
Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (D), Fall 2018

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 10

3. 15

4. 20

5. 15

70

Please note that there are system-call and thread-library “cheat sheets” at the end of the
exam.

If we cannot read your writing, we will be unable to assign a high score to your work.

Andrew ID:

I have not received advance information on the content of this 15-410/605 mid-term exam
by discussing it with anybody who took part in the main exam session or via any other avenue.

Signature: Date

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

If we cannot read your writing, we will be un-
able to assign a high score to your work.

Page 2

Andrew ID:

1. 10 points Short answer.

(a) 5 points When designing a body of code, at times one finds oneself thinking, “I wonder
if I should use Approach A or Approach B?” According to the 15-410 design orthodoxy,
you should follow a specific process to resolve your question. Please describe that process,
providing enough details and/or examples to demonstrate to your grader that you under-
stand the concept and can apply it when necessary. Try to use specific examples rather
than general terms.

Page 3

Andrew ID:

(b) 5 points Register dump.

Below is a register dump produced by the “Pathos” P2 reference kernel when it decided to kill a
user-space thread. Your job is to carefully consider the register dump and:

1. Determine which “wrong register value(s)” caused the thread to run an instruction which
resulted in a fatal exception.

2. Briefly state the most plausible way you think that register could have taken on that value
(i.e., try to describe a bug which could have this effect).

3. Then write a small piece of code which would plausibly cause the thread to die in the fashion
indicated by the register dump. This code does not need to implement exactly the set of steps
that you identified as “most plausible” above, or result in the same register values; you should
aim to achieve “basically the same effect.” Most answers will probably be in assembly language,
but C is acceptable as well. Your code should assume execution begins in main(), which has
been passed the typical two parameters in the typical fashion.

Please be sure that your description of the fatality and the code, taken together, clearly support
your diagnosis.

Registers:

eax: 0xffffefdc, ebx: 0x00000000, ecx: 0x00000000,

edx: 0xffffefdc, edi: 0xfffff014, esi: 0x00000001,

ebp: 0xffffefe0, esp: 0xffffefc4, eip: 0xffffefdc,

ss: 0x002b, cs: 0x0023, ds: 0x002b,

es: 0x002b, fs: 0x002b, gs: 0x002b,

eflags: 0x00000202

Page 4

Andrew ID:

You may use this page for the register-dump question.

Page 5

Andrew ID:

2. 10 points “Uplock” starvation.

As part of P2, you implemented a readers/writers lock that supported “downgrading”: a thread
holding a write lock can “partially release” the lock by switching to reader mode. In this exam
question, we will ask you to consider a different kind of readers/writers lock, called an “up-
lock,” that has an “upgrade” operation instead of a “downgrade” operation. In particular, the
only way to obtain a writer-mode lock on an uplock is to first acquire a reader-mode lock and
then upgrade to writer mode. The unlock operation, which may be invoked by a thread that
holds either a reader-mode lock or a writer-mode lock, releases all claim on the lock. That is,
uplock rdlock() may be followed immediately by uplock unlock(); the other legal sequence is
uplock rdlock(), then uplock wrlock(), then uplock unlock(). The “uplock” object supports
the typical uplock init() and uplock destroy() operations, with typical semantics (e.g., it is
not ok to invoke uplock destroy() while an uplock is held or threads are waiting on one).

A small example program using an uplock is displayed on the next page. In the program, a single
integer variable, value, is covered by an uplock. One reader thread repeatedly obtains the uplock
in reader mode in order to fetch and print the value of the variable; meanwhile, the original thread
repeatedly obtains the uplock in reader mode and upgrades to writer mode in order to modify the
variable. For exam purposes, you should assume that the example program is correct and that all
library calls made by the program succeed.

On the page after the example program is code for a broken uplock implementation. Your job will
be to diagnose a bug.

The remainder of this page is intentionally blank.

