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What is Virtualization?

o Virtualization:

- Practice of presenting and partitioning computing
resources in a /ogical way rather than partitioning
according to physical reality

« Virtual Machine:

- An execution environment (quically) identical to a
physical machine, with the ability to execute a full
operating system



Process vs. Virtualization

« The Process abstraction is a “weak, fuzzy” form of
virtualization

Many process resources exactly match machine
resources

e %eax, %ebx, ...

Some machine resources are not visible to processes
e %cCro0

Some process resources are “inspired by” hardware
« SIGALARM

Some process resources are “invented” - don't match any
hardware feature

« “current directory” and “umask”

« Virtualization is “more like hardware” than processes
- What runs inside virtualization is an operating system

Process : Kernel :: Kernel ; ?



Process vs. Virtualization

« The Process abstraction is a “weak, fuzzy” form of
virtualization

Many process resources exactly match machine
resources

e %eax, %ebx, ...

Some machine resources are not visible to processes
e %cCro0

Some process resources are “inspired by” hardware
« SIGALARM

Some process resources are “invented” - don't match any
hardware feature

« “current directory” and “umask”

« Virtualization is “more like hardware” than processes
- What runs inside virtualization is an operating system
Process : Kernel :: Kernel : Virtual-machine monitor



Advantages of the Process
Abstraction

« Each process is a pseudo-machine

« Processes have their own registers, address space, file
descriptors (sometimes)

« Protection from other processes



Disadvantages of the Process
Abstraction

Processes share the file system
- Difficult to simultaneously use different versions of:
- Programs, libraries, configurations
Single machine owner:
- root is fhe superuser

- Any process that attains superuser privileges controls all
processes

Processes share the same kernel
- Kernels are huge, lots of possibly-buggy code

Processes have limited degree of protection, even from
each other

- Linux “OOM killer” can Kill one process if another uses
lots of memory

Overall, processes aren't that isolated from each other...
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Process/Kernel Stack
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Virtualization Stack
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Why Use Virtualization?

« Run two operating systems on the same machine!

- “Windows+Linux” was VMware's first business model
- Hobbyists like to run ancient-history OS's
« Debugging OS's is more pleasant
- Also: instrumenting what an OS does
- Monitoring a captive OS for security infestations
« “Process abstraction” at the kernel layer
- Separate file system

- Multiple machine owners

- Better protection than one kernel's processes (in theory)
- “Small, secure” hypervisor, “small, fair’ scheduler
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Why Use Virtualization?

« Huge impact on enterprise hosting

- No longer need to sell whole machines

- Sell machine slices

« “xx GB RAM, yy cores” - smoother than “n Dell PowerEdge
2600's”

« Can put competitors on the same physical hardware
« Can separate instance of VM from instance of hardware
- Live migration of VM from machine to machine
- Deal with machine failures or machine-room flooding
- VM replication to provide fault tolerance
- “Why bother doing it at the application level?”
« Can overcommit hardware
- Most VM's are not 100% busy all the time

- If one suddenly becomes 100% busy, move it to a
dedicated machine for a few hours, then move it back

11



Virtualization in Enterprise

« Separates product (OS services) from physical

resources (server hardware)
- Live migration example:

P P

VM 1

VM 2

Server 1

PlIP||P Pl |P||P
VM 1 VM 3
Server 2
PlIP||P Pl|P||P
VM 2 VM 4

Server 3

12



Disadvantages of Virtual Machines

- Attempt to solve what really is an abstraction issue
somewhere else

- Monolithic kernels

- Not enough partitioning of global identifiers
 pids, uids, etc

- Applications written without distribution and fault
tolerance in mind

« Provides some interesting mechanisms, but may not
directly solve “the problem”
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Disadvantages of Virtual Machines

- Feasibility issues
- Hardware support? OS support?
- Admin support?

- Popularity of virtualization platforms argues these can be
handled

« Performance issues

- Is a 10-20% performance hit tolerable?

