
15-410, F'141

Exam #1
Oct. 14, 2014

Dave EckhardtDave Eckhardt

Todd MowryTodd Mowry

L21_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, F'142

Synchronization

Checkpoint 2 – Wednesday, in clusterCheckpoint 2 – Wednesday, in cluster
 Arrival-time hash function will be different

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case
 Looking ahead to the general case can help you later

 Please read the handout warnings about context switch
and mode switch and IRET very carefully

 Each warning is there because of a big mistake which was
very painful for previous students

15-410, F'143

Synchronization

Asking for troubleAsking for trouble
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 Roughly half of groups have blank REPOSITORY

directories...
 If your code isn't built and tested on Andrew Linux every

two or three days, you are asking for trouble
 If you aren't using source control, that is probably a

mistake
 GitHub sometimes goes down!

 S'13: on P4 hand-in day (really!)

15-410, F'144

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, F'145

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, F'146

Synchronization

Crash boxCrash box
 How many people have had to wait in line to run code on

the crash box?
 How long?

““Andrew Linux” VM image?Andrew Linux” VM image?
 Issue-reporting hotline!

 http://tinyurl.com/nqgedwu

15-410, F'147

Upcoming Events

Google “Summer of Code”Google “Summer of Code”
 http://code.google.com/soc/
 Hack on an open-source project

 And get paid (possibly get recruited, probably not a lot)
 Projects with CMU connections: Plan 9, OpenAFS (see

me)

CMU SCS “Coding in the Summer”?CMU SCS “Coding in the Summer”?

15-412 (Fall)15-412 (Fall)
 If you want more time in the kernel after 410...
 If you want to see what other kernels are like, from the

inside

15-410, F'148

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but more stuff (~100 points, ~7 questions)

15-410, F'149

“See Course Staff”

If your paper says “see course staff”...If your paper says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

15-410, F'1410

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, F'1411

Q1a – “Atomic Instruction Sequence”

For full creditFor full credit
 List all three assumptions we make
 All three matter in terms of architecture / implementation

Typical issuesTypical issues
 Missing one or two of the assumptions
 Over-claiming (“nothing else must run”)
 Describing an atomic instruction (not a sequence)
 Getting something backwards

 “It prevents interleaving” (correct: interleaving must be
prevented on its behalf)

15-410, F'1412

Q1b – “South Bridge”

For full creditFor full credit
 Connects devices to CPU
 Something about which devices

 Give examples, or
 “The slower ones”

 Something about the connection (e.g, “via North Bridge”)

Most-common notable issuesMost-common notable issues
 “SB == PIC”
 “It's in the CPU” (not all machine parts are CPU parts!)
 “It contains the IDT” (IDT is in RAM!)

15-410, F'1413

Q2 – Yo!

ProblemProblem
 Find the race condition

15-410, F'1414

Q2 – Yo!

ProblemProblem
 Find the race condition

SolutionSolution
 Well, there were two

15-410, F'1415

Q2 – Yo!

ProblemProblem
 Find the race condition

SolutionSolution
 Well, there were two

 “'Paradise Lost' ⇒ consume invalid work”
 “Thread can get stuck indefinitely” (subtle)

15-410, F'1416

Q2 – Yo!

ProblemProblem
 Find the race condition

SolutionSolution
 Well, there were two

 “'Paradise Lost' ⇒ consume invalid work”
 “Thread can get stuck indefinitely” (subtle)

» If you found the subtle one but not the simpler one,
maybe go back and look at the problem again as
practice

15-410, F'1417

Q2 – Yo!

Good newsGood news
 ~25% of class got a perfect score
 Another ~20% came pretty close

15-410, F'1418

Q2 – Yo!

Good newsGood news
 ~25% of class got a perfect score
 Another ~20% came pretty close

Less-good newsLess-good news
 ~30% of the class had serious trouble

 Finding race conditions is an important skill

» This one wasn't super-easy, but it wasn't super-
hard either

» Suggestions

• Carefully review “Synchronization” lectures

• Be sure to practice this for final exam
 Writing traces is an important skill too

15-410, F'1419

Q3 – Deadlock

15-410, F'1420

Q3 – Deadlock

Parts of the problemParts of the problem
 Basic deadlock explanation
 Deadlock prevention?
 Deadlock avoidance?

