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Synchronization

Checkpoint 2 – Wednesday, in clusterCheckpoint 2 – Wednesday, in cluster
 Arrival-time hash function will be different

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case 
 Looking ahead to the general case can help you later

 Please read the handout warnings about context switch
and mode switch and IRET very carefully 

 Each warning is there because of a big mistake which was
very painful for previous students
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Synchronization

Asking for troubleAsking for trouble
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 Roughly half of groups have blank REPOSITORY

directories...
 If your code isn't built and tested on Andrew Linux every

two or three days, you are asking for trouble
 If you aren't using source control, that is probably a

mistake
 GitHub sometimes goes down!

 S'13: on P4 hand-in day (really!)



15-410, F'144

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune
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Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian
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Synchronization

Crash boxCrash box
 How many people have had to wait in line to run code on

the crash box?
 How long?

““Andrew Linux” VM image?Andrew Linux” VM image?
 Issue-reporting hotline!

 http://tinyurl.com/nqgedwu
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Upcoming Events

Google “Summer of Code”Google “Summer of Code”
 http://code.google.com/soc/ 
 Hack on an open-source project

 And get paid (possibly get recruited, probably not a lot)
 Projects with CMU connections: Plan 9, OpenAFS (see

me)

CMU SCS “Coding in the Summer”?CMU SCS “Coding in the Summer”?

15-412 (Fall)15-412 (Fall)
 If you want more time in the kernel after 410...
 If you want to see what other kernels are like, from the

inside
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A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but more stuff (~100 points, ~7 questions)
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“See Course Staff”

If your paper says “see course staff”...If your paper says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.
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Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5
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Q1a – “Atomic Instruction Sequence”

For full creditFor full credit
 List all three assumptions we make
 All three matter in terms of architecture / implementation

Typical issuesTypical issues
 Missing one or two of the assumptions
 Over-claiming (“nothing else must run”)
 Describing an atomic instruction (not a sequence)
 Getting something backwards

 “It prevents interleaving” (correct: interleaving must be
prevented on its behalf)
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Q1b – “South Bridge”

For full creditFor full credit
 Connects devices to CPU
 Something about which devices

 Give examples, or
 “The slower ones”

 Something about the connection (e.g, “via North Bridge”)

Most-common notable issuesMost-common notable issues
 “SB == PIC”
 “It's in the CPU” (not all machine parts are CPU parts!)
 “It contains the IDT” (IDT is in RAM!)
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Q2 – Yo!

ProblemProblem
 Find the race condition
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Q2 – Yo!

ProblemProblem
 Find the race condition

SolutionSolution
 Well, there were two
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Q2 – Yo!

ProblemProblem
 Find the race condition

SolutionSolution
 Well, there were two

 “'Paradise Lost' ⇒ consume invalid work”
 “Thread can get stuck indefinitely” (subtle)
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Q2 – Yo!

ProblemProblem
 Find the race condition

SolutionSolution
 Well, there were two

 “'Paradise Lost' ⇒ consume invalid work”
 “Thread can get stuck indefinitely” (subtle)

» If you found the subtle one but not the simpler one,
maybe go back and look at the problem again as
practice
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Q2 – Yo!

Good newsGood news
 ~25% of class got a perfect score
 Another ~20% came pretty close



15-410, F'1418

Q2 – Yo!

Good newsGood news
 ~25% of class got a perfect score
 Another ~20% came pretty close

Less-good newsLess-good news
 ~30% of the class had serious trouble

 Finding race conditions is an important skill

» This one wasn't super-easy, but it wasn't super-
hard either

» Suggestions

• Carefully review “Synchronization” lectures

• Be sure to practice this for final exam
 Writing traces is an important skill too
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Q3 – Deadlock
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Q3 – Deadlock

Parts of the problemParts of the problem
 Basic deadlock explanation
 Deadlock prevention?
 Deadlock avoidance?
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Q3 – Deadlock

Parts of the problemParts of the problem
 Basic deadlock explanation

 Most people did well here
 Deadlock prevention?

 It can be done – with understanding and creativity
 Deadlock avoidance?

 It can be done – with understanding and creativity
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Q3 – Deadlock

Deadlock Deadlock preventionprevention  
 Pick a deadlock ingredient to permanently ban

 Only one of the four is really plausible
 Figure out how to solve the problem with that ban in place

 One approach tweaks initial snake locations using an
initial override step

 Another approach involves careful understanding of
geometry and paths
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Q3 – Deadlock

Deadlock Deadlock preventionprevention  
 Pick a deadlock ingredient to permanently ban

 Only one of the four is really plausible
 Figure out how to solve the problem with that ban in place

 One approach tweaks initial snake locations using an
initial override step

 Another approach involves careful understanding of
geometry and paths

Misconceptions / non-solutionsMisconceptions / non-solutions
 “Try to lock the space I want else spin”

 Two snakes can want each other's spaces
 “Spin-trylock” isn't different than “lock”

 “Tweak strategy and hope”
 Solving the problem requires banning something (and

then making the new system work)
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Q3 – Deadlock

Deadlock Deadlock avoidanceavoidance  
 This is a trickier approach

 Processes must pre-declare their worst-case usage

» What they need before they can free things
 Resource allocator must compute based on future 

collisions 

Common “glitches”Common “glitches”
 Not taking into account that each snake initially owns

some resources
 Wrong avoidance algorithm

 In this problem, each square is unique
 An algorithm for multi-instance resources won't work 
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Q3 – Deadlock

Conceptual problemsConceptual problems
 “Safe sequence” is not “execution sequence”

