15-410

“My other car is a cdr” -- Unknown

Exam #1
Oct. 16, 2012

Dave Eckhardt

L21_Exam 15-410, F'12

Synchronization

Checkpoint 2 - alerts
= Please read the handout warnings about context switch
and mode switch and IRET very carefully

= Each warning is there because of a big mistake which was
very painful for previous students

Asking for trouble
= If your code isn't in your 410 AFS space every day, you are
asking for trouble
= “Many” groups have blank REPOSITORY directories...

= If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

= If you aren't using source control, that is probably a
mistake

15-410, F'12

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

15-410, F'12

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

Ym_:r problem just got bigger.
I'hink, what have you done?

Image credit: Kartik Subramanian

15-410, F'12

Synchronization

Crash box

= How many people have had to wait in line to run code on
the crash box?
= How long?

15-410, F'12

Upcoming Events

Google “Summer of Code”

= http://code.google.com/soc/
= Hack on an open-source project
= And get paid (possibly get recruited, probably not a lot)
= Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?
15-412 (Fall)

= If you want more time in the kernel after 410...
= If you want to see what other kernels are like, from the
inside

15-410, F'12

A Word on the Final Exam

Disclaimer
= Past performance is not a guarantee of future results

The course will change

= Up to now: “basics” - What you need for Project 3
= Coming: advanced topics

= Design issues

= Things you won't experience via implementation

Examination will change to match

= More design questions
= Some things you won't have implemented (text useful!!)
= Still 3 hours, but more stuff (~100 points, ~7 questions)

15-410, F'12

“See Course Staff”

If your paper says “see course staff”...
= ...you should!

This generally indicates a serious misconception...

= ...which we fear will seriously harm code you are writing
now...

= ...which we believe requires personal counseling, not just
a brief note, to clear up.

15-410, F'12

Outline

Question 1
Question 2
Question 3
Question 4
Question 5

15-410, F'12

10

Q1a - “Atomic Instruction Sequence”

Expected

= Short sequence
= Must not be interleaved with some “related sequences”

= Typically nobody is trying to interleave “against us”

= It can happen, but it's too rare for us to use a “big hammer”
in the common case

15-410, F'12

Q1a - “Atomic Instruction Sequence”

Expected

= Short sequence
= Must not be interleaved with some “related sequences”

= Typically nobody is trying to interleave “against us”

= It can happen, but it's too rare for us to use a “big hammer”
in the common case

Most-common problem

= An atomic instruction sequence must not be interrupted
= Actually, the problem is that it will be interrupted
» For sure if it's user-space code

» Probably even if it's kernel code (don't forget about
multiprocessor machines!”)

= The key idea is that we must control the bad interleavings
even when the sequence is interrupted

» Atomic effect even if not atomic execution”
11 15-410, F'12

12

Q1b - “kernel mode”

Hoping to see
= PLO
= Can access hardware devices
= Can access “kernel-only” memory/data structures
= Can access processor control registers
= Provides crash isolation among users (referee)
= |Is entered on syscall/trap/fault/exception

15-410, F'12

Q1b - “kernel mode”

Hoping to see
= PLO
Can access hardware devices
Can access “kernel-only” memory/data structures
Can access processor control registers
Provides crash isolation among users (referee)
Is entered on syscall/trap/fault/exception

Two worrisome themes

= Kernel mode is the privileged mode that the kernel runs in
= Ok, | guess so, but why?

= Kernel mode is for code that touches the kernel stack
= True, but not really the heart of the matter (again: why?)

13 15-410, F'12

14

Q2 - Broken “Dekker's Algorithm”

Good news
= Most people saw a mutual exclusion failure

Common issues

= Leaving out part of the trace
= Leaving out one observation of a key variable/value
= “Really leaving stuff out” - something missing from both
threads

15-410, F'12

15

Q2 - Broken “Dekker's Algorithm”

Good news
= Most people saw a mutual exclusion failure

Common issues

= Leaving out part of the trace
= Leaving out one observation of a key variable/value
= “Really leaving stuff out” - something missing from both
threads

Less-common issues (carefully review your exam)

= Nobody who tried to show a bounded-waiting failure did
= Key problem: incorrect definition of bounded waiting
= Some people wrote traces of the algorithm working

= Advice: practice some old homework questions about
Dekker or Bakery

15-410, F'12

16

Q3 — Graders' Algorithm

Good news

= Most people found the deadlock
= Dangerous (rare) issue
= Misunderstanding how mutexes and cvars work (!!)

» cond wait () drops and reacquires the mutex! This is a

fundamental part of what it does, and this absolutely
must be understood.

= Beware: Impossible/unclear execution traces

= You need to be able to reason about these issues and
communicate them to others.

= Our exact format is not 100% necessary, but you need
something at least that descriptive and clear.