15-410, F'1421

Q3 – Deadlock

Parts of the problemParts of the problem
 Basic deadlock explanation

 Most people did well here
 Deadlock prevention?

 It can be done – with understanding and creativity
 Deadlock avoidance?

 It can be done – with understanding and creativity

15-410, F'1422

Q3 – Deadlock

Deadlock Deadlock preventionprevention
 Pick a deadlock ingredient to permanently ban

 Only one of the four is really plausible
 Figure out how to solve the problem with that ban in place

 One approach tweaks initial snake locations using an
initial override step

 Another approach involves careful understanding of
geometry and paths

15-410, F'1423

Q3 – Deadlock

Deadlock Deadlock preventionprevention
 Pick a deadlock ingredient to permanently ban

 Only one of the four is really plausible
 Figure out how to solve the problem with that ban in place

 One approach tweaks initial snake locations using an
initial override step

 Another approach involves careful understanding of
geometry and paths

Misconceptions / non-solutionsMisconceptions / non-solutions
 “Try to lock the space I want else spin”

 Two snakes can want each other's spaces
 “Spin-trylock” isn't different than “lock”

 “Tweak strategy and hope”
 Solving the problem requires banning something (and

then making the new system work)

15-410, F'1424

Q3 – Deadlock

Deadlock Deadlock avoidanceavoidance
 This is a trickier approach

 Processes must pre-declare their worst-case usage

» What they need before they can free things
 Resource allocator must compute based on future

collisions

Common “glitches”Common “glitches”
 Not taking into account that each snake initially owns

some resources
 Wrong avoidance algorithm

 In this problem, each square is unique
 An algorithm for multi-instance resources won't work

15-410, F'1425

Q3 – Deadlock

Conceptual problemsConceptual problems
 “Safe sequence” is not “execution sequence”

 A safe sequence is part of a proof-by-example
computation

» “We can enter state X because we know a bad way
to get out of state X”

» We don't plan to use that bad way

» Usually somebody will use less than their worst-
case needs

» So usually we will execute in parallel

15-410, F'1426

Q3 – Deadlock

Conceptual problemsConceptual problems
 “Safe sequence” is not “execution sequence”

 A safe sequence is part of a proof-by-example
computation

» “We can enter state X because we know a bad way
to get out of state X”

» We don't plan to use that bad way

» Usually somebody will use less than their worst-
case needs

» So usually we will execute in parallel
 There must be an initial “request lots of stuff” step

 Avoidance isn't about careful consideration of each
request in isolation

 The key is considering requests vs. knowledge of the
future

15-410, F'1427

Q3 – Deadlock

““Run one snake at a time”Run one snake at a time”
 This is a solution

 Every concurrency problem can be solved by a global
mutex

 It is never a high-quality solution

Other issuesOther issues
 Solution described is prevention, not avoidance

Solution hintsSolution hints
 Mentally run one snake to completion to understand path

properties
 Figure out which other snakes could run concurrently

15-410, F'1428

Q4 – “Select Variables”

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question

General conceptual problemsGeneral conceptual problems
 Everything must be initialized and destroyed
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Other “malloc() issues”

 malloc()/free() must be paired
 Prefer “list of objects” to “list of object pointers”

 See course staff about any conceptual problems revealed
by this specific exam

15-410, F'1429

Q4 – “Select Variables”

A particular anti-patternA particular anti-pattern
 “broadcast() and let threads fight it out”

 This is usually a solution

» Many synchronization problems can be “addressed” by
having everybody spin all the time

 It is not a high-quality solution

» Threads should run when they can probably make
progress, and should be blocked when they probably
can't make progress

» “Wake 1000 when only 1 can win” is not “can probably
make progress”

15-410, F'1430

Q4 – “Select Variables”

Synchronization/concurrency problemsSynchronization/concurrency problems
 cond_signal() shouldn't block indefinitely

