Virtualization

Dave Eckhardt

based on material from:
Mike Kasick
Roger Dannenberg
Glenn Willen
Mike Cui

Apr 4, 2014

Outline

Introduction

- What, why?

Basic techniques

- Simulation

- Binary translation
Kinds of instructions
Virtualization

- x86 Virtualization

- Paravirtualization
Summary

What is Virtualization?

o Virtualization:

- Practice of presenting and partitioning computing
resources in a /ogical way rather than partitioning
according to physical reality

« Virtual Machine:

- An execution environment (quically) identical to a
physical machine, with the ability to execute a full
operating system

Process vs. Virtualization

« The Process abstraction is a “weak, fuzzy” form of
virtualization

Many process resources exactly match machine
resources

e %eax, %ebx, ...

Some machine resources are not visible to processes
e %cCro0

Some process resources are “inspired by” hardware
« SIGALARM

Some process resources are “invented” - don't match any
hardware feature

« “current directory” and “umask”

« Virtualization is “more like hardware” than processes
- What runs inside virtualization is an operating system

Process : Kernel :: Kernel ; ?

Process vs. Virtualization

« The Process abstraction is a “weak, fuzzy” form of
virtualization

Many process resources exactly match machine
resources

e %eax, %ebx, ...

Some machine resources are not visible to processes
e %cCro0

Some process resources are “inspired by” hardware
« SIGALARM

Some process resources are “invented” - don't match any
hardware feature

« “current directory” and “umask”

« Virtualization is “more like hardware” than processes
- What runs inside virtualization is an operating system
Process : Kernel :: Kernel : Virtual-machine monitor

Advantages of the Process
Abstraction

« Each process is a pseudo-machine

« Processes have their own registers, address space, file
descriptors (sometimes)

« Protection from other processes

Disadvantages of the Process
Abstraction

Processes share the file system
- Difficult to simultaneously use different versions of:
- Programs, libraries, configurations
Single machine owner:
- root is fhe superuser

- Any process that attains superuser privileges controls all
processes

Processes share the same kernel
- Kernels are huge, lots of possibly-buggy code

Processes have limited degree of protection, even from
each other

- Linux “OOM killer” can Kill one process if another uses
lots of memory

Overall, processes aren't that isolated from each other...

7

Process/Kernel Stack

Process Process Process

Kernel

Physical Machine

Virtualization Stack

Process Process Process
Kernel
Virtual Machine
Pl |P||P Pl |P||P P||P
Kernel Kernel Kernel

Virtual Machine Monitor (VMM)

Physical Machine

Why Use Virtualization?

« Run two operating systems on the same machine!

- “Windows+Linux” was VMware's first business model
- Hobbyists like to run ancient-history OS's
« Debugging OS's is more pleasant
- Also: instrumenting what an OS does
- Monitoring a captive OS for security infestations
« “Process abstraction” at the kernel layer
- Separate file system

- Multiple machine owners

- Better protection than one kernel's processes (in theory)
- “Small, secure” hypervisor, “small, fair’ scheduler

10

Why Use Virtualization?

« Huge impact on enterprise hosting

- No longer need to sell whole machines

- Sell machine slices

« “xx GB RAM, yy cores” - smoother than “n Dell PowerEdge
2600's”

« Can put competitors on the same physical hardware
« Can separate instance of VM from instance of hardware
- Live migration of VM from machine to machine
- Deal with machine failures or machine-room flooding
- VM replication to provide fault tolerance
- “Why bother doing it at the application level?”
« Can overcommit hardware
- Most VM's are not 100% busy all the time

- If one suddenly becomes 100% busy, move it to a
dedicated machine for a few hours, then move it back

11

Virtualization in Enterprise

« Separates product (OS services) from physical

resources (server hardware)
- Live migration example:

P P

VM 1

VM 2

Server 1

PlIP||P Pl |P||P
VM 1 VM 3
Server 2
PlIP||P Pl|P||P
VM 2 VM 4

Server 3

12

Disadvantages of Virtual Machines

- Attempt to solve what really is an abstraction issue
somewhere else

- Monolithic kernels

- Not enough partitioning of global identifiers
 pids, uids, etc

- Applications written without distribution and fault
tolerance in mind

« Provides some interesting mechanisms, but may not
directly solve “the problem”

13

Disadvantages of Virtual Machines

- Feasibility issues
- Hardware support? OS support?
- Admin support?

