
1

Virtualization
Dave Eckhardt and
Roger Dannenberg
based on material from:

Mike Kasick
Glenn Willen

Mike Cui

April 10, 2009

2

Synchronization

� Memorial service for Timothy Wismer

− Friday, April 17

− 16:00-18:00

− Breed Hall (Margaret Morrison 103)
� Sign will say “Private Event”

− Donations to National Arthritis Foundation will be
welcome

3

Outline

� Introduction

� Virtualization

� x86 Virtualization

� Paravirtualization

� Alternatives for Isolation

� Alternatives for “running two OSes on same machine”

� Summary

4

What is Virtualization?
� Virtualization:

− Process of presenting and partitioning computing
resources in a logical way rather than partitioning
according to physical reality

� Virtual Machine:
− An execution environment (logically) identical to a

physical machine, with the ability to execute a ful l
operating system

� The Process abstraction is related to virtualization: it’s
at least similar to a physical machine

Process : Kernel :: Kernel : ?

5

Advantages of the Process
Abstraction

� Each process is a pseudo-machine

� Processes have their own registers, address space, file
descriptors (sometimes)

� Protection from other processes

6

Disadvantages of the Process
Abstraction

� Processes share the file system

− Difficult to simultaneously use different versions of:
� Programs, libraries, configurations

� Single machine owner:

− root is the superuser

− Any process that attains superuser privileges contr ols all
processes

� Other processes aren't so isolated after all

7

Disadvantages of the Process
Abstraction

� Processes share the same kernel

− Kernel/OS specific software

− Kernels are huge, lots of possibly buggy code

� Processes have limited degree of protection, even f rom
each other

− OOM (out of memory) killer (in Linux) frees memory when
all else fails

8

Why Use Virtualization?

� “Process abstraction” at the kernel layer

− Separate file system

− Different machine owners

� Offers much better protection (in theory)

− Secure hypervisor, fair scheduler

− Interdomain DoS? Thrashing?

� Run two operating systems on the same machine!

9

Why Use Virtualization?

� Huge impact on enterprise hosting

− No longer need to sell whole machines

− Sell machine slices

− Can put competitors on the same physical hardware
Can separate instance of VM from instance of hardwa re

� Live migration of VM from machine to machine

− No more maintenance downtime

� VM replication to provide fault tolerance

− “Why bother doing it at the application level?”

10

Disadvantages of Virtual Machines

� Attempt to solve what really is an abstraction issu e
somewhere else

− Monolithic kernels

− Not enough partitioning of global identifiers
� pids, uids, etc

− Applications written without distribution and fault
tolerance in mind

� Provides some interesting mechanisms, but may not
directly solve “the problem”

11

Disadvantages of Virtual Machines

� Feasibility issues

− Hardware support? OS support?

− Admin support?

− Popularity of virtualization platforms argues these can be
handled

� Performance issues

− Is a 10-20% performance hit tolerable?

− Can your NIC or disk keep up with the load?

12

Outline

� Introduction

� Virtualization

� x86 Virtualization

� Alternatives for Isolation

� Alternatives for “running two OSes on same machine”

� Summary

13

Full Virtualization

� IBM CP-40 (1967)

− Supported 14 simultaneous S/360 virtual machines

� Later evolved into CP/CMS and VM/CMS (still in use)

− 1,000 mainframe users, each with a private mainfram e,
running a text-based single-process “OS”

� Popek & Goldberg: Formal Requirements for
Virtualizable Third Generation Architectures (1974)

− Defines characteristics of a Virtual Machine Monitor
(VMM)

− Describes a set of architecture features sufficient to
support virtualization

14

Virtual Machine Monitor

� Equivalence:

− Provides an environment essentially identical with the
original machine

� Efficiency:

− Programs running under a VMM should exhibit only
minor decreases in speed

� Resource Control:

− VMM is in complete control of system resources

Process : Kernel :: VM : VMM

15

Popek & Goldberg Instruction
Classification

� Sensitive instructions :

− Attempt to change configuration of system resources
� Disable interrupts
� Change count-down timer value
� ...

