
15-410, F'091

Exam #1
Oct. 13, 2009

Dave EckhardtDave Eckhardt

Garth GibsonGarth Gibson

L21_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, F'092

Synchronization

Checkpoint 2 – WednesdayCheckpoint 2 – Wednesday
� Please read the handout warnings about context swit ch

and mode switch and IRET very carefully
� Each warning is there because of a big mistake whic h was

very painful for previous students

Asking for troubleAsking for trouble
� If your code isn't in your 410 AFS space every day, you

are asking for trouble
� If your code isn't built and tested on Andrew Linux every

two or three days, you are asking for trouble
� If you aren't using source control, that is probabl y a

mistake

15-410, F'093

Synchronization

Crash boxCrash box
� How many people have had to wait in line to run cod e on

the crash box?
� How long?

15-410, F'094

Synchronization

Debugging adviceDebugging advice
� Last year as I was buying lunch I received a fortun e

15-410, F'095

Synchronization

Debugging adviceDebugging advice
� Last year as I was buying lunch I received a fortun e

Image credit: Kartik Subramanian

15-410, F'096

A Word on the Final Exam

DisclaimerDisclaimer
� Past performance is not a guarantee of future resul ts

The course will changeThe course will change
� Up to now: “basics” - What you need for Project 3
� Coming: advanced topics

� Design issues
� Things you won't experience via implementation

Examination will change to matchExamination will change to match
� More design questions
� Some things you won't have implemented (text useful !!)
� Still 3 hours, but more stuff (~100 points, ~7 ques tions)

15-410, F'097

“See Course Staff”

If your paper says “see course staff”...If your paper says “see course staff”...
� ...you probably should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
� ...which we fear will seriously harm code you are w riting

now...
� ...which we believe requires personal counseling, n ot just

a brief note, to clear up.

15-410, F'098

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, F'099

Q1a – “trap” vs. “fault”

Related concepts abound!Related concepts abound!
� Trap, fault, interrupt, “machine check”, “NMI”
� Each is a “surprise” to the processor
� Key differences

� Is ___ synchronous to the instruction stream?
� Can ___ be recovered from?
� Is ___ normal or abnormal?
� What is the next user-space instruction to be execu ted?

15-410, F'0910

Q1b – “Bounded waiting”

Most-common mistake: defining the Most-common mistake: defining the otherother thing thing

This is a useful conceptThis is a useful concept
� Is it easy or hard to obtain inside your kernel?

15-410, F'0911

Q2 – main() wrapper

Good newsGood news
� Many people got this substantially right (median 8/ 10)

Background issuesBackground issues
� Where are argc and argv stored?
� PUSHA (on “general principles”? What must be saved?)
� x86 vs. x86-64 (every system is different!)
� In stack-based languages, the stack is “where the a ction

is”. Every bit of detail you can grasp will enable you to
debug some problem. Carpe diem!

Documentation issuesDocumentation issues
� Stack pictures are good! (See P2 & P3 handouts)
� If code changes, documentation may need to as well

15-410, F'0912

Q2 – main() wrapper

Other issuesOther issues
� Order of pushing things on stack
� Not setting up a legal stack frame

� Running main() “lasts a while” - stack-trace should work!

15-410, F'0913

Q3 – North/South Bridge

Two proposed algorithms to manage bridge Two proposed algorithms to manage bridge
crossingscrossings
� while (!available) { cond_wait(&done, &bm); }
� while (ready_for != my_ticket) { cond_wait(&done, & bm); }

15-410, F'0914

Q3 – North/South Bridge

Two proposed algorithms to manage bridge Two proposed algorithms to manage bridge
crossingscrossings
� while (!available) { cond_wait(&done, &bm); }
� while (ready_for != my_ticket) { cond_wait(&done, & bm); }

This problem is about two ubiquitous threats to This problem is about two ubiquitous threats to
concurrent codeconcurrent code
� ...?
� ...?

15-410, F'0915

Q3 – North/South Bridge

Two proposed algorithms to manage bridge Two proposed algorithms to manage bridge
crossingscrossings
� while (!available) { cond_wait(&done, &bm); }
� while (ready_for != my_ticket) { cond_wait(&done, & bm); }

This problem is about two ubiquitous threats to This problem is about two ubiquitous threats to
concurrent codeconcurrent code
� Starvation / “Unbounded waiting” (first algorithm)
� Deadlock (second algorithm)

Each version is thwarted by an “evil third thread”Each version is thwarted by an “evil third thread”
� Or a stream of them

15-410, F'0916

Q3 – North/South Bridge

Two proposed algorithms to manage bridge Two proposed algorithms to manage bridge
crossingscrossings
� while (!available) { cond_wait(&done, &bm); }
� while (ready_for != my_ticket) { cond_wait(&done, & bm); }

Common misconception - “Paradise lost”Common misconception - “Paradise lost”
� Happiness does indeed phase in and out in in #1

� The “evil third thread” can get in the way
� But we defend against the possibility with the loop

� Recall outline of “Paradise Lost” lecture: “if() vs . while()”

15-410, F'0917

Q3 – North/South Bridge

Another common misconception: “++”Another common misconception: “++”
� x = ++y; // y's value must go through the ++ to get to =
� x = y++; // y's value is next to the =; ++ “off to the side”

TroubleTrouble
� “Hold a lock around the I/O” - avoid this when poss ible,

since I/O takes “forever” (milliseconds!!)