- Popularity of virtualization platforms argues these can be
handled

« Performance issues

- Is a 10-20% performance hit tolerable?

« When an IPC becomes an RPC the cost goes up
dramatically

- Can your NIC or disk keep up with the load of multiple
virtual machines?

- Interdomain DoS? Thrashing?
« “Nothing fails like success”

- VMMs are getting larger, and potentially home to security
bugs
14

Outline

Introduction

- What, why?

Basic techniques

- Simulation

- Binary translation
Kinds of instructions
Virtualization

- x86 Virtualization

- Paravirtualization
Summary

15

Full-System Simulation
(Simics 1998)

« Software simulates hardware components that make up
a target machine

- Interpreter executes each instruction & updates the
software representation of the hardware state

« Approach is very accurate but very slow

« Great for OS development & debugging

- “Break on triple fault” is better than real hardware
suddenly rebooting

- Possible to debug a driver for a hardware device that
hasn't been built yet

16

System Emulation
(Bochs, DOSBox, QEMU, fake86)

- Emulate just enough of hardware components to create
an accurate “user experience”

« Typically CPU & memory are emulated

- Buses are not
- Devices communicate with CPU & memory directly

« Shortcuts are taken to achieve better performance

- Reduces overall system accuracy
- Code designed to run correctly on real hardware executes
“pretty well”

- Code not designed to run correctly on real hardware
exhibits wildly divergent behavior

17

System Emulation Techniques

« Pure interpretation:
- Interpret each guest instruction

- Perform a semantically equivalent operation on host
« Static translation:

- Translate each guest instruction to host instructions once
- Example: DEC “mx” translator

 Input: MIPS Ultrix executable
« Output: Alpha OSF/1 executable

- Limited applicability; self-modifying code doesn't work

18

System Emulation Techniques

« Dynamic translation:

- Translate a block of guest instructions to host
instructions just prior to execution of that block

- Cache translated blocks for better performance
- Like a Smalltalk/Java “JIT”
« Dynamic recompilation & adaptive optimization:

- Discover which algorithm the guest code implements
- Substitute with an optimized version on the host
- Hard

19

Outline

Introduction

- What, why?

Basic techniques

- Simulation

- Binary translation
Kinds of instructions
Virtualization

- x86 Virtualization

- Paravirtualization
Summary

20

Kinds of Instructions

“Regular”

- ADD, XOR

- Load, store

- Branch, push, pop
“Special”

- CLI/STI, HLT, read/modify %cr3
Devices (magic side-effects)

- INB/OUTB, stores into video RAM
How do we emulate?

- “Regular”, “Special” - just simulate the CPU

- Devices — very difficult!

« Thousands of devices exist, each one is extremely complex
« A device emulator may be 100 lines of code, or 10,000

21

The Need for Speed

« “Slow” is easy

- Simulation is naturally slow

- Binary translation requires lots of “compilation”
- Key observation

- “Run virtual X on physical X” should be faster than “run
virtual X on physical Y”

- “x86 on x86” should be faster than “x86 on PowerPC”
- We don't need to simulate hardware if we can use it
« “The best simulation of REP STOSB is REP STOSB”
« while(1)
- Find a big block of “regular” instructions
- Load up register values, jump to start of block
« These instructions run at full speed
- When something goes wrong, figure out a fix
- This part is slow

22

Outline

Introduction

- What, why?

Basic techniques

- Simulation

- Binary translation
Kinds of instructions
Virtualization

- x86 Virtualization

- Paravirtualization
Summary

23

Full Virtualization

. IBM CP-40 (1967)

- Supported 14 simultaneous S/360 virtual machines

« Later evolved into CP/CMS and VM/CMS (still in use)

- 1,000 mainframe users, each with a private mainframe,
running a text-based single-process “0S”

« Popek & Goldberg: Formal Requirements for
Virtualizable Third Generation Architectures (1974)

- Defines characteristics of a Virtual Machine Monitor
(VMM)

- Describes a set of architecture features sufficient to
support virtualization

24

Virtual Machine Monitor

Equivalence:

- Provides an environment essentially identical with the
original machine

Efficiency:

- Programs running under a VMM should exhibit only minor
decreases in speed

Resource Control:
- VMM is in complete control of system resources

Process : Kernel :: VM : VMM

25

Popek & Goldberg Instruction
Classification

e« Sensitive instructions:

- Attempt to change configuration of system resources

- Disable interrupts
- Change count-down timer value

- lllustrate different behaviors depending on system
configuration

« Privileged instructions:

- Trap if the processor is in user mode
- Do not trap in supervisor mode

26

Popek & Goldberg Theorem

“... a virtual machine monitor may be constructed if the
set of sensitive instructions for that computer is a
subset of the set of privileged instructions.”

