identified a sychronization problem, you will be able
to briefly and clearly summarize it and show a clear and compelling
execution trace using the tabular execution format from the lectures and
homework assignment. Confusing descriptions and unclear execution
traces will be read as evidence of incomplete understanding and will be
graded as such. This means that it is to your advantage to think your
answers through before beginning to write.

Q441 First problem
12 Points

Briefly and clearly describe the first synchronization problem you have
identified with the code above.

Show a clear and compelling execution trace. We will accept a picture
(PDF, PNG), or a text file containing one line per event (each event should
consist of a thread i.d. and an action, e.g., T0: x=3).

@ No files uploaded

Q4.2 Second problem
8 Points

Briefly and clearly describe a second synchronization problem with the
code above, which should be "a different kind of problem."

Show a clear and compelling execution trace. We will accept a picture
(PDF, PNG), or a text file containing one line per event (each event should



consist of a thread i.d. and an action, e.g., T0: x=3).

@ No files uploaded

Q5 Condition variables
20 Points

The "condition variable" is an important concurrency primitive that
encapsulates the notion of "stop running, so that other threads may use
the processor, until the world changes in a way which probably enables
me to continue working." A necessary part of implementing condition
variables is solving the "atomic unlock-and-deschedule" problem: a
waiting thread must release a lock and ask the kernel to block it; if
another thread is trying to awaken the waiting thread, the "awaken"
operation must not be lost just because its execution is interleaved in a
troublesome way with the "release, then block" sequence.

The Pebbles kernel specification provides user code with two system
calls which can be combined to solve the atomic-blocking problem,
deschedule() and make runnable() . Other systems provide other
primitives, some of which are quite different. Linux provides "futexes"
and signals; Plan 9 provides a primitive called "rendezvous."

void *rendezvous(void *tag, void *value)} -

Synchronize, and exchange values between, two threads in the same
task. Two threads wishing to synchronize invoke rendezvous ()
specifying the same tag parameter and arbitrary value parameters. The
first thread specifying a particular tag value will suspend execution until
a second thread invokes rendezvous () with the same tag parameter.
The two threads that rendezvous each obtain the value parameter
specified by the other one. After the exchange, both threads are
runnable. The return value of the system call is the value parameter
specified by the other thread. The kernel places no interpretation on the
values of the tag and value parameters except when it performs

equality testing on the tag parameters.

Assumptions:



. To implement condition variables you may use mutexes and the
rendezvous () System call described above.

. You may not use other atomic or thread-synchronization
synchronization operations, such as, but not limited to: semaphores,
reader/writer locks, deschedule()/make runnable(), Or any atomic

instructions (XCHG, LL/SC).

. You may assume that callers of your routines will obey the rules. But
you must be careful that you obey the rules as well!

. You must comply with the published interfaces of synchronization
primitives, i.e., you cannot inspect or modify the internals of any thread-
library data objects.

. You may not use assembly code, inline or otherwise.

. For the purposes of the exam, you may assume that library routines
and system calls don't "fail" (unless you indicate in your comments
that you have arranged, and are expecting, a particular failure).

. You may not rely on any data-structure libraries such as splay trees,
red-black trees, queues, stacks, or skip lists, lock-free or otherwise, that
you do not implement as part of your solution.

. You may use non-synchronization-related thread-library routines in the
"thr xxx() family," e.g.,, thr getid() (note thatthe P2 handout
documents the thread-library interface). If you wish, you may assume
that thr getid() is "very efficient" (for example, it invokes no system
calls).

Please upload a single text file containing your declaration for a

struct cond and your code for cond _init(), cond wait(),and
cond _signal() (you do not need to implement either

cond_broadcast() Or cond_destroy() ). If you wish, you may also

declare an auxiliary structure, struct aux, but this is strictly optional.

Ideally the text file will use spaces rather than tabs. But we will also

accept PDF or PNG -- if possible, please provide us with black text on a

white background, and please avoid white text on a black background or

stranger things (purple text on a black background, etc.).

typedef struct cond {



} cond t;

typedef struct aux {

} aux_t; /* optional */

Code file:

@ No files uploaded



