
Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Fall 2015

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 15

3. 20

4. 15

5. 10

70

Please note that there are system-call and thread-library “cheat sheets”
at the end of the exam.

Andrew ID:

I have not received advance information on the content of this 15-410 mid-term exam by dis-
cussing it with anybody who took part in the main exam session or via any other avenue.

Signature: Date

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

If we cannot read your writing, we will be un-
able to assign a high score to your work.

Page 2

Andrew ID:

1. 10 points Short answer.

(a) 5 points Explain what #include files should and should not be used for. We are expecting

roughly five bulleted points (e.g., two things that #include files should contain and three
things they should not contain, because those things should be somewhere else). Provide
a brief justification for each of your claims.

Page 3

Andrew ID:

(b) 5 points Define “race condition” as the term is applied in this course. What are the
necessary ingredients of a race condition?

Page 4

Andrew ID:

2. 15 points Deadlock.

Recently there was some trouble at the Technical Opportunities Conference (TOC). Some booths
have a simple procedure involving waiting in line to submit a résumé and chat briefly with a
recruiter. But one company decided to add some frills. In particular, they got an extra-large space
containing a table full of iPads and a prize machine. Students line up in front of the table to be
processed through the interview sequence; recruiters are located on the far side of the table. From
the perspective of a student, these are the steps:

1. Wait in line until you are first in line; claim the table.

2. Claim an iPad from the table and fill out a form about yourself.

3. Release the iPad (but continue “owning” the table).

4. Claim a recruiter (wait until one isn’t talking to a student who arrived earlier).

5. Release the table and talk to the recruiter you claimed for a random amount of time.

6. Once the recruiter is done talking to you, you must fill out a brief post-chat survey on an iPad
to be eligible for a prize. The recruiter who chatted with you must enter a validation code on
the iPad, so you will continue “owning” the recruiter while you claim an iPad from the table.

7. Once the recruiter enters the validation code onto the iPad you are holding, you and the
recruiter are done, so you release the recruiter. The iPad is now displaying a QR code which
is your prize entry ticket. Claim the table, and show the QR code on the iPad screen to the
prize machine; at that point you can release the iPad and the table and leave with your prize.

This system is designed to work for varying numbers of students (the students obediently queue up
on the outside of the table area until they can allocate the table), varying numbers of recruiters, and
varying numbers of iPads. This is shown in the simulation code on the next page: the command-line
parameters to main() set up varying numbers of the (non-student) recruiting resources and then
run some number of student threads. But sometimes this system “gets stuck.” A nearby Machine
Learning student offers to apply the latest “deep learning with boosting” technology to figure out
what is going wrong, but your job will be to apply boring old Computer Science principles to reason
through the problem.

The remainder of this page is intentionally blank.

Page 5

Andrew ID:

sem_t table;

sem_t recruiter;

sem_t ipad;

void *run_student(void *ignored);

int main(int argc, char** argv)

{

int R, I, S;

thr_init(4096);

sgenrand(4096);

if (argc != 4) {

printf("Usage ./a.out n_recruiters n_ipads n_students\n");

exit(1);

}

R = (int)strtol(argv[1], NULL, 10); // convert string to integer

I = (int)strtol(argv[2], NULL, 10);

S = (int)strtol(argv[3], NULL, 10);

sem_init(&recruiter,R);

sem_init(&ipad,I);

sem_init(&table,1);

int *students = malloc(S * sizeof (int));

int s;

for (s = 0; s < S; s++) {

students[s] = thr_create(run_student, (void *) s);

}

for (s = 0; s < S; s++) {

thr_join(students[s], NULL);

}

printf("\nDone\n");

exit(0);

}

Page 6

Andrew ID:

void *run_student(void *ignored)