Page 6

Andrew ID:

#define STEPS 100

static uplock_t lock;

static volatile int value = 0;

static void *reader(void *arg) {

(void)arg;

int step = 0;

while (step < STEPS) {

uplock_rdlock(&lock);

printf("%d\n", value);

uplock_unlock(&lock);

++step;

}

return NULL;

}

int main(int argc, char *argv[]) {

thr_init(4096); // exam: cannot fail

uplock_init(&lock); // exam: cannot fail

int tid = thr_create(reader, NULL); // exam: cannot fail

int step = 0;

while (step < STEPS) {

uplock_rdlock(&lock);

uplock_wrlock(&lock);

value = step;

uplock_unlock(&lock);

++step;

}

thr_join(tid, NULL); // exam: cannot fail

uplock_destroy(&lock);

thr_exit(NULL);

return NULL;

}

Page 7

Andrew ID:

Below is the problematic uplock implementation. Note that because this is “exam-mode code” you
should assume that all correct invocations of thread-library primitives always succeed, and that all
invocations of the uplock functions will be legal.

typedef struct uplock {

mutex_t mutex;

cond_t writer_cond;

cond_t reader_cond;

int writing; // initially: 0

size_t wr_waiting; // initially: 0

size_t rd_running; // initially: 0

} uplock_t;

int uplock_init(uplock_t *up) { // code omitted }

void uplock_destroy(uplock_t *up) { // code omitted }

void uplock_rdlock(uplock_t *up) {

mutex_lock(&up->mutex);

while (up->wr_waiting > 0 || up->writing) {

cond_wait(&up->reader_cond, &up->mutex);

}

up->rd_running++;

mutex_unlock(&up->mutex);

}

/* Warning: The caller MUST already hold the lock for reading. */

void uplock_wrlock(uplock_t *up) {

mutex_lock(&up->mutex);

assert(up->rd_running > 0);

up->rd_running--;

up->wr_waiting++;

while (up->writing || up->rd_running > 0) {

cond_wait(&up->writer_cond, &up->mutex);

}

assert(up->wr_waiting > 0);

up->wr_waiting--;

up->writing = 1;

mutex_unlock(&up->mutex);

}

Page 8

Andrew ID:

void uplock_unlock(uplock_t *up) {

mutex_lock(&up->mutex);

if (up->writing) {

assert(up->rd_running == 0);

up->writing = 0;

int can_read = (up->wr_waiting == 0);

mutex_unlock(&up->mutex);

if (can_read) {

cond_broadcast(&up->reader_cond);

} else {

cond_signal(&up->writer_cond);

}

} else {

assert(up->rd_running > 0);

up->rd_running--;

mutex_unlock(&up->mutex);

cond_signal(&up->writer_cond);

}

}

Page 9

Andrew ID:

First, briefly describe in words how this uplock implementation can lead to starvation. That is, say
how some thread or class of thread can, while trying to obtain, upgrade, and/or release an uplock,
can try an unbounded number of times without succeeding, while other threads or classes of thread
can repeatedly obtain, upgrade, and/or release that uplock. Then present a trace which supports
your claim. The starvation scenario you describe, and the trace you present, may be based on the
small test program shown above, or may result from any legal uplock operations invoked by threads
in some other program.

You may introduce temporary variables or other obvious notation as necessary to improve the
clarity of your answer. Be sure that the execution trace you provide us with is easy to
read and conclusively demonstrates the claim you are making. It is to your advantage to
use scrap paper or the back of some page to experiment with draft traces, so that the answer you
write below is easy for us to read.

Page 10

Andrew ID:

You may use this page for the uplock question.

Page 11

Andrew ID:

3. 15 points Parallel-sorting deadlock.

For this problem, we will be considering a parallel sorting algorithm, though not a particularly good
one. The program provided seeks to sort a randomly-generated array of size SLOTS. It spools up
NTHREADS threads, each of which runs for a fixed number of iterations. In each iteration, a thread
attempts to acquire two different slots with indices x and y. After acquiring them, it swaps them if
necessary, then releases them. While acquiring the first slot, the thread will block if it has already
been acquired. For anti-deadlock purposes, while acquiring the second slot, the thread may decide
to release the first slot and start over. Unfortunately, this sorting program can deadlock!