− Illustrate different behaviors depending on system
configuration

� Privileged instructions :

− Trap if the processor is in user mode

− Do not trap if in supervisor mode

16

Popek & Goldberg Theorem

“... a virtual machine monitor may be constructed i f the
set of sensitive instructions for that computer is a
subset of the set of privileged instructions.”

� All instructions must either:

− Exhibit the same result in user and supervisor mode s

− Or, they must trap if executed in user mode

� Architectures that meet this requirement:

− IBM S/370, Motorola 68010+, PowerPC, others.

17

Outline

� Introduction

� Virtualization

� x86 Virtualization

� Paravirtualization

� Alternatives for Isolation

� Alternatives for “running two OSes on same machine”

� Summary

18

x86 Virtualization

� x86 ISA does not meet the Popek & Goldberg
requirements for virtualization

� ISA contains 17+ sensitive, unprivileged instructio ns:

− SGDT, SIDT, SLDT, SMSW, PUSHF, POPF, LAR, LSL,
VERR, VERW, POP, PUSH, CALL, JMP, INT, RET,
STR, MOV

− Most simply reveal the processor's CPL

� Virtualization is still possible, requires a workar ound

19

The “POPF Problem”

PUSHF # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF # Stack to %EFLAGS

� If run in supervisor mode, interrupts are now off

� What “should” happen if this is run in user mode?

20

The “POPF Problem”

PUSHF # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF # Stack to %EFLAGS

� If run in supervisor mode, interrupts are now off

� What “should” happen if this is run in user mode?

− Attempting a privileged operation should trap

− If it doesn't trap, the VMM can't simulate it
� Because the VMM won't even know it happened

� What happens on the x86?

21

The “POPF Problem”

PUSHF # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF # Stack to %EFLAGS

� If run in supervisor mode, interrupts are now off

� What “should” happen if this is run in user mode?

− Attempting a privileged operation should trap

− If it doesn't trap, the VMM can't simulate it
� Because the VMM won't even know it happened

� What happens on the x86?

− CPU “helpfully” ignores changes to privileged bits when
POPF run in user mode!

22

VMware (1998)

� Runs guest operating system in ring 3

− Maintains the illusion of running the guest in ring 0

� Insensitive instruction sequences run by CPU at ful l
speed:

− movl 8(%ebp), %ecx

− addl %ecx, %eax

� Privileged instructions trap to the VMM:

− cli

� VMware performs binary translation on guest code to
work around sensitive, unprivileged instructions:

− popf � int $99

23

VMware (1998)

Privileged instructions trap to the VMM:
cli

actually results in General Protection Fault (IDT e ntry #13), handled:

void gpf_exception(int vm_num, regs_t *regs)
{
 switch (vmm_get_faulting_opcode(regs->eip))
 {

 ...
case CLI_OP:

 /* VM doesn't want interrupts now */
 vmm_defer_interrupts(vm_num);

 break;
...

 }
}

24

VMware (1998)

We wish popf trapped, but it doesn't.

Scan “code pages” of executable, translating

popf � int $99

which gets handled:
void popf_handler(int vm_num, regs_t *regs)
{
 regs->eflags = *(regs->esp);
 regs->esp++;
}

Related technologies

Software Fault Isolation (Lucco, UCB, 1993)

VX32 (Ford & Cox, MIT, 2008)

25

Virtual Memory

� We've virtualized instruction execution

− How about other resources?
� Kernels access physical memory and implements

virtual memory.

− How do we virtualize physical memory?
� Use virtual memory (obvious so far, isn’t it?)

− If guest kernel runs in virtual memory, how does it
provide virtual memory for processes?