« When an IPC becomes an RPC the cost goes up
dramatically

- Can your NIC or disk keep up with the load of multiple
virtual machines?

- Interdomain DoS? Thrashing?
« “Nothing fails like success”

- VMMs are getting larger, and potentially home to security
bugs
14
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Full-System Simulation
(Simics 1998)

« Software simulates hardware components that make up
a target machine

- Interpreter executes each instruction & updates the
software representation of the hardware state

« Approach is very accurate but very slow

« Great for OS development & debugging

- “Break on triple fault” is better than real hardware
suddenly rebooting

- Possible to debug a driver for a hardware device that
hasn't been built yet

16



System Emulation
(Bochs, DOSBox, QEMU, fake86)

- Emulate just enough of hardware components to create
an accurate “user experience”

« Typically CPU & memory are emulated

- Buses are not
- Devices communicate with CPU & memory directly

« Shortcuts are taken to achieve better performance

- Reduces overall system accuracy
- Code designed to run correctly on real hardware executes
“pretty well”

- Code not designed to run correctly on real hardware
exhibits wildly divergent behavior
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System Emulation Techniques

« Pure interpretation:
- Interpret each guest instruction

- Perform a semantically equivalent operation on host
« Static translation:

- Translate each guest instruction to host instructions once
- Example: DEC “mx” translator

 Input: MIPS Ultrix executable
« Output: Alpha OSF/1 executable

- Limited applicability; self-modifying code doesn't work

18



System Emulation Techniques

« Dynamic translation:

- Translate a block of guest instructions to host
instructions just prior to execution of that block

- Cache translated blocks for better performance
- Like a Smalltalk/Java “JIT”
« Dynamic recompilation & adaptive optimization:

- Discover which algorithm the guest code implements
- Substitute with an optimized version on the host
- Hard
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Kinds of Instructions

“Regular”

- ADD, XOR

- Load, store

- Branch, push, pop
“Special”

- CLI/STI, HLT, read/modify %cr3
Devices (magic side-effects)

- INB/OUTB, stores into video RAM
How do we emulate?

- “Regular”, “Special” - just simulate the CPU

- Devices — very difficult!

« Thousands of devices exist, each one is extremely complex
« A device emulator may be 100 lines of code, or 10,000

21



The Need for Speed

« “Slow” is easy

- Simulation is naturally slow

- Binary translation requires lots of “compilation”
- Key observation

- “Run virtual X on physical X” should be faster than “run
virtual X on physical Y”

- “x86 on x86” should be faster than “x86 on PowerPC”
- We don't need to simulate hardware if we can use it
« “The best simulation of REP STOSB is REP STOSB”
« while(1)
- Find a big block of “regular” instructions
- Load up register values, jump to start of block
« These instructions run at full speed
- When something goes wrong, figure out a fix
- This part is slow

22
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Full Virtualization

. IBM CP-40 (1967)

- Supported 14 simultaneous S/360 virtual machines

« Later evolved into CP/CMS and VM/CMS (still in use)

- 1,000 mainframe users, each with a private mainframe,
running a text-based single-process “0S”

« Popek & Goldberg: Formal Requirements for
Virtualizable Third Generation Architectures (1974)

- Defines characteristics of a Virtual Machine Monitor
(VMM)

- Describes a set of architecture features sufficient to
support virtualization
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Virtual Machine Monitor

Equivalence:

- Provides an environment essentially identical with the
original machine

Efficiency:

- Programs running under a VMM should exhibit only minor
decreases in speed

Resource Control:
- VMM is in complete control of system resources

Process : Kernel :: VM : VMM

25



Popek & Goldberg Instruction
Classification

e« Sensitive instructions:

- Attempt to change configuration of system resources

- Disable interrupts
- Change count-down timer value

- lllustrate different behaviors depending on system
configuration

« Privileged instructions:

- Trap if the processor is in user mode
- Do not trap in supervisor mode

26



Popek & Goldberg Theorem

“... a virtual machine monitor may be constructed if the
set of sensitive instructions for that computer is a
subset of the set of privileged instructions.”