You will find that main() does not do anything particularly interesting: it initializes the thread
library, rand lock, and array, then creates and joins the worker threads. You will also find that
rand int() is not particularly interesting; it simply generates a random number in a thread-safe
manner (genrand() is not thread-safe).

int main() {

thr_init(4096); // exam: no failure

sgenrand(get_ticks());

mutex_init(&rand_lock); // exam: no failure

for (int i = 0; i < SLOTS; i++) {

mutex_init(&array[i].mtx); // exam: no failure

cond_init(&array[i].cvar); // exam: no failure

array[i].owner = -1;

array[i].waiters = 0;

array[i].value = rand_int();

}

int tids[NTHREADS];

for (int i = 0; i < NTHREADS; i++)

tids[i] = thr_create(sorter, (void *)i); // exam: no failure

for (int i = 0; i < NTHREADS; i++)

thr_join(tids[i], NULL); // exam: no failure

int inversions = 0;

for (int i = 0; i < SLOTS; i++) {

for (int j = i+1; j < SLOTS; j++)

if (array[i].value > array[j].value)

inversions++;

mutex_destroy(&array[i].mtx);

cond_destroy(&array[i].cvar);

}

printf("inversions: %d\n", inversions);

mutex_destroy(&rand_lock);

thr_exit(0);

}

Page 12

Andrew ID:

#define SLOTS 25

#define NTHREADS 20

#define ITERS 100

#define MAX(x,y) (((x) < (y)) ? (y) : (x))

#define MIN(x,y) (((x) < (y)) ? (x) : (y))

typedef struct {

int owner;

unsigned int value;

int waiters; // bit-vector

mutex_t mtx;

cond_t cvar;

} slot_t;

static slot_t array[SLOTS];

static mutex_t rand_lock;

unsigned int rand_int() {

mutex_lock(&rand_lock);

int res = genrand();

mutex_unlock(&rand_lock);

return res;

}

void swap_slots(unsigned int x, unsigned int y) {

int less = MIN(array[x].value, array[y].value);

int more = MAX(array[x].value, array[y].value);

array[x].value = x < y ? less : more;

array[y].value = x < y ? more : less;

}

void release(int idx) {

slot_t *s = &array[idx];

mutex_lock(&s->mtx);

s->owner = -1;

mutex_unlock(&s->mtx);

cond_broadcast(&s->cvar);

}

Page 13

Andrew ID:

bool acquire(int desired_idx, int owned_idx, int id) {

slot_t *desired = &array[desired_idx];

slot_t *owned = owned_idx == -1 ? NULL : &array[owned_idx];

int acquired = true;

mutex_lock(&desired->mtx);

if (desired->owner != -1) {

desired->waiters |= (1 << id);

while (desired->owner != -1) {

if (owned && (owned->waiters & (1 << desired->owner))) {

acquired = false;

break;

}

cond_wait(&desired->cvar, &desired->mtx);

}

desired->waiters &= ~(1 << id);

}

if (acquired)

desired->owner = id;

mutex_unlock(&desired->mtx);

return acquired;

}

void *sorter(void *arg) {

int id = (int)arg;

for (int iter = 0; iter < ITERS; iter++) {

unsigned int x = rand_int() % SLOTS;

unsigned int y = rand_int() % SLOTS;

if (x == y) continue;

acquire(x, -1, id); // first grab can’t fail

if (acquire(y, x, id)) {

swap_slots(x, y);

release(y);

}

release(x);

}

return NULL;

}

Page 14

Andrew ID:

(a) 4 points Show clear, convincing evidence of deadlock. Begin by describing the problem
in one or two sentences; then clearly specify a scenario. Explicitly indicate how each
necessary deadlock ingredient is present in the scenario you describe.

Page 15

Andrew ID:

(b) 8 points Now provide an execution trace resulting in a deadlock. It is to your advantage
to use scrap paper or the back of some page to experiment with draft traces, so that the
answer you write below is easy for us to read.

Page 16

Andrew ID:

You may use this page as extra space for the deadlock question if you wish.

