
15-410, F'101

Exam #1
Oct. 13, 2010

Dave EckhardtDave Eckhardt

Garth GibsonGarth Gibson

L21_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, F'102

Synchronization

Checkpoint 2 – WednesdayCheckpoint 2 – Wednesday
� Please read the handout warnings about context swit ch

and mode switch and IRET very carefully
� Each warning is there because of a big mistake whic h was

very painful for previous students

Asking for troubleAsking for trouble
� If your code isn't in your 410 AFS space every day, you

are asking for trouble
� If your code isn't built and tested on Andrew Linux every

two or three days, you are asking for trouble
� If you aren't using source control, that is probabl y a

mistake

15-410, F'103

Synchronization

Upcoming eventsUpcoming events
� 15-412 (Fall)

� If you want more time in the kernel after 410...
� If you want to see what other kernels are like, fro m the

inside

Google “Summer of Code”Google “Summer of Code”
� http://code.google.com/soc/
� Hack on an open-source project

� And get paid (possibly get recruited, probably not a lot)
� Projects with CMU connections: Plan 9, OpenAFS (see

me)

CMU SCS “Coding in the Summer”?CMU SCS “Coding in the Summer”?

15-410, F'104

Synchronization

Crash boxCrash box
� How many people have had to wait in line to run cod e on

the crash box?
� How long?

15-410, F'105

Synchronization

Debugging adviceDebugging advice
� Once as I was buying lunch I received a fortune

15-410, F'106

Synchronization

Debugging adviceDebugging advice
� Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, F'107

A Word on the Final Exam

DisclaimerDisclaimer
� Past performance is not a guarantee of future resul ts

The course will changeThe course will change
� Up to now: “basics” - What you need for Project 3
� Coming: advanced topics

� Design issues
� Things you won't experience via implementation

Examination will change to matchExamination will change to match
� More design questions
� Some things you won't have implemented (text useful !!)
� Still 3 hours, but more stuff (~100 points, ~7 ques tions)

15-410, F'108

“See Course Staff”

If your paper says “see course staff”...If your paper says “see course staff”...
� ...you should!

This generally indicates a This generally indicates a seriousserious misconception... misconception...
� ...which we fear will seriously harm code you are w riting

now...
� ...which we believe requires personal counseling, n ot just

a brief note, to clear up.

15-410, F'109

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

Question 6Question 6

15-410, F'1010

Q1a – “three 'kinds' of register”

Many “kinds” were acceptableMany “kinds” were acceptable
� Caller-save, callee-save, ...
� General-purpose, control, ...

Hardware has its quirksHardware has its quirks
� Usually to make something go faster
� We need to keep the details of this “finite state machine”

in mind
� Some x86-32 quirks are just quirks
� But many do represent how most hardware works

15-410, F'1011

Q1b – “kernel stack”

In C, “the action” centers on the stackIn C, “the action” centers on the stack

In kernels, “the action” centers on In kernels, “the action” centers on kernelkernel stacks stacks
� ...which are structurally different from user stack s

Key featuresKey features
� Must not be accessible (read-write or read-only) to user

code
� Generally fixed-size (small)
� “Must always exist”

How to get into troubleHow to get into trouble
� Talk only about stacks in general

15-410, F'1012

Q2 – Scheduler state transitions

Good newsGood news
� Most people did at least “ok”

Frequent problemsFrequent problems
� Confusing “sleeping” with “blocked”

� It is possible to conceive of “sleeping” as “a kind of
blocked”

» (Implementation often a bit different)
» We gave you two states (hint: we think they're diff erent)

� You should have two single-ended arcs
� Be sure to understand the key running � runnable

interchange (there are multiple reasons each way)
� Blocked generally goes to Runnable, then to Running

� Scheduler usually needs to evaluate the new runnabl e

15-410, F'1013

Q3 – cvars atop rendezvous()

The problemThe problem
� Implement condition variables in an unfamiliar situ ation

Conceptually, a cvar includes...Conceptually, a cvar includes...
� ...queue of sleeping threads
� ...solution to “atomic block” problem

Common problemsCommon problems
� Each cvar uses rendezvous() tags: 0, 1, 2, ...

� This means it's impossible for a program to use two cvars
� cond_signal() blocks until some thread calls cond_w ait()

� That may never happen!
� Cvar's job is to block waiters indefinitely, not signallers

� See course staff if you have a malloc() list storin g 0, 1, 2...

15-410, F'1014

Q4 – “rwlock_promote()”

Q: What if we non-atomically upgrade our lock?Q: What if we non-atomically upgrade our lock?
� People pervasively saw what is wrong here

Q: What's wrong with rwlock_promote() “spec”?Q: What's wrong with rwlock_promote() “spec”?
� Key problem: “block awaiting __X__ while forbidding all

others to achieve __X__” can be implemented, but it 's a
recipe for deadlock...

� Some answers were based on mis-readings of the “spe c”
� “Sequential atomic upgrade” isn't atomic for the se cond

thread, so that reduces to the part (a) problems

15-410, F'1015

Q4 – “rwlock_promote()”

““ Be careful out there...”Be careful out there...”
� “Insertion could be lost” – mis-ordered, but not ac tually

lost
� “Read/write of free()'d memory causes an exception”

� This is not a rule! If you use bad data as a pointer , maybe...

15-410, F'1016

Q5 – Critical-section algorithm

OverallOverall
� Most people correctly identified one problem
� Quite a few didn't find a second one

� Don't worry, we swapped (a) and (b) points so your correct
solution got 10 points and the incorrect one got 5

15-410, F'1017

Q5 – Critical-section algorithm

Common problemsCommon problems
� Notation

� i vs. j caused some people to spin on the wrong var iable
� Arithmetic doesn't really work for “thread 1” and “ thread 2”

� One problem class: impossible traces
� “do { ... } while (!...false)” does run a second time
� A few other impossible sequences

� Common problem: stopping a trace too early
� If you want to show a steady state, make sure you t race long

enough to show it is steady!
� Once through a loop isn't enough if key values chan ge

» Need to show them stuck in the new value, or changi ng
back to the old value

� Be very clear about what sub-trace you believe repe ats

15-410, F'1018

Q6 – Nuts & Bolts

OverallOverall
� People often identified the bad register (good)
� “What went wrong” claims were less plausible

� The register dumps we showed were from short code w ith
plausible bugs

» Accidental stack crash due to array overflow
» thread_fork wrapper gone awry

� “How could this happen?” can save a lot of debuggin g
time in P3

AdviceAdvice
� Grader claimed your code wouldn't die the way you s aid?

� Try running your code in the P2 environment and see how it
does die

15-410, F'1019

Breakdown

90% = 67.590% = 67.5 3 students 3 students

80% = 60.080% = 60.0 16 students16 students

70% = 52.570% = 52.5 23 students (52 and up)23 students (52 and up)

60% = 45.060% = 45.0 10 students10 students

50% = 37.550% = 37.5 0 students 0 students

<50%<50% 0 students 0 students

ComparisonComparison
� Noticeably fewer “A's” than typical
� Also noticeably fewer “R's”

15-410, F'1020

Implications

Score under 55?Score under 55?
� Form a theory of “what happened”

� Not enough textbook time?
� Not enough reading of partner's code?
� Lecture examples “read” but not grasped?
� Sample exams “scanned” but not solved ?

� Probably plan to do better on the final exam

RemindersReminders
� Final exam will focus more on “design”

� On this exam, most represented by cvars &
rwlock_promote() - if both were trouble for you, be warned!

� To pass the class you must demonstrate proficiency on
exams (not just project grades)