{

sem_wait(&table);

sem_wait(&ipad);

sleep(genrand()% 300); // fill out form

sem_signal(&ipad);

sem_wait(&recruiter); // this could take a while

sem_signal(&table); // next student can fill out form

sleep(genrand() % 3600); // chat with recruiter for "a while"

sem_wait(&ipad);

sleep(genrand() % 100); // get validation from recruiter

sem_signal(&recruiter); // recruiter can see next student

sem_wait(&table);

sleep(10); // show QR code, get prize

sem_signal(&ipad);

sem_signal(&table);

return (0);

}

Page 7

Andrew ID:

(a) 10 points Unfortunately, the code shown above can deadlock. Show clear, convincing
evidence of deadlock. Begin by describing the problem in one or two sentences; then
specify a scenario, and finally show a a “tabular execution trace”. Missing, unclear, or
unconvincing traces will result in only partial credit.

Page 8

Andrew ID:

You may use this page for your deadlock trace if you wish.

Page 9

Andrew ID:

(b) 5 points Explain how the company can survive the TOC without embarrassing dead-
locks. If possible, explain how the company can prevent deadlocks without changing any
of the rules or code shown above, though you may suggest rule/code changes if you must.
Be sure to explain (in a theoretical/conceptual sense) why your solution works. Solutions
judged as higher-quality by your grader will receive more points.

Page 10

Andrew ID:

3. 20 points LIFO Condition Variables

In your Project 2 thread library, you implemented various standard synchronization primitives such
as mutexes, condition variables, sempahores, and reader/writer locks. Often times, we stressed the
importance of ensuring these primitives are “as FIFO as possible” in order to prevent starvation of
any particular thread.

While “as FIFO as possible” is a good general policy, it may not be the best for all situations.
Consider a situation where a work queue is being served by a pool of worker threads. If the system
has been set up with lots of worker threads, there may not be enough work for them. Once a
particular worker thread has been blocked for a while awaiting work, its “personal memory” (such
as its stack) may fall out of the L1, L2, and maybe even L3 caches. In such a situation it arguably
makes sense to give the next available work item to the thread that has been blocked for the least
amount of time, because that thread will be able to run faster than the longest-blocked thread.
Note that no harm is done to a thread that is blocked for a long time—it isn’t “starved,” it’s “on
vacation.”

In this question you will be asked to forget everything you’ve been told about the importance
of FIFO condition variables and implement a new synchronization primitive, the lifo cond, which
operates in a strictly “last-in, first-out” (“LIFO”) manner. That is to say, the first thread to wait
on a given lifo cond should be the last thread to wake up.

Your mission: You will implement lifo_conds with the following interface:

• int lifo_cond_init(lifo_cond_t* cond) - Initializes a lifo_cond.

• void lifo_cond_wait(lifo_cond_t* cond, mutex_t* m) - Waits on the lifo_cond

until a thread calls lifo_cond_signal or lifo_cond_broadcast and all other threads
that have waited on the lifo_cond since this calling thread was put to sleep have already
been awakened. Otherwise, this call behaves as cond_wait.

• void lifo_cond_signal(lifo_cond_t* cond) - Awakens the most recent thread to have
waited on the lifo_cond—or does nothing if no threads are currently waiting.

• void lifo_cond_broadcast(lifo_cond_t* cond) - Wakes all threads currently waiting
on the lifo_cond—in such a way that the threads waiting the longest will generally run
later than the threads waiting for less time.

• void lifo_cond_destroy(lifo_cond_t* cond) - Destroys the lifo_cond.

A minimal usage example follows on the next page.

The remainder of this page is intentionally blank.

Page 11

Andrew ID:

#define NTHREADS 100

#define NWORK 4200

mutex_t work_mutex;

lifo_cond_t work_ready;

void threadfn(void *ignored) {

mutex_lock(&work_mutex);

while (work_left()) {

lifo_cond_wait(&work_ready, &work_mutex);

do_work();

}

mutex_unlock(&work_mutex);

}

int main(int argc, char **argv) {

thr_init(16384);

mutex_init(&work_mutex);

lifo_cond_init(&work_ready);

for (int t = 0; t < NTHREADS; t++) {

thr_create(threadfn, NULL);

}

for (int i = 0; i < NWORK; i++) {

add_work();

lifo_cond_signal(&work_ready);

}

thr_exit(0);

}

Page 12

Andrew ID:

Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables,
semaphores, reader/writer locks, etc., but you must assume they operate in strictly FIFO
order.