Page 17

Andrew ID:

(c) 3 points Explain in detail (though code is not required!) how the program could be

modified to not deadlock. Be sure to explain (in a theoretical / conceptual sense) why your
solution works. Solutions judged as higher-quality by your grader will receive more points.
This means that it is probably better to “genuinely fix” some problem than to replace a
sensible assumption/parameter with an unrealistic assumption/parameter, though we will
consider any solution you clearly describe.

Page 18

Andrew ID:

4. 20 points Targeted condition variables.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in P2 by mutexes) and long-term voluntary descheduling
(provided by condition variables). As you know, these can be combined to produce higher-level
objects such as semaphores or readers/writers locks.

In this question you will implement a synchronization object called a “targetable condition variable”
(abbreviated TCV). It is like a regular condition variable, with two key differences. First, TCVs
support a “cancel” operation, which allows one thread to indicate that a specific other thread,
identified by its thread i.d., should stop waiting and be given a particular cancellation code. Second,
each time a thread waits on a TCV, the wait() operation returns a value. The return value will
be zero when the wait ended because the condition became true, i.e., because some other thread
invoked signal(), and the return value will be non-zero when the thread’s waiting was explicitly
cancelled by some other thread.

As an example, consider the following trace which which demonstrates the relationship between
tcv cancel() and tcv signal().

Time Thread 0 Thread 1

0 i = tcv wait(v,m)

1 ...wait...

2 tcv signal(v)

3 tcv cancel(v,0,-17) → -1

4 i → 0

5 j = tcv wait(v,m)

6 ...wait...

7 tcv cancel(v,0,-17) → 0

8 tcv signal(v) // no effect

9 j → -17

A small example program using a targeted condition variable is displayed on the next page.

The remainder of this page is intentionally blank.

Page 19

Andrew ID:

#define NTHREADS 10

#define NROUNDS 100

tcv_t tcv;

mutex_t mutex;

int tids[NTHREADS];

int counter = 0;

int aborted = false;

void* work(void* index_arg);

void* control(void* ignored);

int main(void) {

thr_init(4096); // exam: no failure

tcv_init(&tcv); // exam: no failure

mutex_init(&mutex); // exam: no failure

tids[0] = thr_create(control, NULL); // exam: no failure

for (int t = 1; t < NTHREADS; t++) {

tids[t] = thr_create(work, (void*)t); // exam: no failure

}

for (int t = 0; t < NTHREADS; t++) {

thr_join(tids[t], NULL); // exam: no failure

}

mutex_destroy(&mutex);

tcv_destroy(&tcv);

thr_exit(0);

}

int cancel(int index) {

return tcv_cancel(&tcv, tids[index], index);

}

The remainder of this page is intentionally blank.

Page 20

Andrew ID:

void* control(void* ignored) {

char c;

int abort_index = 1;

while ((c = getchar()) != ’q’) {

if (isdigit(c)) {

for (int i = 0; i < (c - ’0’); i++) {

tcv_signal(&tcv);

}

} else if (c == ’t’) {

if (cancel(abort_index) == 0) {

abort_index++;

}

}

}

mutex_lock(&mutex);

aborted = true;

for (; abort_index < NTHREADS; abort_index++) {

cancel(abort_index);

}

mutex_unlock(&mutex);

return NULL;

}

void* work(void* ignored) {

int result = 0;

for (int r = 0; r < NROUNDS && result == 0; r++) {

// Do work

sleep(genrand() % 100);

mutex_lock(&mutex);

if (!aborted) {

result = tcv_wait(&tcv, &mutex);

}

mutex_unlock(&mutex);

}

return NULL;

}

Page 21

Andrew ID:

Your task is to implement a targetable condition variable with the following interface. Note
that you will not need to implement a broadcast() operation.

• int tcv init(tcv t *t)

The targetable condition variable shall be initialized. It is illegal for an application to use
the targetable condition variable before it has been initialized or to initialize a targetable
condition variable when it is already initialized and in use. tcv init() shall return 0 on
success or a negative error code on failure. Because this is an exam, you may assume that
allocating and initializing the necessary state will succeed (thus, this declaration shows
the function returning a value so that the declaration matches what a non-exam imple-
mentation would declare, not because you must write code that returns error indications).