 Taking locks is necessary, but the job is awakening
 Blocking is a potential deadlock factory

 An awakened thread shouldn't be re-awakened later
 “One wakeup per block”

 Condition variables don't “store up” awakenings
 If nobody is awakened, the signal has no future effect

 Object-global state must be managed carefully
 One “return code” can be set multiple times before anybody

can view it
 Be sure an object isn't still in use before destroying it
 Beware “anti-FIFO” patterns (e.g., stack)

Standard issuesStandard issues
 “Paradise Lost”

15-410, F'1431

Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode

15-410, F'1432

Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode

What we expectedWhat we expected
 Three reasons
 Sufficient detail to convince us
 No “dangerous visions”

15-410, F'1433

Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode

What we expectedWhat we expected
 Three reasons

 One voluntary, two involuntary
 One asynchronous, two synchronous

 Sufficient detail to convince us
 “Context switch” isn't a cause; it's an effect

 No “dangerous visions”

15-410, F'1434

Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode

What we expectedWhat we expected
 Three reasons

 One voluntary, two involuntary
 One asynchronous, two synchronous

 Sufficient detail to convince us
 No “dangerous visions”

““Dangerous visions”Dangerous visions”
 “swexn() handlers run in kernel mode”
 “Some other thread might ...”

15-410, F'1435

Q5 – Process Model

Q: “PUSHL (PL3) … PUSHL (PL0)”; why?Q: “PUSHL (PL3) … PUSHL (PL0)”; why?
 The question tests understanding of how/why execution

enters kernel mode

What we expectedWhat we expected
 Three reasons

 One voluntary, two involuntary
 One asynchronous, two synchronous

 Sufficient detail to convince us
 No “dangerous visions”

““Dangerous visions”Dangerous visions”
 “swexn() handlers run in kernel mode”

 They'd better not!
 “Some other thread might ...”

 True, but how would that affect this processor's execution?

15-410, F'1436

Breakdown

Data-integrity warningData-integrity warning
 5 students took a makeup exam
 Their scores are not included here

15-410, F'1437

Breakdown

90% = 67.590% = 67.5

80% = 60.080% = 60.0

70% = 52.570% = 52.5

60% = 45.060% = 45.0

50% = 37.550% = 37.5

40% = 30.040% = 30.0

15-410, F'1438

Breakdown

90% = 67.590% = 67.5 1 student (top: 70/75 = 93%) 1 student (top: 70/75 = 93%)

80% = 60.080% = 60.0 3 students 3 students

70% = 52.570% = 52.5 18 students (52 and up) 18 students (52 and up)

60% = 45.060% = 45.0 9 students 9 students (44 and up) (44 and up)

50% = 37.550% = 37.5 8 students (37 and up) 8 students (37 and up)

40% = 30.040% = 30.0 10 students 10 students

<40%<40% 6 students 6 students

15-410, F'1439

Breakdown

90% = 67.590% = 67.5 1 student (top: 70/75 = 93%) 1 student (top: 70/75 = 93%)

80% = 60.080% = 60.0 3 students 3 students

70% = 52.570% = 52.5 18 students (52 and up) 18 students (52 and up)

60% = 45.060% = 45.0 9 students 9 students (44 and up) (44 and up)

50% = 37.550% = 37.5 8 students (37 and up) 8 students (37 and up)

40% = 30.040% = 30.0 10 students 10 students

<40%<40% 6 students 6 students

Comparison/calibrationComparison/calibration
 Scores were lower than typical, more “double peak”
 Very-low exams mostly clobbered on “Yo!” and deadlock

 Some did ok on “select variables” - this is hopeful

15-410, F'1440

Implications

Some scaling is likelySome scaling is likely
 TBD, pending missing scores

Score “sub-C” (~35..40)?Score “sub-C” (~35..40)?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 Probably plan to do better on the final exam

15-410, F'1441

Implications

Score below 37?Score below 37?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on “Yo!” and deadlock and select-vars

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

 Passing the final exam may be a serious challenge
 Passing the class may not be possible!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 See instructor

15-410, F'1442

Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