2. You may assume that callers of your lifo cond routines will obey the rules—for example,
nobody will try to destroy a lifo cond while threads might be blocked on it. But you
must be careful that you obey the rules as well!

3. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule()/make runnable(), or any atomic instructions (XCHG,
LL/SC).

4. You must comply with the published interfaces of synchronization primitives, i.e., you
cannot inspect or modify the internals of any thread-library data objects.

5. You may not use assembly code, inline or otherwise.

6. For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and
are expecting, a particular failure).

7. You may not rely on any data-structure libraries such as splay trees, red-black trees,
queues, stacks, or skip lists, lock-free or otherwise, that you do not implement as part of
your solution.

8. You may use non-synchronization-related thread-library routines in the “thr xxx() fam-
ily,” e.g., thr getid(). You may wish to refer to the “cheat sheets” at the end of the
exam. If you wish, you may assume that thr getid() is “very efficient” (for example, it
invokes no system calls).

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on the next page.
If we cannot understand the solution you provide, your grade will suffer!

Page 13

Andrew ID:

(a) 5 points Please declare your lifo_cond_t here. If you need one (or more) auxilary

structures, you may declare it/them here as well.

typedef struct {

} lifo_cond_t;

Page 14

Andrew ID:

(b) 15 points Now please implement lifo_cond_init(), lifo_cond_wait(), lifo_cond_signal(),
lifo_cond_broadcast(), and lifo_cond_destroy().

Page 15

Andrew ID:

. . . space for lifo cond implementation . . .

Page 16

Andrew ID:

. . . space for lifo cond implementation . . .

Page 17

Andrew ID:

4. 15 points “Go Ahead” continued...

Consider the following critical-section protocol, which is an attempt to remedy a problem
uncovered in the Homework 1 “Go Ahead” critical-section protocol, which in turn was based
on the “registering interest” approach presented in our “Synchronization #1” lecture.

int think[2] = { 0, 0 };

int want[2] = { 0, 0 };

int goahead[2] = { 0, 0 };

1. do {

2. ...remainder section...

3. think[i] = 1;

4. want[i] = 1;

5. if (want[j]) {

6. goahead[j] = 1;

7. }

8. think[i] = 0;

9. while (think[j])

10. continue;

11. if (i == 0) // tie breaker

12. goahead[i] = 1 - goahead[j];

13. while (want[j] && !goahead[i])

14. continue;

15. ...begin critical section...

16. ...end critical section...

17. want[i] = 0;

18. goahead[i] = 0;

19. } while (1);

(This protocol is presented in “standard form,” i.e., if thread 0 is running this code, i == 0
and j == 1; if thread 1 is running this code, i == 1 and j == 0.)

There is a problem with the mutex code shown above. That is, it does not ensure that all
three critical-section algorithm requirements are always met. Identify a requirement which is
not met and lay out a scenario which demonstrates your claim. Use the format presented in
class, i.e.,

T0 T1

ga[0]=0;

ga[1]=0;

...

Be sure that the execution trace you provide us with is easy to read and conclusively demon-
strates the claim you are making. You may introduce temporary variables or other obvious
notation as necessary to improve the clarity of your answer. You should report a problem with
code that is visible to you rather than assuming a problem in code that you have not been shown.
It is possible to answer this question with a brief, clear trace, so you should do what is necessary

Page 18

Andrew ID:

to ensure that you do. It is strongly recommended that you write down a draft version of any
execution trace using the scrap paper provided at the end of the exam, or on the back of some
other page, before you begin to write your solution on the next page. If we cannot understand
the solution you provide, your grade will suffer!