• void tcv destroy(tcv t *t)

The targetable condition variable shall be destroyed. It is illegal for a program to invoke
tcv destroy() if any threads are operating on it.

• int tcv wait(tcv t *t, mutex t *mp)

The targetable condition variable shall wait until signalled (tcv signal) or cancelled
(tcv cancel). The mutex mp will be released when waiting and reacquired before return-
ing. The mutex will be reacquired even if the wait was cancelled. tcv wait() shall return 0
if successfully signalled (tcv signal()) or a non-zero value if cancelled (tcv cancel()).

• void tcv signal(tcv t *t)

The targetable condition variable shall be signalled, waking up a single waiting thread if
one exists.

• int tcv cancel(tcv t *t, int tid, int result)

If the indicated thread is waiting on this targetable condition variable, it will be awakened
and the return value from tcv wait() will be result; the result of tcv cancel() will be
zero. Otherwise, the result of tcv cancel() will be a negative error code. Threads other
than the indicated one should not be awakened.

The remainder of this page is intentionally blank.

Page 22

Andrew ID:

Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables,
semaphores, readers/writer locks, etc.

2. You may assume that callers of your routines will obey the rules. But you must be
careful that you obey the rules as well!

3. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule()/make runnable(), or any atomic instructions (XCHG,
LL/SC).

4. You must comply with the published interfaces of synchronization primitives, i.e., you
cannot inspect or modify the internals of any thread-library data objects.

5. You may not use assembly code, inline or otherwise.

6. For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and
are expecting, a particular failure).

7. You may not rely on any data-structure libraries such as splay trees, red-black trees,
queues, stacks, or skip lists, lock-free or otherwise, that you do not implement as part of
your solution.

8. You may use non-synchronization-related thread-library routines in the “thr xxx() fam-
ily,” e.g., thr getid(). You may wish to refer to the “cheat sheets” at the end of the
exam. If you wish, you may assume that thr getid() is “very efficient” (for example, it
invokes no system calls). You may also assume that condition variables are strictly FIFO
if you wish.

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on the next page.
If we cannot understand the solution you provide, your grade will suffer!

Page 23

Andrew ID:

(a) 5 points Please declare your tcv_t here. If you need one (or more) auxiliary structures,

you may declare it/them here as well.

typedef struct {

} tcv_t;

Page 24

Andrew ID:

(b) 15 points Now please implement tcv init(), tcv wait(), tcv signal(), and tcv cancel().

Page 25

Andrew ID:

. . . space for targetable condition variable implementation . . .

Page 26

Andrew ID:

. . . space for targetable condition variable implementation . . .

Page 27

Andrew ID:

. . . space for targetable condition variable implementation . . .

Page 28

Andrew ID:

5. 15 points Nuts & Bolts.

When working on your P2 thread library, your partner has an idea to make thr create() “more
efficient” by “preloading” the thread stack using a function called stack create() which is called
by thr create(). You are skeptical of this idea and show your partner some stack diagrams to
argue that copying stacks is a bad idea. The diagrams are based on invoking the stack create()

function without involving the remainder of thr create(), which hasn’t been fully written yet
anyway. As you draw your diagrams, you will consider various implementations of a function called
copy stack().

For your convenience, both the C program and the corresponding assembly are shown on subsequent
pages.

You may assume that the “main” stack is [0xFFFFE000, 0xFFFFFFFF] inclusive and the “new
stack” is [0x2000E000, 0x2000FFFF] inclusive.

This problem has five parts. Please read all five parts before starting on the first one.

The remainder of this page is intentionally blank.

Page 29

Andrew ID:

#define STACK_SIZE 4096

#define NEW_STACK_LOW 0x2000E000

#define MAIN_STACK_LOW 0xFFFFE000

void* allocate_stack(void) {

new_pages((void*)NEW_STACK_LOW, STACK_SIZE);

return (void*)NEW_STACK_LOW;

}

/* Copies the contents of the current stack into the new stack such that the

* new_stack is valid even if the current stack goes out of scope.

