15-410

“My other car is a cdr” -- Unknown

Exam #1
Oct. 15, 2013

Dave Eckhardt
Todd Mowry

L2 1_Exam

15-410, F'13

Synchronization

Checkpoint 2 - Wednesday, in cluster
= Arrival-time hash function will be different

Checkpoint 2 - alerts

= Reminder: context switch # timer interrupt!
= Timer interrupt is a special case
= Looking ahead to the general case can help you later
= Please read the handout warnings about context switch
and mode switch and IRET very carefully

= Each warning is there because of a big mistake which was
very painful for previous students

15-410, F'13

Synchronization

PGP key signing
= Friday, October 25
- 16:30
- GHC 4301

15-410, F'13

Synchronization

Asking for trouble

= If your code isn't in your 410 AFS space every day, you are
asking for trouble
= Roughly half of groups have blank REPOSITORY
directories...
= If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble
= If you aren't using source control, that is probably a
mistake
= GitHub sometimes goes down!
= S$'13: on P4 hand-in day (really!)

15-410, F'13

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

15-410, F'13

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

Ym_:r problem just got bigger.
I'hink, what have you done?

Image credit: Kartik Subramanian

15-410, F'13

Synchronization

Crash box

= How many people have had to wait in line to run code on
the crash box?
= How long?

15-410, F'13

Upcoming Events

Google “Summer of Code”

= http://code.google.com/soc/
= Hack on an open-source project
= And get paid (possibly get recruited, probably not a lot)
= Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?
15-412 (Fall)

= If you want more time in the kernel after 410...
= If you want to see what other kernels are like, from the
inside

15-410, F'13

A Word on the Final Exam

Disclaimer
= Past performance is not a guarantee of future results

The course will change

= Up to now: “basics” - What you need for Project 3
= Coming: advanced topics

= Design issues

= Things you won't experience via implementation

Examination will change to match

= More design questions
= Some things you won't have implemented (text useful!!)
= Still 3 hours, but more stuff (~100 points, ~7 questions)

15-410, F'13

10

“See Course Staff”

If your paper says “see course staff”...
= ...you should!

This generally indicates a serious misconception...

= ...which we fear will seriously harm code you are writing
now...

= ...which we believe requires personal counseling, not just
a brief note, to clear up.

15-410, F'13

11

Outline

Question 1
Question 2
Question 3
Question 4
Question 5

15-410, F'13

12

Q1a - “Paradise Lost” or “TOCTTOU”

“Paradise Lost”

= This is an amazingly common bug pattern
= Somebody makes the world ready for you.
= They signal you.
= You run.
= Oops! You didn't run soon enough.
= Often solve via “if() vs. while()”
= This is so amazingly common...
= ...that we made up a name for it...
= ...then we wrote a lecture about it...
= ...then we put it on an exam...

TOCTTOU error

= “Time-of-Check to Time-of-Use”
= The “general case” of “Paradise Lost”
= Not generally solved by “if() vs. while()”

15-410, F'13

13

Q1a - “Paradise Lost” or “TOCTTOU”

Grading

5 correct

4 almost correct

3 right general idea

2 plausibly headed toward the right general idea
1 something plausibly relevant

15-410, F'13

14

Q1b - “mixing fprintf() and signal handlers”

Background
= PO handout warns about sprintf()
= PO handout warns about “fprintf() and printf() in certain
contexts”

= Warning says “Please ... reacquaint yourself with the
details of these issues and their implications”

15-410, F'13

15

Q1b - “mixing fprintf() and signal handlers”

What does fprintf() do?

= Prints to a “FILE *”
= Which, fundamentally, is a buffer...
= ...which is to say, “stateful object containing invariants”

What does a signal handler do?
= It runs at a surprising time

15-410, F'13

16

Q1b - “mixing fprintf() and signal handlers”

What does fprintf() do?