Page 19

Andrew ID:

You may use this page for your “Go Ahead” solution if you wish.

Page 20

Andrew ID:

5. 10 points Nuts & Bolts.

As you and your partner are getting started on your kernel project, you are examining each other’s
Project 1 driver implementations. Below is the code for your partner’s assembly-language wrapper
for the timer interrupt.

.globl timer_handler_c // extern void timer_handler_c(unsigned int ticks);

.text

.globl timer_handler

timer_handler:

// stack discipline

pushl %ebp

movl %esp,%ebp

// we must save callee-save registers

// save caller-save also just to be safe

pushl %ebx

pushl %esi

pushl %edi

pushl %eax

pushl %ecx

// now do the work

movl ticks,%eax

pushl %eax

call timer_handler_c

popl %eax

incl ticks

// restore what we saved

popl %ecx

popl %eax

popl %edi

popl %esi

popl %ebx

popl %ebp

iret

.data

// unsigned long ticks = 0;

ticks:

.align 4

.long 0x00000000

Page 21

Andrew ID:

(a) 4 points When you see your partner’s timer handler code, you realize that something
is horribly wrong with it. What is that code doing wrong? Be as specific as you can.

Page 22

Andrew ID:

(b) 6 points Your partner angrily responds that the code must be fine—despite lots of testing
the game never crashed. You explain that the timer handler code, while absolutely
wrong, will in practice cause trouble only very rarely. Why is that? Note that more-
convincing answers will receive more credit.

Page 23

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t)(void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 24

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

void mutex_destroy(mutex_t *mp);

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);

void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);

void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 25

Andrew ID:

Typing Rules Cheat-Sheet

τ ::= α | τ → τ | µα.τ | ∀α.τ
e ::= x | λx:τ.e | e e | fix(x:τ.e) | foldα.τ (e) | unfold(e) | Λα.e | e[τ]

Γ, α type ` α type
istyp-var

Γ ` τ1 type Γ ` τ2 type
Γ ` t1 → t2 type

istyp-arrow

Γ, α type ` τ type
Γ ` µα.τ type istyp-rec

Γ, α type ` τ type
Γ ` ∀α.τ type istyp-forall

Γ, x : τ ` x : τ
typ-var

Γ, x : τ1 ` e : τ2 Γ ` τ1 type
Γ ` λx:τ1.e : τ1 → τ2

typ-lam
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
typ-app

Γ, x : τ ` e : τ Γ ` τ type
Γ ` fix(x:τ.e) : τ

typ-fix

Γ ` e : [µα.τ/α]τ Γ, α type ` τ type
Γ ` foldα.τ (e) : µα.τ

typ-fold
Γ ` e : µα.τ

Γ ` unfold(e) : [µα.τ/α]τ
typ-unfold

Γ, α type ` e : τ

Γ ` Λα.e : ∀α.τ typ-tlam
Γ ` e : ∀α.τ Γ ` τ ′ type

Γ ` e[τ ′] : [τ ′/α]τ
typ-tapp

λx:τ.evalue
val-lam

foldα.τ (e)value
val-fold

Λα.τ value
val-tlam

e1 7→ e′1
e1 e2 7→ e′1 e2

steps-app1

e1 value e2 7→ e′2
e1 e2 7→ e1 e

′
2

steps-app2

e2 value

(λx:τ.e1) e2 7→ [e2/x]e1
steps-app-β

fix(x:τ.e) 7→ [fix(x:τ.e)/x]e
steps-fix

e 7→ e′

unfold(e) 7→ unfold(e′)
steps-unfold1 unfold(foldα.τ (e)) 7→ e

steps-unfold2

e 7→ e′

e[τ] 7→ e′[τ]
steps-tapp1

(Λα.e)[τ] 7→ [τ/α]e
steps-tapp1

Page 26

Andrew ID:

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 27