CautionsCautions
� 15-410 cvars, especially ones you write, are probab ly

strictly FIFO. POSIX cvars are not, so don't burn that too
deeply into your reasoning.

� “Clear” execution traces probably show all synch. o ps

15-410, F'0918

Q4 – TA-status server

““ What's wrong with this picture?”What's wrong with this picture?”
� A race between MSG_FIN and MSG_QUERY

� A referenced object can be destroyed
� A destroyed object can be referenced

� Most people found the problem - good

15-410, F'0919

Q4 – TA-status server

ChallengeChallenge
� Deleter must know when nobody else still has a poin ter to

the object
� An isomorphic problem “might” turn up in your kerne l!

Non-scalable approachesNon-scalable approaches
� “Solve the deletion problem” by never deleting!

� This is a “memory leak” - not a good plan
� Systems like this can't be extended (e.g., “add_new _ta()”)

� Add a “global lock” which serializes all execution
� Defeats the goals using threads (esp. on multi-proc essors!)!
� Design: locks affecting more threads must be held m ore

briefly
� Advice: name locks clearly (“big name” may mean tro uble)

15-410, F'0920

Q4 – TA-status server

ChallengeChallenge
� Deleter must know when nobody else still has a poin ter to

the object
� An isomorphic problem “might” turn up in your kerne l!

Approaches with promiseApproaches with promise
� “Lock handoff” - table lookup returns object alread y

locked against disappearance
� Deleter flushes out inspectors with an rwlock
� If the problem is references others have... count t hem!

15-410, F'0921

Q4 – TA-status server

Reference countsReference counts
� Object “knows” how many people have pointers to it
� Depending on circumstances, anybody may end up with

“the last pointer”
� Maybe the thread who is deleting it

» “Delete” now means “remove from table; flag as 'don e'”
� Maybe that pesky thread with the “old reference”

15-410, F'0922

Q4 – TA-status server

foo_destroy(foo *fp) {

 lock(fp);

 if (--fp->refs > 1) { // Still live...

 unlock(fp); return;

 }

 ...destroy parts...

 ...free object...

}

NotesNotes
� Table presence counts as 1 reference, “cloned” on r eturn
� Many calls to “destroy foo” - most don't really des troy it

15-410, F'0923

Q5 – “Semaphores Rule!”

GoalGoal
� Write mutex and cvar using (nothing but) semaphores

Key observationKey observation
� mutex = mutual exclusion, cvar = “expert waiting”
� semaphore = mutual exclusion plus “expert waiting”
� Fundamental “objects” recur throughout concurrent c ode

� Understanding and being able to rearrange/redeploy is key

Two partsTwo parts
� “Implement mutex” - widely solved
� “Implement cvar” - much more trouble!

15-410, F'0924

Q5 – “Semaphores Rule!”

““ Big” problemsBig” problems
� cas2i_runflag()

� Forbidden by problem statement!
� The world is not full of systems with cas2i_runflag ()
� The world is full of “use understanding of core principles to

solve a problem with different constraints or tools ”
� “semaphore == cvar”

� cond_wait(c,m) { sem_wait(c->sem); } // “m” often u nused!
� cond_signal(c) { sem_signal(c->sem); }
� This fundamentally doesn't work

» cvar “generally waits”
» semaphore “generally does not wait”

15-410, F'0925

Q5 – “Semaphores Rule!”

Plausible approachesPlausible approaches
� “mutex plus chain of semaphores”

� Elaborate “atomic sleep” code is not necessary!
» Semaphore already encapsulates a solution for this!

� “mutex plus semaphore plus waiter count”
� Good insight!
� Some worried: “Only mostly FIFO”

» True, but also true of cvars

Other issuesOther issues
� “Gratuitous malloc() - see course staff” (please do)
� “Mistakes”: lock leak... memory leak... (see papers)

15-410, F'0926

Breakdown

90% = 67.590% = 67.5 6 students (67.0 and up) 6 students (67.0 and up)

80% = 60.080% = 60.0 14 students14 students

70% = 52.570% = 52.5 20 students (52 and up)20 students (52 and up)

60% = 45.060% = 45.0 20 students (44 and up)20 students (44 and up)

50% = 37.550% = 37.5 11 students11 students

<50%<50% 10 students10 students

ComparisonComparison
� Scores are a bit under typical (~3 points)

� Beyond that, more “low end” than typical

15-410, F'0927

Implications

Score 44..52?Score 44..52?
� Figure out “what happened”

� Not enough textbook time?
� Not enough reading of partner's code?
� Lecture examples “read” but not grasped?
� Sample exams “scanned” but not solved ?

� Probably plan to do better on the final exam

Score below 44?Score below 44?
� Something went rather wrong

� It's important to figure out what!
� Passing the final exam may be a serious challenge
� To pass the class you must demonstrate some

proficiency on exams (not just project grades)