� VMM may have to “shadow” page-mapping tables
� Set-CR3 traps, constructs real virtual memory
� Writes to page directories and page tables are trap ped,

mapped to “shadow” tables

26

Hardware Assisted Virtualization

� Recent variants of the x86 ISA meet Popek & Goldber g
requirements

− Intel VT-x (2005), AMD-V (2006)

� VT-x introduces two new operating modes:

− VMX root operation & VMX non-root operation

− VMM runs in VMX root, guest OS runs in non-root

− Both modes support all privilege rings

− Guest OS runs in (non-root) ring 0, no illusions ne cessary

� At least initially, binary translation faster than VT

− int $99 is a “regular” trap, faster than a “special trap”

27

Outline

� Introduction

� Virtualization

� x86 Virtualization

� Paravirtualization

� Alternatives for Isolation

� Alternatives for “running two OSes on same machine”

� Summary

28

Paravirtualization
(Denali 2002, Xen 2003)

� Motivation

− Binary translation and shadow page tables are hard
� First observation:

− If OS is open, it can be modified at the source level to make
virtualization explicit (not transparent), and easi er

� Paravirtualizing VMMs (hypervisors) virtualize only a subset of the
x86 execution environment

� Run guest OS in rings 1-3

− No illusion about running in a virtual environment

− Guests may not use sensitive, unprivileged instruct ions and
expect a privileged result

� Requires source modification only to guest kernels

− Abstracting page-tables is a big win
� No modifications to user-level code and application s

29

Paravirtualization
(Denali 2002, Xen 2003)

� Second observation:

− Regular VMMs must emulate hardware for devices
� Disk, Ethernet, etc
� Performance is poor due to constrained device API

− To “send packet”, must emulate many device-register
accesses (inb/outb or MMIO, interrupt enable/disabl e)

− Each step results in a trap

− Already modifying guest kernel, why not provide vir tual
device drivers?

� Virtual Ethernet could export send_packet(addr, len)
− This requires only one trap

� “Hypercall” interface:

syscall : kernel :: hypercall : hypervisor

30

VMware vs. Paravirtualization

� Kernel's device communication with VMware (emulated):

void nic_write_buffer(char *buf, int size)
{
 for (; size > 0; size--) {

 nic_poll_ready();
 outb(NIC_TX_BUF, *buf++);
 }

}

� Kernel's device communication with hypervisor (hype rcall):

void nic_write_buffer(char *buf, int size)
{
 vmm_write(NIC_TX_BUF, buf, size);
}

31

Xen (2003)

� Popular hypervisor supporting paravirtualization

− Hypervisor runs on hardware

− Runs two kinds of kernels

− Host kernel runs in domain 0 (dom0)
� Required by Xen to boot
� Hypervisor contains no peripheral device drivers
� dom0 needed to communicate with devices
� Supports all peripherals that Linux or NetBSD do!

− Guest kernels run in unprivileged domains (domU's)

32

Xen (2003)

� Provides virtual devices to guest kernels

− Virtual block device, virtual ethernet device

− Devices communicate with hypercalls & ring buffers

− Can also assign PCI devices to specific domUs
� Video card

� Also supports hardware assisted virtualization (HVM)

− Allows Xen to run unmodified domU's

− Useful for bootstrapping

− Also used for “the OS” that can't be source modifie d
� Supports Linux & NetBSD as dom0 kernels

� Linux, FreeBSD, NetBSD, and Solaris as domU's

33

Outline

� Introduction

� Virtualization

� x86 Virtualization

� Paravirtualization

� Alternatives for Isolation

� Alternatives for “running two OSes on same machine”

� Summary

34

chroot()

� Venerable Unix system call

� Runs a Unix process with a different root directory

− Almost like having a separate file system

� Share the same kernel & non-filesystem “things”

− Networking, process control

� Only a minimal sandbox.

− /proc, /sys

− Resources: I/O bandwidth, cpu time, memory,
disk space, …

35

User-mode Linux

� Runs a guest Linux kernel as a user space process
under a regular Linux kernel

� Requires highly modified Linux kernel

� No modification to application code

� Used to be popular among hosting providers

� More mature than Xen, roughly equivalent, but much
slower because Xen is designed to host kernels

36

Container-based OS Virtualization

� Allows multiple instances of an OS to run in isolat ed containers
under the same kernel

� Assumptions:
− Want strong separation between “virtual machines”
− But we can trust the kernel
− Every “virtual machine” can use the same kernel ver sion

� It follows that:
− Don’t need to virtualize the kernel
− Instead, beef up naming and partitioning inside the kernel:

Each container can have:
� User id, pid, tid space
� Domain name
� Isolated file system, OS version, libraries, etc.