« Each instruction must either:
- Exhibit the same result in user and supervisor modes
- Else trap if executed in user mode

« Enables a VMM to run a guest kernel in user mode
- Sensitive instructions are trapped, handled by VMM
« Architectures that meet this requirement:

- IBM S/370, Motorola 68010+, PowerPC, others.
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x86 Virtualization

« x86 ISA (pre-2005) does not meet the Popek & Goldberg
requirements for virtualization!

« ISA contains 17+ sensitive, unprivileged instructions:

- SGDT, SIDT, SLDT, SMSW, PUSHF, POPF, LAR, LSL,
VERR, VERW, POP, PUSH, CALL, JMP, INT, RET,
STR, MOV

- Most simply reveal that the “kernel” is running in user
mode

« PUSHF
« PUSH %CS

- Some execute inaccurately
- POPF
 Virtualization is still possible, requires workarounds
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The “POPF Problem”

PUSHF # SEFLAGS onto stack
ANDL $0x003FFDFF, (%ESP) # Clear IF on stack
POPF # SEFLAGS from stack

 If run in supervisor mode, interrupts are now off
« What “should” happen if this is run in user mode?

29



The “POPF Problem”

PUSHF # SEFLAGS onto stack
ANDL $0x003FFDFF, (%ESP) # Clear IF on stack
POPF # SEFLAGS from stack

 If run in supervisor mode, interrupts are now off
« What “should” happen if this is run in user mode?

- Attempting a privileged operation should trap to VMM
- If it doesn't trap, the VMM can't simulate it
« Because the VMM won't even know it happened

« What happens on the x86?
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The “POPF Problem”

PUSHF # SEFLAGS onto stack
ANDL $0x003FFDFF, (%ESP) # Clear IF on stack
POPF # SEFLAGS from stack

 If run in supervisor mode, interrupts are now off
« What “should” happen if this is run in user mode?

- Attempting a privileged operation should trap to VMM
- If it doesn't trap, the VMM can't simulate it
« Because the VMM won't even know it happened
- What happens on the x86?

- CPU “helpfully” ignores changes to privileged bits when
POPF runs in user mode!

- So that sequence does nothing, no trap, VMM can't simulate
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VMware (1998)

Runs guest operating system in ring 3

- Maintains the illusion of running the guest in ring 0

Insensitive instruction sequences run by CPU at full
speed:

- movl 8(%ebp), %ecx
- addl %ecx, %eax

Privileged instructions trap to the VMM:
- cli

Sensitive, unprivileged instructions handled by binary
translation:

- popf = int $99
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VMware (1998)

Privileged instructions trap to the VMM:
cli

actually results in General Protection Fault (IDT entry #13), handled:

void gpf exception(int vm _num, regs t *regs)

switch (vmm_get faulting opcode(regs->eip))

{
case OP CLI:
/* VM doesn't want interrupts now */
vmm_defer interrupts(vm _num);
break;
}
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VMware (1998)

We wish popf trapped, but it doesn't.

Scan “code pages” of executable, translating
popf = int $99

which gets handled:

void popf handler(int vm num, regs t *regs) {

unsigned int oldef = regs->eflags;

unsigned int newef = *(regs->esp);

if (!vm->pl0 && (newef & EFLAGS_ SENSITIVE))
gpf handler(...);

regs->eflags = newef;

regs->esp++;

if (!(oldef&EFLAGS IF) && (newef&EFLAGS IF)
deliver pending interrupts(vm);

}
Related technologies
Software Fault Isolation (Lucco, UCB, 1993)
VX32 (Ford & Cox, MIT, 2008)
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Virtual Memory

« We've virtualized instruction execution
- How about other resources?

- Kernels use physical memory to implement virtual
memory
- How do we virtualize physical memory?