= Prints to a “FILE *”
= Which, fundamentally, is a buffer
= ...which is to say, “stateful object containing invariants”

What does a signal handler do?
= It runs at a surprising time
So?
= signal(SIGSEGYV, surprise);
= fprintf(foofile, “%s %s\n”, “foo”, 0);

15-410, F'13

Q1b - “mixing fprintf() and signal handlers”

What does fprintf() do?
= Prints to a “FILE *”
= Which, fundamentally, is a buffer
= ...which is to say, “stateful object containing invariants”
What does a signal handler do?
= It runs at a surprising time
So?
= signal(SIGSEGYV, surprise);
= fprintf(foofile, “%s %s\n”’, “foo0”, 0);
\FAQ

= What does this have to do with OS?
= [t's almost like another thread, isn't it?

= Ok, | get it...say, what's so wrong about sprintf(), anyway?
17 15-410, F13

18

Q2 - “Faulty Mutexes”

Which critical-section requirement doesn't hold?

? Mutual exclusion
? Progress
? Bounded waiting

15-410, F'13

19

Q2 - “Faulty Mutexes”

Which critical-section requirement doesn't hold?

v Mutual exclusion
v Progress
v Bounded waiting

15-410, F'13

20

Q2 - “Faulty Mutexes”

Which critical-section requirement doesn't hold?

v Mutual exclusion
v Progress
v Bounded waiting

“What a terrible mutex implementation!”
— The author

15-410, F'13

21

Q2 - “Faulty Mutexes”

Which critical-section requirement doesn't hold?

v Mutual exclusion
v Progress
v Bounded waiting

“What a terrible mutex implementation!”
— The author

Grading

= Many people did very well
= Many people got lost in the jungle
= Not much middle ground

15-410, F'13

Q2 - “Faulty Mutexes”

Popular and problematic submissions

= “This mutex doesn't handle a thread locking and then
dying!”
= True... but essentially none do
= “This mutex doesn't handle an evil thread which randomly
calls unlock() while it doesn't hold the lock!”
= True... but ...
= Overall: if an artifact fails when used correctly, we are not
enraged by failures due to abuse

Misconceptions

= “Takes a bunch of steps” is not a bounded-waiting failure
= “Somebody holds the lock for a long time” doesn't violate
progress
= Progress is a requirement on the choosing protocol
= If the lock is held choosing need not begin
22 15-410, F'13

23

Q3 — Battleship Deadlock

Good news

= Most people found the deadlock
= [ots of full-credit answers, lots of “very close”

15-410, F'13

24

Q3 — Battleship Deadlock

Good news

= Most people found the deadlock
= [ots of full-credit answers, lots of “very close”

The other good news
= Most people also solved the deadlock correctly

15-410, F'13

25

Q3 — Battleship Deadlock

Bad news

= Most people found the deadlock
= Most people also solved the deadlock correctly

= = A final-exam deadlock question could be harder

15-410, F'13

Q3 — Battleship Deadlock

Bad news

= Most people found the deadlock
= Most people also solved the deadlock correctly

= = A final-exam deadlock question could be harder

The other bad news

= A common problem was changing the spec
= ...Which the problem statement said not to do
= Often your boss won't let you change the spec
= And it's usually better to keep fixes internal when possible

26 15-410, F'13

27

Q4 - “Master/slave Mutexes”

Question goal

= Slight modification of typical “write a synchronization
object” exam question

What we asked for

= Lock
= Master (creator) thread gets priority

= Slave threads are awakened (with an error) if master
chooses to destroy the lock

15-410, F'13

Q4 - “Master/slave Mutexes”

Question goal

= Slight modification of typical “write a synchronization
object” exam question

What we asked for

= Lock
= Master (creator) thread gets priority

= Slave threads are awakened (with an error) if master
chooses to destroy the lock

= Key sub-issue: master is allowed to free()/pave the memory
as soon as destroy() completes

15-410, F'13

29

Q4 - “Master/slave Mutexes”

Hazards - “lock”

= Spin loop / yield() loop / “cond_signal() loop” / sleep(20)
= These are not handy multi-tools!
= What must you prove before using a spin loop?
= What does a yield() loop really do?