15-410, F'12

17

Q3 - Graders' Algorithm

Some issues with specifying a fix

= Calling examine exam number () while holding a mutex
is not a high-quality solution

Many issues about explaining a fix

= “Prevents hold&wait” isn't true if what is really happening
is “Ensures at most one thread is holding and waiting”
= That's “prevents cycles in the wait graph”

15-410, F'12

18

Q4 - “Channels”

Question goal
= “Write a synchronization object” - typical exam question

A word about (non-neutral) expectations

= Some people asked whether receive () should block or
immediately return when nothing is queued

15-410, F'12

Q4 - “Channels”

Question goal
= “Write a synchronization object” - typical exam question

A word about (non-neutral) expectations

= Some people asked whether receive () should block or
immediately return when nothing is queued
= In general, if there is nothing for a thread to do, it should
stop running! This is important!
= Recall that we discussed the “offload the sleep(1) problem
onto the caller” anti-pattern.

19 15-410, F'12

Q4 - “Channels”

Question goal
= “Write a synchronization object” - typical exam question

A word about (non-neutral) expectations

= Some people asked whether receive () should block or
immediately return when nothing is queued
= In general, if there is nothing for a thread to do, it should
stop running! This is important!
= Recall that we discussed the “offload the sleep(1) problem
onto the caller” anti-pattern.
= Occasionally a “try receive()” or “try lock()”
operation is useful
» These are rare special cases, generally used to avoid

deadlock in callbacks or interrupt handlers, and require
care to use correctly

» They generally do not exist “alone” (without a blocking

receive () Which is used most of the time)
15-410, F'12

Q4 - “Channels”

Question goal
= “Write a synchronization object” - typical exam question

Hint (written in question text)

= “Synch” case and (normal) “asynch” case can be done
with very similar code

Key design issue — who blocks when?

= Sender: buffer full (no space)
= Receiver: buffer empty (no data)
= “Synchronous Sender”’: data stored but not yet removed

Unblocking
= Added data to buffer = unblock a receiver needing data
= Made space in buffer = unblock a sender needing space

= Made space in buffer = unblock a synchronous sender
21 15-410, F'12

Q4 - “Channels”

Grading

= 8 points for synch mode
= 12 points for asynch mode

Grader alarm
= Many solutions fail in very common (non-race) cases
= “Init, then a sender sends an item” = crash
= “Init, then a receiver arrives seeking an item” = crash

More-typical issues

= Many instances of “Paradise lost”

= Please review the lecture, avoid that syndrome in kernel
code

= {Sender,receiver} forgets to awaken {receiver,sender}
= One cvar used to indicate too many conditions

22 15-410, F'12

23

Q5 — Segmented Stack / ss_call()

Basic idea

= Call a function, but on a different stack area than the
current one

= Motivation: non-contiguous stacks avoid fragmentation
issues

Solution ingredients
= Allocate the new stack area
= Switch to new stack area
= Run the function, remember the return value
= Switch back to old stack area

= Make sure all appropriate state is saved, transferred,
restored

Hmm...

= “Kind of like”: context switch/yield(), thr_create()
15-410, F'12

Q5 — Segmented Stack / ss_call()

Troublesome approaches

= thr create()/thread fork
= Difficult to get right
= HUGELY expensive (compared to malloc() + function call)
» Multiple stacks, synchronization, thread create+destroy!
= swexn()
= Also fundamentally not what was sought

Typical issues
= Minor calling-convention issues
= Omission of saving/restoring some particular thing

= Hand-writing malloc () in terms of new pages () (it's
easier and likely more correct to just use malloc())

Suggestion

= Work from a checklist: alloc; save A, B, ...; adjust A, B, ...
24 15-410, F'12

25

Q5 - Segmented Stack / ss_call()

“How to detect stack overrun?”

= Expected: sentinel/canary/magic-cookie
= Some solutions suggested things that are not feasible
= “Protect last byte of 7

15-410, F'12

26

Breakdown

90% = 63.0 10 students (66/70 is top)
80% = 56.0 13 students

70% = 49.0 9 students

60% = 42.0 12 students

508 = 35.0 6 students

<50% 3 students

Comparison

= |f we count 48/70 == 49/70 the C/D break looks bette
= Scores were “not high, not super low”

r

15-410, F'12

27

Implications

Score under 49?

= Form a theory of “what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved?
= Probably plan to do better on the final exam

Score at/below 36?

= Something went dangerously wrong
= It's important to figure out what!
= Passing the final exam may be a serious challenge

= To pass the class you must demonstrate proficiency on
exams (not just project grades)

= “See instructor” is probably a good idea

15-410, F'12

28

Implications

“Special anti-course-passing syndrome”:

= You got only the “mercy points” on several questions

= Extreme case: no question was convincingly answered

= It is very important that you don't have two exams without
evidence that some topics have been mastered!

» So if this exam looks that way, you should definitely at
least “see course staff”’ to reduce the likelihood that
both do!

15-410, F'12

29

“Design” In this exam

Reminder...

= Final exam will focus more on “design”
= On this exam, design was best represented by
» Q4 (channels)
» Q5 (ss_call)

= If you were flummoxed by those two questions, try to figure
out how to be less so in the future

15-410, F'12

