15-410

“My other car Is a cdr” -- Unknown

Exam #1
Oct. 13, 2010

Dave Eckhardt
Garth Gibson

L21 Exam

15-410, F'10

Synchronization

Checkpoint 2 —-Wednesday

= Please read the handout warnings about context swit ch
and mode switch and IRET very carefully

= Each warning is there because of a big mistake whic h was
very painful for previous students

Asking for trouble

= |f your code isn't in your 410 AFS space every day, you
are asking for trouble

= |f your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

= |f you aren't using source control, that is probabl ya
mistake

15-410, F'10

Synchronization

Upcoming events

= 15-412 (Fall)
= |If you want more time in the kernel after 410...
= |If you want to see what other kernels are like, fro m the

inside
Google “Summer of Code”

= http://code.google.com/soc/

= Hack on an open-source project
= And get paid (possibly get recruited, probably not a lot)

= Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?

15-410, F'10

Synchronization

Crash box

= How many people have had to waitin linetoruncod e on
the crash box?
= How long?

15-410, F'10

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

15-410, F'10

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

—— Y—

Your problem just got bigger.
Think, what have you done?

Image credit: Kartik Subramanian

15-410, F'10

A Word on the Final Exam

Disclaimer
= Past performance is not a guarantee of future resul ts

The course will change

= Up to now: “basics” - What you need for Project 3

= Coming: advanced topics
= Design issues
= Things you won't experience via implementation

Examination will change to match
= More design questions
= Some things you won't have implemented (text useful 1)
= Still 3 hours, but more stuff (~100 points, ~7 ques tions)

15-410, F'10

“See Course Staff”

If your paper says “see course staff"...
= ...you should!

This generally indicates a serious misconception...

= ...which we fear will seriously harm code you are w riting
now...

= _..which we believe requires personal counseling, n ot just
a brief note, to clear up.

15-410, F'10

Outline

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6

15-410, F'10

10

Qla —"“three 'kinds' of reqgister”

Many “kinds” were acceptable
= Caller-save, callee-save, ...
= General-purpose, control, ...

Hardware has its quirks
= Usually to make something go faster
= We need to keep the details of this “finite state machine”
In mind
= Some x86-32 quirks are just quirks
= But many do represent how most hardware works

15-410, F'10

11

Q1b —“kernel stack”

In C, “the action” centers on the stack

In kernels, “the action” centers on

kernel stacks

= ...which are structurally different from user stack S

Key features

= Must not be accessible (read-write
code

= Generally fixed-size (small)
= “Must always exist”

How to get into trouble
= Talk only about stacks in general

or read-only) to user

15-410, F'10

Q2 —Scheduler state transitions

Good news
= Most people did at least “ok”

Frequent problems

= Confusing “sleeping” with “blocked”

= |tis possible to conceive of “sleeping” as “a kind of
blocked”

» (Implementation often a bit different)
» We gave you two states (hint: we think they're diff erent)
= You should have two single-ended arcs

= Be sure to understand the key running < runnable
Interchange (there are multiple reasons each way)

= Blocked generally goes to Runnable, then to Running
12 = Scheduler usually needs to evaluate the new runnabl e 15-410, F10

13

Q3 —cvars atop rendezvous()

The problem

= |mplement condition variables in an unfamiliar situ

Conceptually, a cvar includes...
= ...queue of sleeping threads
= _..solution to “atomic block” problem

Common problems

= Each cvar uses rendezvous() tags: 0, 1, 2, ...
= This means it's impossible for a program to use two

ation

cvars

= cond_signal() blocks until some thread calls cond_w ait()

= That may never happen!

= Cvar's jobis to block waiters indefinitely, not signallers

= See course staff if you have a malloc() list storin

90, L5210 F10

14

Q4 —“rwlock promote()”

Q: What if we non-atomically upgrade our lock?
= People pervasively saw what is wrong here

Q: What's wrong with rwlock_promote() “spec™?

= Key problem: “block awaiting X while forbidding all
others to achieve _ X " can be implemented, butit 'sa
recipe for deadlock...

= Some answers were based on mis-readings of the “spe c”

= “Sequential atomic upgrade” isn't atomic for the se cond
thread, so that reduces to the part (a) problems

15-410, F'10

15

Q4 —“rwlock promote()”

“Be careful out there...”

= “Insertion could be lost” —mis-ordered, but not ac tually
lost

= “Read/write of free()'d memory causes an exception”
= Thisis not arule! If you use bad data as a pointer , maybe...

15-410, F'10

16

Q5 —Critical-section algorithm

Overall
= Most people correctly identified one problem

= Quite a few didn't find a second one

= Don't worry, we swapped (a) and (b) points so your
solution got 10 points and the incorrect one got 5

correct

15-410, F'10

Q5 —Critical-section algorithm

Common problems

= Notation
= |Vvs. | caused some people to spin on the wrong var iable
= Arithmetic doesn't really work for “thread 1” and “ thread 2”

= One problem class: impossible traces
= “do{ ... } while (!...fal se)”doesrun a second time
= A few other impossible sequences

= Common problem: stopping a trace too early
= |f you want to show a steady state, make sure yout race long
enough to show it is steady!
= Once through a loop isn't enough if key values chan ge

» Need to show them stuck in the new value, or changi ng
back to the old value

17 = Be very clear about what sub-trace you believe repe ats

15-410, F'10

18

Q6 —Nuts & Bolts

Overall
= People often identified the bad register (good)

= “What went wrong” claims were less plausible

= The register dumps we showed were from short code w ith
plausible bugs

» Accidental stack crash due to array overflow
» thread_fork wrapper gone awry

= “How could this happen?” can save a lot of debuggin g
time in P3

Advice

= Grader claimed your code wouldn't die the way you s aid?

= Try running your code in the P2 environment and see how it
does die

15-410, F'10

19

Breakdown

90% = 67.5 3 students

80% = 60.0 16 students

0% = 52.5 23 students (52 and up)
60% = 45.0 10 students

50% = 37.5 0 students

<50% 0 students

Conpari son

= Noticeably fewer “A's” than typical
= Also noticeably fewer “R'S”

15-410, F'10

Implications

Score under 557

= Form a theory of “what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved ?

= Probably plan to do better on the final exam

Reminders

= Final exam will focus more on “design”

= On this exam, most represented by cvars &
rwlock promote() - if both were trouble for you, be warned!

= To pass the class you must demonstrate proficiency on

exams (not just project grades) 15.410. F'10

20