*/

void copy_stack(void* stack_low);

int stack_create(void* (*func)(void*), void* arg) {

int a = 3;

int* ap = &a;

void* new_stack_low = allocate_stack();

// Part A

copy_stack(new_stack_low);

// Part B,C,D

a = 2;

return *ap;

}

void* do_work(void* arg) {

// Don’t do too much work

return NULL;

}

int main(void) {

// See register dump in disassembly listing for the initial state at this point

int result = stack_create(do_work, (void*)0xF00D);

task_vanish(result);

}

Page 30

Andrew ID:

01000000 <allocate_stack>:

Implementation Not Shown

01000021 <stack_create>:

1000021: push %ebp

1000022: mov %esp,%ebp

1000024: sub $0x10,%esp

1000027: movl $0x3,-0xc(%ebp)

100002e: lea -0xc(%ebp),%eax

1000031: mov %eax,-0x4(%ebp)

1000034: call 1000000 <allocate_stack>

1000039: mov %eax,-0x8(%ebp)

PART A

100003c: mov -0x8(%ebp),%eax

100003f: mov %eax,(%esp)

1000042: call 1000087 <copy_stack>

PART B, C, D

1000047: movl $0x2,-0xc(%ebp)

100004e: mov -0x4(%ebp),%eax

1000051: mov (%eax),%eax

1000053: leave

1000054: ret

01000055 <do_work>:

Implementation Not Shown

0100005f <main>:

100005f: push %ebp

1000060: mov %esp,%ebp

1000062: sub $0xc,%esp

register state after instruction 1000062

eax = 0x00000000, ebx = 0x00000000, ecx = 0x00000000

edx = 0x00000000, edi = 0xfffff014, esi = 0x00000001

ebp = 0xffffefe4, esp = 0xffffefd8, eip = 0x01000065

1000065: movl $0xf00d,0x4(%esp)

100006d: movl $0x1000055,(%esp)

1000074: call 1000021 <stack_create>

1000079: mov %eax,-0x4(%ebp)

100007c: mov -0x4(%ebp),%eax

100007f: mov %eax,(%esp)

1000082: call 1001468 <task_vanish>

Page 31

Andrew ID:

(a) 6 points Your task is to finish filling in the stack diagram for the “main” stack where
the code is labeled Part A.

Any memory location where the value cannot be determined should be marked with a ’?’.
The “description” column should be filled in with a succinct description of the value
stored the memory location. A good description may be a variable name, a register name,
function name, etc. If a description cannot be determined for a specific memory location
the description should be marked with a ’?’.

Address Value Description

0xFFFFEFDC

0xFFFFEFD8

0xFFFFEFD4

0xFFFFEFD0

0xFFFFEFCC

0xFFFFEFC8

0xFFFFEFC4

0xFFFFEFC0

Page 32

Andrew ID:

(b) 2 points Consider this implementation of copy stack().

void copy_stack(void* new_stack_low) {

// Just do a memcpy, easy!

memcpy((char*)new_stack_low, (char*)MAIN_STACK_LOW, STACK_SIZE);

}

Finish filling in the stack diagram for the “new stack” that has been copied (when the
code reaches the point marked Part B). If any values are wrong, identify them and explain
why the value is wrong.

Any memory location where the value cannot be determined should be marked with a ’?’.
The “description” column should be filled in with a succinct description of the value
stored the memory location. A good description may be a variable name, a register name,
function name, etc. If a description cannot be determined for a specific memory location
the description should be marked with a ’?’.