« Each instruction must either:
- Exhibit the same result in user and supervisor modes
- Else trap if executed in user mode

« Enables a VMM to run a guest kernel in user mode
- Sensitive instructions are trapped, handled by VMM
« Architectures that meet this requirement:

- IBM S/370, Motorola 68010+, PowerPC, others.

27

x86 Virtualization

« x86 ISA (pre-2005) does not meet the Popek & Goldberg
requirements for virtualization!

« ISA contains 17+ sensitive, unprivileged instructions:

- SGDT, SIDT, SLDT, SMSW, PUSHF, POPF, LAR, LSL,
VERR, VERW, POP, PUSH, CALL, JMP, INT, RET,
STR, MOV

- Most simply reveal that the “kernel” is running in user
mode

« PUSHF
« PUSH %CS

- Some execute inaccurately
- POPF
 Virtualization is still possible, requires workarounds

28

The “POPF Problem”

PUSHF # SEFLAGS onto stack
ANDL $0x003FFDFF, (%ESP) # Clear IF on stack
POPF # SEFLAGS from stack

 If run in supervisor mode, interrupts are now off
« What “should” happen if this is run in user mode?

29

The “POPF Problem”

PUSHF # SEFLAGS onto stack
ANDL $0x003FFDFF, (%ESP) # Clear IF on stack
POPF # SEFLAGS from stack

 If run in supervisor mode, interrupts are now off
« What “should” happen if this is run in user mode?

- Attempting a privileged operation should trap to VMM
- If it doesn't trap, the VMM can't simulate it
« Because the VMM won't even know it happened

« What happens on the x86?

30

The “POPF Problem”

PUSHF # SEFLAGS onto stack
ANDL $0x003FFDFF, (%ESP) # Clear IF on stack
POPF # SEFLAGS from stack

 If run in supervisor mode, interrupts are now off
« What “should” happen if this is run in user mode?

- Attempting a privileged operation should trap to VMM
- If it doesn't trap, the VMM can't simulate it
« Because the VMM won't even know it happened
- What happens on the x86?

- CPU “helpfully” ignores changes to privileged bits when
POPF runs in user mode!

- So that sequence does nothing, no trap, VMM can't simulate

31

VMware (1998)

Runs guest operating system in ring 3

- Maintains the illusion of running the guest in ring 0

Insensitive instruction sequences run by CPU at full
speed:

- movl 8(%ebp), %ecx
- addl %ecx, %eax

Privileged instructions trap to the VMM:
- cli

Sensitive, unprivileged instructions handled by binary
translation:

- popf = int $99

32

VMware (1998)

Privileged instructions trap to the VMM:
cli

actually results in General Protection Fault (IDT entry #13), handled:

void gpf exception(int vm _num, regs t *regs)

switch (vmm_get faulting opcode(regs->eip))

{
case OP CLI:
/* VM doesn't want interrupts now */
vmm_defer interrupts(vm _num);
break;
}

33

VMware (1998)

We wish popf trapped, but it doesn't.

Scan “code pages” of executable, translating
popf = int $99

which gets handled:

void popf handler(int vm num, regs t *regs) {

unsigned int oldef = regs->eflags;

unsigned int newef = *(regs->esp);

if (!vm->pl0 && (newef & EFLAGS_ SENSITIVE))
gpf handler(...);

regs->eflags = newef;

regs->esp++;

if (!(oldef&EFLAGS IF) && (newef&EFLAGS IF)
deliver pending interrupts(vm);

}
Related technologies
Software Fault Isolation (Lucco, UCB, 1993)
VX32 (Ford & Cox, MIT, 2008)

34

Virtual Memory

« We've virtualized instruction execution
- How about other resources?

- Kernels use physical memory to implement virtual
memory
- How do we virtualize physical memory?

- Each guest kernel must be protected from the others, so we
can't let them access physical memory

« Ok, use virtual memory (obvious so far, isn’t it?)

- But guest kernels themselves provide virtual memory to
their processes

« They like to “MOVL %EAX, %CR3”
« We can't allow them to do that!
« Can we simulate it??