- Each guest kernel must be protected from the others, so we
can't let them access physical memory

« Ok, use virtual memory (obvious so far, isn’t it?)

- But guest kernels themselves provide virtual memory to
their processes

« They like to “MOVL %EAX, %CR3”
« We can't allow them to do that!
« Can we simulate it??
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VM — Guest-kernel view

Page —\\\\\\

Frame

\

Guest believes
its RAM has
frames O..N



VM - Fiction vs. Reality

Virtual Page

o

Virtual Frame —

| \ Physical Frame

Guest view Guest believes
this is a frame
number, butits  Actual frame

just a number number — guest
kernel must not
be allowed to
specify!
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VM - How to do it?

Virtual Page

o

Virtual Frame

[ \ Physical Frame

Guest view Guest believes
this is a frame
number, butit's  Actual frame
just a number number — guest

kernel must not
be allowed to
specify!

Note: traditional x86 VM hardware does not implement “map, then map again’
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VM - How to do it?

Virtual P This is what
riuat Fage ¢———must go
\‘ into the
Virtual Frame actual page
table
[ \ Physical Frame
Guest view Guest believes

this is a frame
number, butits  Actual frame

just a number number — guest
kernel must not
be allowed to
specify!
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VM - Shadow Page Tables

Virtual Page Virtual Frame Page Frame
Virtual Page » Virtual Frame Page Frame
Virtual Page Virtual Frame Page Frame

N— 4

“Page-table compiler” -

Runs on “MOVL %EAX, %CR3”

Also runs on INVLPG .

Guest view Reality
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Shadow Page Tables

« Accesses to %cr3 are trapped by hardware

- Store into %cr3?
- “Compile” guest-kernel page table into real page table
- Map guest frame numbers into actual frame numbers
« Secretly set %cr3 to point to real page table
- Fetch from %cr3?

« Return the guest-kernel “physical” address of the virtual
page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory
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Shadow Page Tables

« Accesses to %cr3 are trapped by hardware

- Store into %cr3?

- “Compile” guest-kernel page table into real page table
- Map guest frame numbers into actual frame numbers
« Secretly set %cr3 to point to real page table

- Fetch from %cr3?

« Return the guest-kernel “physical” address of the virtual
page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

« Accesses to guest-kernel page tables are special too!
- It's ok for the guest kernel to examine its fake page table
- But if guest sfores into a fake PTE, we must re-compile
- So virtual page tables are read-only pages for the guest
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Shadow Page Tables

« Accesses to %cr3 are trapped by hardware

- Store into %cr3?

- “Compile” guest-kernel page table into real page table
- Map guest frame numbers into actual frame numbers
« Secretly set %cr3 to point to real page table

- Fetch from %cr3?

« Return the guest-kernel “physical” address of the virtual
page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

« Accesses to guest-kernel page tables are special too!
- It's ok for the guest kernel to examine its fake page table
- But if guest sfores into a fake PTE, we must re-compile
- So virtual page tables are read-only pages for the guest
« Guest kernel sets some pages to “kernel only”

- Each guest page table compiles to fwo real page tables

- guest-kernel-mode has all pages, guest-user-mode doesn't43



Wow, This is Hard!

Many tricks played to improve performance
- Compiling page-tables is slow, so cache old compilations
- When to garbage-collect them?
PTE's contain dirty & accessed bits
- Won't cover that today
Guest kernel may be able to tell it is running in a VM
- Some sensitive instructions may leak user-mode-ness
- Virtual devices may behave subtly wrong
- Time dilation may be observed

Is there an easier way??
- Fix the hardware
- Blur the hardware (“paravirtualization™)
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Hardware Assisted Virtualization

« Recent variants of the x86 ISA do meet Popek &
Goldberg requirements

- Intel VT-x (2005), AMD-V (2006)
« VT-x introduces two new operating modes:

- “VMX root” operation & “VMX non-root” operation
- VMM runs in VMX root, guest OS runs in non-root

- Both modes support all privilege rings
- Guest OS runs in (non-root) ring 0

« VMM tells hardware “Enter guest mode, but trap on these
conditions: ...”