Address Value Description

0x2000EFDC

0x2000EFD8

0x2000EFD4

0x2000EFD0

0x2000EFCC

0x2000EFC8

0x2000EFC4

0x2000EFC0

Page 33

Andrew ID:

(c) 2 points Now consider this implementation of copy stack().

extern int* get_ebp(void); // returns %ebp of the calling function

void copy_stack(void* new_stack_low) {

int* main_ebp = get_ebp();

memcpy((char*)new_stack_low, (char*)MAIN_STACK_LOW, STACK_SIZE);

// Chase %ebp up the stack

// Exam: Assume this terminates without accessing invalid memory

while (*main_ebp > MAIN_STACK_LOW) {

int* patched_ebp =

(int*)((char*)main_ebp - MAIN_STACK_LOW + NEW_STACK_LOW);

*patched_ebp = *main_ebp - MAIN_STACK_LOW + NEW_STACK_LOW;

main_ebp = (int*)*main_ebp;

}

Finish filling in the stack diagram for the “new stack” that has been copied (when the code
reaches the point marked Point C). If any values are wrong, identify them and explain
why they are wrong.

Any memory location where the value cannot be determined should be marked with a ’?’.
The “description” column should be filled in with a succinct description of the value
stored the memory location. A good description may be a variable name, a register name,
function name, etc. If a description cannot be determined for a specific memory location
the description should be marked with a ’?’.

Address Value Description

0x2000EFDC

0x2000EFD8

0x2000EFD4

0x2000EFD0

0x2000EFCC

0x2000EFC8

0x2000EFC4

0x2000EFC0

Page 34

Andrew ID:

(d) 2 points Finally, consider an “ideal” or “oracle” implementation of copy stack() (for

some reason, we will not show the code for the “oracle” implementation). Fill in the stack
diagram below for the “new stack” after the perfect copy stack() implementation has
completed (when the code reaches the point marked Part D)

Any memory location where the value cannot be determined should be marked with a ’?’.
The “description” column should be filled in with a succinct description of the value
stored the memory location. A good description may be a variable name, a register name,
function name, etc. If a description cannot be determined for a specific memory location
the description should be marked with a ’?’.

Address Value Description

0x2000EFDC

0x2000EFD8

0x2000EFD4

0x2000EFD0

0x2000EFCC

0x2000EFC8

0x2000EFC4

0x2000EFC0

Page 35

Andrew ID:

(e) 3 points Explain why it is not a good idea in the general case to copy a stack.

Page 36

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t)(void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 37

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

void mutex_destroy(mutex_t *mp);

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);

void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);

void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 38

Andrew ID:

Ureg Cheat-Sheet

#define SWEXN_CAUSE_DIVIDE 0x00 /* Very clever, Intel */

#define SWEXN_CAUSE_DEBUG 0x01

#define SWEXN_CAUSE_BREAKPOINT 0x03

#define SWEXN_CAUSE_OVERFLOW 0x04

#define SWEXN_CAUSE_BOUNDCHECK 0x05

#define SWEXN_CAUSE_OPCODE 0x06 /* SIGILL */

#define SWEXN_CAUSE_NOFPU 0x07 /* FPU missing/disabled/busy */

#define SWEXN_CAUSE_SEGFAULT 0x0B /* segment not present */

#define SWEXN_CAUSE_STACKFAULT 0x0C /* ouch */

#define SWEXN_CAUSE_PROTFAULT 0x0D /* aka GPF */

#define SWEXN_CAUSE_PAGEFAULT 0x0E /* cr2 is valid! */

#define SWEXN_CAUSE_FPUFAULT 0x10 /* old x87 FPU is angry */

#define SWEXN_CAUSE_ALIGNFAULT 0x11

#define SWEXN_CAUSE_SIMDFAULT 0x13 /* SSE/SSE2 FPU is angry */

#ifndef ASSEMBLER

typedef struct ureg_t {

unsigned int cause;

unsigned int cr2; /* Or else zero. */

unsigned int ds;

unsigned int es;

unsigned int fs;

unsigned int gs;

unsigned int edi;

unsigned int esi;

unsigned int ebp;

unsigned int zero; /* Dummy %esp, set to zero */

unsigned int ebx;

unsigned int edx;

unsigned int ecx;

unsigned int eax;

unsigned int error_code;

unsigned int eip;

unsigned int cs;

unsigned int eflags;

unsigned int esp;

unsigned int ss;

} ureg_t;

#endif /* ASSEMBLER */

Page 39

Andrew ID:

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 40

