
15-410, F'171

Exam #1
Oct. 17, 2017

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L21_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, F'172

Synchronization

Checkpoint 2 – Wednesday, in Wean 5207 clusterCheckpoint 2 – Wednesday, in Wean 5207 cluster
 Arrival-time hash function will be different

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case
 Looking ahead to the general case can help you later

 Please read the handout warnings about context switch
and mode switch and IRET very carefully

 Each warning is there because of a big mistake which was
very painful for previous students

15-410, F'173

Synchronization

Book report!Book report!
 Hey, “Mid-Semester Break” is just around the corner!

15-410, F'174

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 1/2 of groups have blank REPOSITORY directories...

 If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

15-410, F'176

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, F'177

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, F'178

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~100 points,

~7 questions)

15-410, F'179

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

15-410, F'1710

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, F'1711

Q1a – Deadlock Ingredients

Purpose: demonstrate familiarity with key mentalPurpose: demonstrate familiarity with key mental
tools for designtools for design

 Deadlock can be painful to fix in a large/complex code
base

 Being conscious of hazards and options is important

OutcomesOutcomes
 Generally reasonable answers
 Some people confused prevention vs. avoidance
 Some people skipped parts of the question

15-410, F'1712

Q1b – Interrupt Acknowledgment

Purpose: Demonstrate understanding of the interruptPurpose: Demonstrate understanding of the interrupt
“life cycle”“life cycle”

 Key points
 Who dismisses interrupts?
 Who handles dismissal?

» What (precisely) does dismissal imply/enable?
 What is the dismissal mechanism?

OutcomesOutcomes
 Answers generally good
 Occasional alarming answers

 “The dismissal is received by the IDT”

15-410, F'1713

Q2 – Scheduling Transitions

What we were testingWhat we were testing
 Key concepts: running, runnable, blocked
 Also: which Pebbles events cause transitions

Good newsGood news
 Half the class got 8/10, lots of people got 7/10

Other newsOther news
 One quarter of the class got 9/10 or 10/10... not a lot

Common issuesCommon issues
 Arc were labelled with non-Pebbles events
 sleep() and “SLEEPING” were not connected (!!)
 As hinted, we were expecting some single-node arcs

Be careful!Be careful!
 “Blocked” is a core concept; precision here is wise

15-410, F'1714

Q3 – “Nemo's Algorithm II”

What we were testingWhat we were testing
 Primarily: ability to find and show race conditions
 Also: knowledge of what a c.s. algorithm should do

Good newsGood news
 Many people got a perfect score (60% of the class)

Bad newsBad news
 Several students alleged repetition but did not show it

well
 This is an important thing to get right
 HW1 solution contained very explicit advice

 20% of class did “emergency bounded waiting” trace
 Please compare HW1 Q2 vs. exam Q3
 Try to say how the algorithm change causes the

behavior change

15-410, F'1715

Q4 – “Multi-lock”

Question goalsQuestion goals
 Diagnose a deadlock situation
 Design a solution, based on deadlock principles
 Slight modification of typical “write a synchronization

object” exam question

15-410, F'1716

Q4 – “Multi-lock”

Question goalsQuestion goals
 Diagnose a deadlock situation

 This part was easier than most deadlock questions
 Design a solution, based on deadlock principles

 This part was harder than most deadlock questions

» The trace was consistent with multiple designs, of
varying difficulty to implement

» Also, some people pursued a design not suggested by
the trace

 Slight modification of typical “write a synchronization
object” exam question

 This wasn't too bad for one design
 The problem can be solved with two short loops in lock() and

one short loop in unlock_all()

15-410, F'1717

Q4 – “Multi-lock”

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 See course staff about any general conceptual problems
revealed by this specific exam question

15-410, F'1718

Q4 – “Multi-lock”

General synchronization calamitiesGeneral synchronization calamities
 Deadlock (always a problem, deeply ironic here)
 Progress failures (e.g., losing threads)

 Unlocking not-held locks
 Mutual exclusion failures
 Spinning is not ok
 Yield loops are “arguably less wrong” than spinning
 Motto: “When a thread can't do anything useful for a

while, it should block; when a thread is unblocked, there
should be a high likelihood it can do something useful.”

 Special case: mutexes should not be held for genuinely
indefinite periods of time

15-410, F'1719

Q4 – “Multi-lock”

Things to watch out forThings to watch out for
 Memory leaks
 Memory allocation / pointer mistakes
 Forgetting to shut down underlying primitives
 Parallel arrays (use structs instead)

Other general adviceOther general advice
 It's a good idea to trace through your code and make sure

that at least the simplest cases work without threads
getting stuck

 Simplest case: one thread locks and unlocks
 Second-simplest case: one thread locks, a second thread

tries, the first thread unlocks
 Also any trace provided in the problem statement

15-410, F'1720

Q4 – “Multi-lock”

OutcomeOutcome
 ~15% of the class had a feasible approach and reasonable

code
 ~20% more “numerically passed”
 ~30% “suffered severe damage”

15-410, F'1721

Q4 – “Multi-lock”

OutcomeOutcome
 ~15% of the class had a feasible approach and reasonable

code
 ~20% more “numerically passed”
 ~30% “suffered severe damage”

 Interestingly, 70% of the “severe damage” category did very
well on Q3

15-410, F'1726

Q5 – Nuts & Bolts: Register Dumps

Question goalsQuestion goals
 Stare at a register dump and form a plausible hypothesis
 Why? Debugging P3 will require staring at bits to figure

out what's wrong... this is a good way to figure out if some
practice is needed

Part APart A
 This really should jump out at you
 If not, try to figure out why it didn't

 There were some “not so great” loop solutions and one
“really alarming” loop solution

Part BPart B
 “The problem” involves comparing registers

15-410, F'1727

Q5 – Nuts & Bolts: Register Dumps

OutcomesOutcomes
 Around 75% of class got 8/10 or better
 Scores under 7 suggest a debugging chat with an

instructor

15-410, F'1728

Breakdown

90% = 58.590% = 58.5 4 students 4 students (57.0 and up) (57.0 and up)

80% = 52.080% = 52.0 4 students 4 students (51.5 and up) (51.5 and up)

70% = 45.570% = 45.5 17 students17 students (45.0 and up) (45.0 and up)

60% = 39.060% = 39.0 5 students 5 students

50% = 32.550% = 32.5 4 students 4 students (31.0 and up) (31.0 and up)

40% = 26.040% = 26.0 0 students 0 students

<40%<40% 2 students 2 students

Comparison/calibrationComparison/calibration
 These scores are low – maybe 5% too low?
 Some adjustment is likely

15-410, F'1729

Implications

Special note for F'17 examSpecial note for F'17 exam
 Look at score for Q3 + Q4

 If it was above 25/35 that is better than if not
 If it was below 20/35 that is concerning

Score below 45?Score below 45?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion: draft plan, see instructor

15-410, F'1730

Implications

Score below 35?Score below 35?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on all three “middle” questions

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

 Passing the final exam may be a serious challenge
 Passing the class may not be possible!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 See instructor

15-410, F'1731

Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!