� Total isolation between containers without virtuali zation overhead.
� VServer, FBSD Jails, OpenVZ, Solaris Containers (ak a “Zones”)

37

Outline

� Introduction

� Virtualization

� x86 Virtualization

� Paravirtualization

� Alternatives for Isolation

� Alternatives for “running two OSes on same machine”

� Summary

38

Full System Simulation
(Simics 1998)

� Software simulates hardware components that make up
a target machine

� Interpreter executes each instruction & updates the
software representation of the hardware state

� Approach is very accurate but very slow

� Great for OS development & debugging

� Break on triple fault is better than a reset

39

System Emulation
(Bochs, DOSBox, QEMU)

� Seeks to emulate just enough of system hardware com ponents to
create an accurate “user experience”

� Typically CPU & memory subsystems are emulated

− Buses are not

− Devices communicate with CPU & memory directly
� Many shortcuts taken to achieve better performance

− Reduces overall system accuracy

− Code designed to run correctly on real hardware exe cutes
“pretty well”

− Code not designed to run correctly on real hardware exhibits
wildly divergent behavior

� E.g. run legacy 680x0 code on PowerPC, run Windows on ??

40

System Emulation Techniques

� Pure interpretation:

− Interpret each guest instruction

− Perform a semantically equivalent operation on host

� Static translation:

− Translate each guest instruction to host once

− Happens at startup

− Limited applicability, no self-modifying code

41

System Emulation Techniques

� Dynamic translation:

− Translate a block of guest instructions to host
instructions just prior to execution of that block

− Cache translated blocks for better performance

� Dynamic recompilation & adaptive optimization:

− Discover what algorithm the guest code implements

− Substitute with an optimized version on the host

− Hard

42

Outline

� Introduction

� Virtualization

� x86 Virtualization

� Paravirtualization

� Alternatives for Isolation

� Alternatives for “running two OSes on same machine”

� Summary

43

Are We Having Fun Yet?

� Virtualization is great if you need it

− If you must have 35 /etc/passwd's, 35 sets of users , 35
Ethernet cards, etc.

− There are many techniques, which work (are secure a nd
fast enough)

� Virtualization is overkill if we need only isolatio n

− Remember the Java “virtual machine”??
� Secure isolation for multiple applications
� Old approach – Smalltalk (1980)
� New approach – Google App Engine

� Open question

− How best to get isolation, machine independence?

44

Summary

� Virtualization is big in enterprise hosting

� {Full, hardware assisted, para-}virtualization

� Containers: VM-like abstraction with high efficienc y

� Emulation is a slower alternative, more flexibility

45

Further Reading
� Gerald J. Popek and Robert P. Goldberg.

Formal requirements for virtualizable third generation architectures.
Communications of the ACM, 17(7):412-421, July 1974.

� John Scott Robin and Cynthia E. Irvine.
Analysis of the intel pentium’s ability to support a secure virtual machine monitor.
In Proceedings of the 9th USENIX Security Symposium, Denver, CO, August 2000.

� Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.
Intel Virtualization Technology: Hardware support for efficient processor virtualization.
Intel Technology Journal, 10(3):167-177, August 2006.

� Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield.
Xen and the art of virtualization.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages 164-177,
Bolton Landing, NY, October 2003.

� Yaozu Dong, Shaofan Li, Asit Mallick, Jun Nakajima, Kun Tian, Xuefei Xu, Fred Yang, and
Wilfred Yu. Extending Xen with Intel Virtualization Technology.
Intel Technology Journal, 10(3):193-203, August 2006.

� Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A scalable, high-performance alternative to
hypervisors.
In Proceedings of the 2007 EuroSys conference, Lisbon, Portugal, March 2007.

� Fabrice Bellard.
QEMU, a fast and por table dynamic translator.
In Proceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