35

VM — Guest-kernel view

Page —\\\\\\

Frame

\

Guest believes
its RAM has
frames O..N

VM - Fiction vs. Reality

Virtual Page

o

Virtual Frame —

| \ Physical Frame

Guest view Guest believes
this is a frame
number, butits Actual frame

just a number number — guest
kernel must not
be allowed to
specify!

37

VM - How to do it?

Virtual Page

o

Virtual Frame

[\ Physical Frame

Guest view Guest believes
this is a frame
number, butit's Actual frame
just a number number — guest

kernel must not
be allowed to
specify!

Note: traditional x86 VM hardware does not implement “map, then map again’

38

VM - How to do it?

Virtual P This is what
riuat Fage ¢———must go
\‘ into the
Virtual Frame actual page
table
[\ Physical Frame
Guest view Guest believes

this is a frame
number, butits Actual frame

just a number number — guest
kernel must not
be allowed to
specify!

39

VM - Shadow Page Tables

Virtual Page Virtual Frame Page Frame
Virtual Page » Virtual Frame Page Frame
Virtual Page Virtual Frame Page Frame

N— 4

“Page-table compiler” -

Runs on “MOVL %EAX, %CR3”

Also runs on INVLPG .

Guest view Reality

40

Shadow Page Tables

« Accesses to %cr3 are trapped by hardware

- Store into %cr3?
- “Compile” guest-kernel page table into real page table
- Map guest frame numbers into actual frame numbers
« Secretly set %cr3 to point to real page table
- Fetch from %cr3?

« Return the guest-kernel “physical” address of the virtual
page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

41

Shadow Page Tables

« Accesses to %cr3 are trapped by hardware

- Store into %cr3?

- “Compile” guest-kernel page table into real page table
- Map guest frame numbers into actual frame numbers
« Secretly set %cr3 to point to real page table

- Fetch from %cr3?

« Return the guest-kernel “physical” address of the virtual
page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

« Accesses to guest-kernel page tables are special too!
- It's ok for the guest kernel to examine its fake page table
- But if guest sfores into a fake PTE, we must re-compile
- So virtual page tables are read-only pages for the guest

42

Shadow Page Tables

« Accesses to %cr3 are trapped by hardware

- Store into %cr3?

- “Compile” guest-kernel page table into real page table
- Map guest frame numbers into actual frame numbers
« Secretly set %cr3 to point to real page table

- Fetch from %cr3?

« Return the guest-kernel “physical” address of the virtual
page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

« Accesses to guest-kernel page tables are special too!
- It's ok for the guest kernel to examine its fake page table
- But if guest sfores into a fake PTE, we must re-compile
- So virtual page tables are read-only pages for the guest
« Guest kernel sets some pages to “kernel only”

- Each guest page table compiles to fwo real page tables

- guest-kernel-mode has all pages, guest-user-mode doesn't43

Wow, This is Hard!

Many tricks played to improve performance
- Compiling page-tables is slow, so cache old compilations
- When to garbage-collect them?
PTE's contain dirty & accessed bits
- Won't cover that today
Guest kernel may be able to tell it is running in a VM
- Some sensitive instructions may leak user-mode-ness
- Virtual devices may behave subtly wrong
- Time dilation may be observed

Is there an easier way??
- Fix the hardware
- Blur the hardware (“paravirtualization™)

44

Hardware Assisted Virtualization

« Recent variants of the x86 ISA do meet Popek &
Goldberg requirements

- Intel VT-x (2005), AMD-V (2006)
« VT-x introduces two new operating modes:

- “VMX root” operation & “VMX non-root” operation
- VMM runs in VMX root, guest OS runs in non-root

- Both modes support all privilege rings
- Guest OS runs in (non-root) ring 0

« VMM tells hardware “Enter guest mode, but trap on these
conditions: ...”

- If guest kernel runs a sensitive instruction, hardware does a
“VM exit” back to VMM, indicates which instruction trapped

- At least initially, binary translation was faster than VT!