15-410, F'13

Q4 - “Master/slave Mutexes”

Hazards - “lock”

= Spin loop / yield() loop / “cond_signal() loop” / sleep(20)

= These are not handy multi-tools!

= What must you prove before using a spin loop?
» Hint: #1 is “on a multi-processor”

= What does a yield() loop really do?
» Hint: what if you're on a multi-processor?

= Essentially always: use a genuine synchronization method
» This is a core concept. You must show proficiency.

30 15-410, F'13

Q4 - “Master/slave Mutexes”

Hazards - “lock”

= Spin loop / yield() loop / “cond_signal() loop” / sleep(20)
= These are not handy multi-tools!
= What must you prove before using a spin loop?
» Hint: #1 is “on a multi-processor”
= What does a yield() loop really do?
» Hint: what if you're on a multi-processor?
= Essentially always: use a genuine synchronization method
» This is a core concept. You must show proficiency.
= Multiple threads can acquire the lock
= Most often: “Paradise Lost”
= unlock() has insufficient locking

= Nothing beyond a mutex is used to stall threads
= ...lots of threads... ... who face a low-priority wait...

= “Stall a thread for an unknown time until a specific condition

is met” should not sound like “mutex” to you
15-410, F'13

Q4 - “Master/slave Mutexes”

Hazards - “master priority”

= Common: master is awakened preferentially, but slave
threads can rush in quickly and defeat it

= Lock must “look different” during “handoff from slave to
master” (or else it will look the same!)

= Less common: master and slave arms of lock() code are
too similar

Hazards - “slaves awakened on master destroy()”

= destroy() just paves over the object and returns

= destroy() issues a broadcast() and flees immediately

= Some slaves are awakened, but not all

= Some awakened slaves might not be 100% done with the
lock when the master starts paving

32 15-410, F'13

33

Q4 - “Master/slave Mutexes”

Warning about cvars

= In P2 and on the exam it's ok to assume the relationship
between cond_signal() and awakenings is “1:1 and onto”
= POSIX condition variables do not have this property
= If you call pthread_cond_signal() once, you may awaken
multiple threads
= “man 3 pthread_cond_signal” and see “spurious wakeup”
= Sorry!
» How to fix?
» See “if() vs. while()”...

15-410, F'13

Q5 - “far call()”

Question goals
= Verify basic assembly-language skills, stack
understanding
Outcomes

= Lots of A & B scores
= If not, make sure you figure out what went wrong!

Selected common/dangerous issues
= Not going back to the original stack
= General stack-discipline problems
= Some stack-discipline register not restored
= Clobbers callee-save registers

34

15-410, F'13

35

Breakdown

90% = 67.5
80% = 60.0
70% = 52.5
60% = 45.0
50% = 37.5
<50%

15-410, F'13

Breakdown

90% = 67.5 13 students (67 and up)
80% = 60.0 7 students
70% = 52.5 9 students
60% = 45.0 9 students
50% = 37.5 4 students
<50% 0 students

Comparison/calibration
= Scores were higher than typical, more A's

Low exams all got clobbered on Q2 and Q4
36 15-410, F'13

Implications

Score 45..52?

= Form a “theory of what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved?

= Probably plan to do better on the final exam

Score below 45?

= Something went dangerously wrong

= It's important to figure out what!
= Passing the final exam may be a serious challenge
= Passing the class may not be possible!

= To pass the class you must demonstrate proficiency on
exams (not just project grades)

= See instructor
37 15-410, F'13

38

Implications

“Special anti-course-passing syndrome”:

= Only “mercy points” received on several questions

= Extreme case: no question was convincingly answered

= Itis not possible to pass the class if both exams show no
evidence that the core topics were mastered!

15-410, F'13

39

“Design” in this exam

Reminder...

= Final exam will focus more on “design”
= This was not a design-heavy mid-term exam

= You may need to review other mid-term exams for design
material if you haven't already

15-410, F'13