 A safe sequence is part of a proof-by-example
computation

» “We can enter state X because we know a bad way
to get out of state X”

» We don't plan to use that bad way

» Usually somebody will use less than their worst-
case needs

» So usually we will execute in parallel
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Q3 – Deadlock

Conceptual problemsConceptual problems
 “Safe sequence” is not “execution sequence”

 A safe sequence is part of a proof-by-example
computation

» “We can enter state X because we know a bad way
to get out of state X”

» We don't plan to use that bad way

» Usually somebody will use less than their worst-
case needs

» So usually we will execute in parallel
 There must be an initial “request lots of stuff” step

 Avoidance isn't about careful consideration of each
request in isolation

 The key is considering requests vs. knowledge of the
future
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Q3 – Deadlock

““Run one snake at a time”Run one snake at a time”
 This is a solution

 Every concurrency problem can be solved by a global
mutex

 It is never a high-quality solution

Other issuesOther issues
 Solution described is prevention, not avoidance

Solution hintsSolution hints
 Mentally run one snake to completion to understand path

properties
 Figure out which other snakes could run concurrently
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Q4 – “Select Variables”

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question

General conceptual problemsGeneral conceptual problems
 Everything must be initialized and destroyed
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Other “malloc() issues”

 malloc()/free() must be paired
 Prefer “list of objects” to “list of object pointers”

 See course staff about any conceptual problems revealed
by this specific exam
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Q4 – “Select Variables”

A particular anti-patternA particular anti-pattern
 “broadcast() and let threads fight it out”

 This is usually a solution

» Many synchronization problems can be “addressed” by
having everybody spin all the time

 It is not a high-quality solution

» Threads should run when they can probably make
progress, and should be blocked when they probably
can't make progress

» “Wake 1000 when only 1 can win” is not “can probably
make progress”
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Q4 – “Select Variables”

Synchronization/concurrency problemsSynchronization/concurrency problems
 cond_signal() shouldn't block indefinitely

 Taking locks is necessary, but the job is awakening 
 Blocking is a potential deadlock factory

 An awakened thread shouldn't be re-awakened later
 “One wakeup per block”

 Condition variables don't “store up” awakenings
 If nobody is awakened, the signal has no future effect

 Object-global state must be managed carefully
 One “return code” can be set multiple times before anybody

can view it
 Be sure an object isn't still in use before destroying it
 Beware “anti-FIFO” patterns (e.g., stack)

Standard issuesStandard issues
 “Paradise Lost”
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Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode



15-410, F'1432

Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode

What we expectedWhat we expected
 Three reasons
 Sufficient detail to convince us
 No “dangerous visions”
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Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode

What we expectedWhat we expected
 Three reasons

 One voluntary, two involuntary
 One asynchronous, two synchronous

 Sufficient detail to convince us
 “Context switch” isn't a cause; it's an effect

 No “dangerous visions”
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Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode

What we expectedWhat we expected
 Three reasons

 One voluntary, two involuntary
 One asynchronous, two synchronous

 Sufficient detail to convince us
 No “dangerous visions”

““Dangerous visions”Dangerous visions”
 “swexn() handlers run in kernel mode”
 “Some other thread might ...”
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Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode

What we expectedWhat we expected
 Three reasons

 One voluntary, two involuntary
 One asynchronous, two synchronous

 Sufficient detail to convince us
 No “dangerous visions”

““Dangerous visions”Dangerous visions”
 “swexn() handlers run in kernel mode”

 They'd better not!
 “Some other thread might ...”

 True, but how would that affect this processor's execution?
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Breakdown

Data-integrity warningData-integrity warning
 5 students took a makeup exam
 Their scores are not included here
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Breakdown

90% = 67.590% = 67.5

80% = 60.080% = 60.0

70% = 52.570% = 52.5

60% = 45.060% = 45.0

50% = 37.550% = 37.5

40% = 30.040% = 30.0
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Breakdown

90% = 67.590% = 67.5  1 student  (top: 70/75 = 93%) 1 student  (top: 70/75 = 93%)

80% = 60.080% = 60.0  3 students 3 students

70% = 52.570% = 52.5 18 students (52 and up) 18 students (52 and up) 

60% = 45.060% = 45.0  9 students 9 students (44 and up) (44 and up)

50% = 37.550% = 37.5  8 students (37 and up) 8 students (37 and up)

40% = 30.040% = 30.0 10 students  10 students  

<40%<40%  6 students 6 students
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Breakdown

90% = 67.590% = 67.5  1 student  (top: 70/75 = 93%) 1 student  (top: 70/75 = 93%)

80% = 60.080% = 60.0  3 students 3 students

70% = 52.570% = 52.5 18 students (52 and up) 18 students (52 and up) 

60% = 45.060% = 45.0  9 students 9 students (44 and up) (44 and up)

50% = 37.550% = 37.5  8 students (37 and up) 8 students (37 and up)

40% = 30.040% = 30.0 10 students  10 students  

<40%<40%  6 students 6 students

Comparison/calibrationComparison/calibration
 Scores were lower than typical, more “double peak”
 Very-low exams mostly clobbered on “Yo!” and deadlock

 Some did ok on “select variables” - this is hopeful
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Implications

Some scaling is likelySome scaling is likely
 TBD, pending missing scores

Score “sub-C” (~35..40)?Score “sub-C” (~35..40)?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 Probably plan to do better on the final exam
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Implications

Score below 37?Score below 37?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on “Yo!” and deadlock and select-vars

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

 Passing the final exam may be a serious challenge
 Passing the class may not be possible! 

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 See instructor
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Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!
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