
15-410, F'181

Exam #1
Oct. 17, 2018

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L21_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, F'182

Synchronization

Checkpoint 2 – Wednesday, in Wean 5207 clusterCheckpoint 2 – Wednesday, in Wean 5207 cluster
 Arrival-time hash function will be different

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case
 Looking ahead to the general case can help you later

 Please read the handout warnings about context switch
and mode switch and IRET very carefully

 Each warning is there because of a big mistake which was
very painful for previous students

15-410, F'183

Synchronization

Book report!Book report!
 Hey, “Mid-Semester Break” is just around the corner!

15-410, F'184

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 1/2 of groups have blank REPOSITORY directories...

 If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

15-410, F'185

Synchronization

Google “Summer of Code”Google “Summer of Code”
 http://code.google.com/soc/
 Hack on an open-source project

 And get paid
 And quite possibly get recruited

 Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?CMU SCS “Coding in the Summer”?

15-410, F'186

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, F'187

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, F'188

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~100 points,

~7 questions)

15-410, F'189

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

15-410, F'1810

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, F'1811

Q1a – Decision Table

Purpose: demonstrate grasp of a design toolPurpose: demonstrate grasp of a design tool
 Hopefully P2 involved deliberate design
 Hopefully P3 is involving deliberate design
 When you leave here, hopefully you practice deliberate

design and record deliberations sometimes

Common issue: core isn't “metrics & values”Common issue: core isn't “metrics & values”
 “Pros and cons”

 It's just too easy to leave things out
 “Evaluate the common case and the rare case”

 These are ok metrics in some cases, but not the overall
approach

Common issue: no “because” stepCommon issue: no “because” step
 It is almost always necessary to resolve a conflict

15-410, F'1812

Q1a – Decision Table

Other issuesOther issues
 Missing values
 No example decision

Possible 1-point claw-backPossible 1-point claw-back
 “Try to find a third approach”

 Good job catching the buried premise!

15-410, F'1813

Q1b – Register Dump

Question goalQuestion goal
 Stare at a register dump and form a plausible hypothesis

 Why? Debugging P3 will require staring at bits to figure out
what's wrong... this is a good way to figure out if some
practice is needed

Good newsGood news
 Most people identified the suspicious register

Common issuesCommon issues
 Some people didn't explain how that kind of value in that

register would lead to trouble
 Some seemed to suggest that the processor compares two

registers and declares a fault based on that
 Sometimes there were issues with reproduction code

15-410, F'1814

Q2 – “Uplock” Starvation

What we were testingWhat we were testing
 Find a race starvation condition (important skill)
 Write a convincing trace (demonstrates understanding)

Good newsGood news
 2/3 of the class got 7/10 or better

Other newsOther news
 1/3 of the class got 2/10 or below

Largest common issuesLargest common issues
 Trace doesn't demonstrate starvation
 Trace can't happen

OthersOthers
 Explanation problems, confusing trace, ...
 Repetition isn't made clear

15-410, F'1815

Q3 – Parallel-sort Deadlock

Question goalsQuestion goals
 Diagnose a deadlock situation, based on deadlock

principles
 Show a trace
 Design (state) a solution

Good news / bad newsGood news / bad news
 A/B: ~50% of class

 Deadlock was fairly simple
 Below C: ~45% of class

AlarmingAlarming
 Some submissions demonstrated misunderstanding of

cvars
 Allowing this to persist would be unwise

15-410, F'1816

Q3 – Parallel-sort Deadlock

NotesNotes
 The code won't let two threads deadlock (hmm...)
 Some ingredients were mis-attributed

 “Mutual exclusion” does exist, but not because the
code contains mutex_lock()/mutex_unlock()

 Other mis-attributions were observed
 A simple fix does exist

15-410, F'1817

Q4 – Targetable condition variables

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question
 This was neither “easy” nor “killer”

Somewhat alarmingSomewhat alarming
 Holding a mutex across cond_wait() is “at least quite

dubious in general”
 It was also a fertile source of deadlock in this problem

 The sample trace had two threads...
 Solutions that solved exactly the two-thread case were

somewhat alarming (see also Q3)

Less alarming but commonLess alarming but common
 Excessive use of the “world mutex” (passed into the tcv)

can result in thread loss

15-410, F'1818

Q4 – Targetable condition variables

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 See course staff about any general conceptual problems
revealed by this specific exam question

15-410, F'1819

Q4 – Targetable condition variables

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 See course staff about any general conceptual problems
revealed by this specific exam question

Alarming thingsAlarming things
 Spinning is not ok
 Yield loops are “arguably less wrong” than spinning

 Motto: “When a thread can't do anything useful for a while, it
should block; when a thread is unblocked, there should be a
high likelihood it can do something useful.”

 Special case: mutexes should not be held for genuinely
indefinite periods of time

15-410, F'1820

Q4 – Targetable condition variables

Important general advice!Important general advice!
 It's a good idea to trace through your code and make sure

that at least the simplest cases work without races or
threads getting stuck

 Maybe figure out which operation is “the hard one” and
pseudo-code that one before coding the easy ones?

Other things to watch out forOther things to watch out for
 Memory leaks
 Memory allocation / pointer mistakes
 Forgetting to shut down underlying primitives
 Parallel arrays (use structs instead)

15-410, F'1821

Q4 – Targetable condition variables

OutcomeOutcome
 ~30% of the class “did ok”: scored 70% or better
 ~45% of the class scored 50% or below

ImplicationsImplications
 Being able to write this kind of code shows understanding

of primitives and also hazards
 Life in P3 (and after) may involve embodying special-

purpose synchronization patterns in code

15-410, F'1829

Q5 – Nuts & Bolts: Stack Copying

Question goalsQuestion goals
 Test understanding of x86-32 Linux/Pebbles stack
 Test higher-level implications of stack contents

 This is relevant to P3! Be careful out there!

A frequent conceptual issueA frequent conceptual issue
 Return address is address of instruction after CALL

 True across architectures (even with fixed-size instructions)

15-410, F'1830

Breakdown

90% = 63.090% = 63.0 2 students 2 students

80% = 56.080% = 56.0 3 students 3 students

70% = 49.070% = 49.0 3 students 3 students

60% = 42.060% = 42.0 6 students 6 students

50% = 35.050% = 35.0 7 students 7 students

<50%<50% 4 students 4 students

ComparisonComparison
 Median grade was 61%, so this wasn't an easy exam

15-410, F'1831

Implications

Some “curving” seems likelySome “curving” seems likely
 Details TBD

Score below 47?Score below 47?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion:

» Identify causes, draft plan, see instructor

15-410, F'1832

Implications

Score below 36?Score below 36?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on all three “middle” questions

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

 Passing the final exam may be a serious challenge
 Passing the class may not be possible!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 Identify causes, draft plan, see instructor

15-410, F'1833

Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!