- If guest kernel runs a sensitive instruction, hardware does a
“VM exit” back to VMM, indicates which instruction trapped

- At least initially, binary translation was faster than VT!

- int $99is a “regular” trap, faster than a “special trap”
- 2"-generation VT-x has “EPT”: extra level of page tables 45



Paravirtualization
(Denali 2002, Xen 2003)

« Motivation
- Binary translation and shadow page tables are hard
« First observation:

- If OS is open-source, it can be modified at the source
level to make virtualization explicit (not transparent), and
easier

« Replace “MOVL %EAX, %CR3” with “install_page_table()”

« Typically only a small fraction of the guest kernel needs to
be edited

« Guest user code is not changed at all

« Paravirtualizing VMMs (hypervisors) virtualize only a
subset of the x86 execution environment

Run guest OS in rings 1-3
« No illusion about running in a virtual environment

« Guests may not use sensitive, unprivileged instructions and
expect a privileged result
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Paravirtualization
(Denali 2002, Xen 2003)

Second observation:

- Regular VMMs must emulate hardware for devices

« Disk, Ethernet, etc
« Performance is poor due to constrained device API

- To “send packet”, must emulate many device-register
accesses (inb/outb or MMIO, interrupt enable/disable)

- Each step results in a trap

- Already modifying guest kernel, why not provide virtual
device drivers?

 Virtual Ethernet could export send_packet(addr, len)
- This requires only one trap
“Hypercall” interface:
syscall : kernel :: hypercall : hypervisor
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VMware vs. Paravirtualization

Kernel's device communication with VMware (emulated):

void nic_write buffer(char *buf, int size)

for (; size > 0; size--)
nic poll ready(); // many traps
outb (NIC TX BUF, *buf++); // many traps

}
}

Kernel's device communication with hypervisor (hypercall):

void nic_write buffer(char *buf, int size)

{

vmm write(NIC TX BUF, buf, size); // one trap
}
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Xen (2003)

« Popular hypervisor supporting paravirtualization

- Hypervisor runs on hardware
Runs two kinds of kernels
Host kernel runs in domain 0 (domQ0)

- Required by Xen to boot

- Hypervisor contains no peripheral device drivers
« domO0 needed to communicate with devices

« Supports all peripherals that Linux or NetBSD do!

- Guest kernels run in unprivileged domains (domU's)
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Xen (2003)

Provides virtual devices to guest kernels
- Virtual block device, virtual ethernet device
- Devices communicate with hypercalls & ring buffers
- Can also assign PCI devices to specific domUs
 Video card
Also supports hardware assisted virtualization (HVM)
- Allows Xen to run unmodified domU's
- Useful for bootstrapping

- Also used for “certain OSes” that can't be source
modified

Supports Linux & NetBSD as domO kernels
Linux, FreeBSD, NetBSD, and Solaris as domU's
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Are We Having Fun Yet?

« Virtualization is great if you need it
- If you must have 35 /etc/passwd's, 35 sets of users, 35
Ethernet cards, etc.

- There are many techniques, which work (are secure and
fast enough)

 Virtualization is overkill if we need only isolation

- Remember the Java “virtual machine”??

« Secure isolation for multiple applications
« Old approach — Smalltalk (1980)
« New approach — Google App Engine

« Open question
- How best to get isolation, machine independence?
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Summary

What virtualization does

- Multiple OS's on one laptop
- Debugging, security analysis
- Enterprise
- Efficiency
- Reliability (outage resistance)
The problem

- Kinds of instructions
Solutions
- Binary translation (useful for light-weight uses)
- {Full, hardware assisted, para-}virtualization
Many things not covered!

- “I/O virtualization” - attaching real devices to virtual
machines
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