- int $99is a “regular” trap, faster than a “special trap”
- 2"-generation VT-x has “EPT”: extra level of page tables 45

Paravirtualization
(Denali 2002, Xen 2003)

« Motivation
- Binary translation and shadow page tables are hard
« First observation:

- If OS is open-source, it can be modified at the source
level to make virtualization explicit (not transparent), and
easier

« Replace “MOVL %EAX, %CR3” with “install_page_table()”

« Typically only a small fraction of the guest kernel needs to
be edited

« Guest user code is not changed at all

« Paravirtualizing VMMs (hypervisors) virtualize only a
subset of the x86 execution environment

Run guest OS in rings 1-3
« No illusion about running in a virtual environment

« Guests may not use sensitive, unprivileged instructions and
expect a privileged result

46

Paravirtualization
(Denali 2002, Xen 2003)

Second observation:

- Regular VMMs must emulate hardware for devices

« Disk, Ethernet, etc
« Performance is poor due to constrained device API

- To “send packet”, must emulate many device-register
accesses (inb/outb or MMIO, interrupt enable/disable)

- Each step results in a trap

- Already modifying guest kernel, why not provide virtual
device drivers?

 Virtual Ethernet could export send_packet(addr, len)
- This requires only one trap
“Hypercall” interface:
syscall : kernel :: hypercall : hypervisor

47

VMware vs. Paravirtualization

Kernel's device communication with VMware (emulated):

void nic_write buffer(char *buf, int size)

for (; size > 0; size--)
nic poll ready(); // many traps
outb (NIC TX BUF, *buf++); // many traps

}
}

Kernel's device communication with hypervisor (hypercall):

void nic_write buffer(char *buf, int size)

{

vmm write(NIC TX BUF, buf, size); // one trap
}

48

Xen (2003)

« Popular hypervisor supporting paravirtualization

- Hypervisor runs on hardware
Runs two kinds of kernels
Host kernel runs in domain 0 (domQ0)

- Required by Xen to boot

- Hypervisor contains no peripheral device drivers
« domO0 needed to communicate with devices

« Supports all peripherals that Linux or NetBSD do!

- Guest kernels run in unprivileged domains (domU's)

49

Xen (2003)

Provides virtual devices to guest kernels
- Virtual block device, virtual ethernet device
- Devices communicate with hypercalls & ring buffers
- Can also assign PCI devices to specific domUs
 Video card
Also supports hardware assisted virtualization (HVM)
- Allows Xen to run unmodified domU's
- Useful for bootstrapping

- Also used for “certain OSes” that can't be source
modified

Supports Linux & NetBSD as domO kernels
Linux, FreeBSD, NetBSD, and Solaris as domU's

50

Outline

Introduction

- What, why?

Basic techniques

- Simulation

- Binary translation
Kinds of instructions
Virtualization

- x86 Virtualization

- Paravirtualization
Summary

51

Are We Having Fun Yet?

« Virtualization is great if you need it
- If you must have 35 /etc/passwd's, 35 sets of users, 35
Ethernet cards, etc.

- There are many techniques, which work (are secure and
fast enough)

 Virtualization is overkill if we need only isolation

- Remember the Java “virtual machine”??

« Secure isolation for multiple applications
« Old approach — Smalltalk (1980)
« New approach — Google App Engine

« Open question
- How best to get isolation, machine independence?

52

Summary

What virtualization does

- Multiple OS's on one laptop
- Debugging, security analysis
- Enterprise
- Efficiency
- Reliability (outage resistance)
The problem

- Kinds of instructions
Solutions
- Binary translation (useful for light-weight uses)
- {Full, hardware assisted, para-}virtualization
Many things not covered!

- “I/O virtualization” - attaching real devices to virtual
machines

53

Further Reading

Gerald J. Popek and Robert P. Goldberg.
Formal requirements for virtualizable third generation architectures.
Communications of the ACM, 17(7):412-421, July 1974.

John Scott Robin and Cynthia E. Irvine.
Analysis of the Intel Pentium’s ability to support a secure virtual machine monitor.
In Proceedings of the 9th USENIX Security Symposium, Denver, CO, August 2000.

Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.
Intel Virtualization Technology: Hardware support for efficient processor virtualization.
Intel Technology Journal, 10(3):167-177, August 20086.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
lan Pratt, and Andrew Warfield.

Xen and the Art of Virtualization.

In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages 164-177,
Bolton Landing, NY, October 2003.

Yaozu Dong, Shaofan Li, Asit Mallick, Jun Nakajima, Kun Tian, Xuefei Xu, Fred Yang, and
Wilfred Yu. Extending Xen with Intel Virtualization Technology.
Intel Technology Journal, 10(3):193-203, August 2006.

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A scalable, high-performance alternative to
hypervisors.

In Proceedings of the 2007 EuroSys conference, Lisbon, Portugal, March 2007.

Fabrice Bellard.
QEMU, a fast and portable dynamic translator.
In Proceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

54

