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Synchronization

� Memorial service for Timothy Wismer

− Friday, April 17

− 16:00-18:00

− Breed Hall (Margaret Morrison 103)
� Sign will say “Private Event”

− Donations to National Arthritis Foundation will be 
welcome
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What is Virtualization?
� Virtualization:

− Process of presenting and partitioning computing 
resources in a logical way rather than partitioning 
according to physical reality

� Virtual Machine:
− An execution environment (logically) identical to a  

physical machine, with the ability to execute a ful l 
operating system

� The Process abstraction is related to virtualization: it’s 
at least similar to a physical machine

Process : Kernel :: Kernel : ?
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Advantages of the Process 
Abstraction

� Each process is a pseudo-machine

� Processes have their own registers, address space, file 
descriptors (sometimes)

� Protection from other processes
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Disadvantages of the Process 
Abstraction

� Processes share the file system

− Difficult to simultaneously use different versions of:
� Programs, libraries, configurations

� Single machine owner:

− root is the superuser

− Any process that attains superuser privileges contr ols all 
processes

� Other processes aren't so isolated after all
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Disadvantages of the Process 
Abstraction

� Processes share the same kernel

− Kernel/OS specific software

− Kernels are huge, lots of possibly buggy code

� Processes have limited degree of protection, even f rom 
each other

− OOM (out of memory) killer (in Linux) frees memory when 
all else fails
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Why Use Virtualization?

� “Process abstraction” at the kernel layer

− Separate file system

− Different machine owners

� Offers much better protection (in theory)

− Secure hypervisor, fair scheduler

− Interdomain DoS?  Thrashing?

� Run two operating systems on the same machine!
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Why Use Virtualization?

� Huge impact on enterprise hosting

− No longer need to sell whole machines

− Sell machine slices  

− Can put competitors on the same physical hardware
Can separate instance of VM from instance of hardwa re

� Live migration of VM from machine to machine

− No more maintenance downtime

� VM replication to provide fault tolerance

− “Why bother doing it at the application level?”
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Disadvantages of Virtual Machines

� Attempt to solve what really is an abstraction issu e 
somewhere else

− Monolithic kernels

− Not enough partitioning of global identifiers
� pids, uids, etc

− Applications written without distribution and fault  
tolerance in mind

� Provides some interesting mechanisms, but may not 
directly solve “the problem”
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Disadvantages of Virtual Machines

� Feasibility issues

− Hardware support?  OS support?

− Admin support?

− Popularity of virtualization platforms argues these  can be 
handled

� Performance issues

− Is a 10-20% performance hit tolerable?

− Can your NIC or disk keep up with the load?
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Full Virtualization

� IBM CP-40 (1967)

− Supported 14 simultaneous S/360 virtual machines

� Later evolved into CP/CMS and VM/CMS (still in use)

− 1,000 mainframe users, each with a private mainfram e, 
running a text-based single-process “OS”

� Popek & Goldberg: Formal Requirements for 
Virtualizable Third Generation Architectures (1974)

− Defines characteristics of a Virtual Machine Monitor 
(VMM)

− Describes a set of architecture features sufficient  to       
support virtualization
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Virtual Machine Monitor

� Equivalence:

− Provides an environment essentially identical with the 
original machine

� Efficiency:

− Programs running under a VMM should exhibit only 
minor decreases in speed

� Resource Control:

− VMM is in complete control of system resources

Process : Kernel :: VM : VMM
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Popek & Goldberg Instruction 
Classification

� Sensitive instructions :

− Attempt to change configuration of system resources
� Disable interrupts
� Change count-down timer value
� ...

− Illustrate different behaviors depending on system 
configuration

� Privileged instructions :

− Trap if the processor is in user mode

− Do not trap if in supervisor mode
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Popek & Goldberg Theorem

“... a virtual machine monitor may be constructed i f the 
set of sensitive instructions for that computer is a 
subset of the set of privileged instructions.”

� All instructions must either:

− Exhibit the same result in user and supervisor mode s

− Or, they must trap if executed in user mode

� Architectures that meet this requirement:

− IBM S/370, Motorola 68010+, PowerPC, others.
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x86 Virtualization

� x86 ISA does not meet the Popek & Goldberg 
requirements for virtualization

� ISA contains 17+ sensitive, unprivileged instructio ns:

− SGDT, SIDT, SLDT, SMSW, PUSHF, POPF, LAR, LSL, 
VERR, VERW, POP, PUSH, CALL, JMP, INT, RET, 
STR, MOV

− Most simply reveal the processor's CPL

� Virtualization is still possible, requires a workar ound
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The “POPF Problem”

PUSHF # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF # Stack to %EFLAGS

� If run in supervisor mode, interrupts are now off

� What “should” happen if this is run in user mode?
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The “POPF Problem”

PUSHF # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF # Stack to %EFLAGS

� If run in supervisor mode, interrupts are now off

� What “should” happen if this is run in user mode?

− Attempting a privileged operation should trap

− If it doesn't trap, the VMM can't simulate it
� Because the VMM won't even know it happened

� What happens on the x86?
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The “POPF Problem”

PUSHF # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF # Stack to %EFLAGS

� If run in supervisor mode, interrupts are now off

� What “should” happen if this is run in user mode?

− Attempting a privileged operation should trap

− If it doesn't trap, the VMM can't simulate it
� Because the VMM won't even know it happened

� What happens on the x86?

− CPU “helpfully” ignores changes to privileged bits when 
POPF run in user mode!
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VMware (1998)

� Runs guest operating system in ring 3

− Maintains the illusion of running the guest in ring  0

� Insensitive instruction sequences run by CPU at ful l 
speed:

− movl 8(%ebp), %ecx

− addl %ecx, %eax

� Privileged instructions trap to the VMM:

− cli

� VMware performs binary translation on guest code to 
work around sensitive, unprivileged instructions:

− popf  � int $99



23

VMware (1998)

Privileged instructions trap to the VMM:
cli

actually results in General Protection Fault (IDT e ntry #13), handled:

void gpf_exception(int vm_num, regs_t *regs)
{
    switch (vmm_get_faulting_opcode(regs->eip))
    {

      ...
case CLI_OP:

            /* VM doesn't want interrupts now */
            vmm_defer_interrupts(vm_num);

 break;
...

  }
}
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VMware (1998)

We wish popf  trapped, but it doesn't.

Scan “code pages” of executable, translating

popf  � int $99

which gets handled:
void popf_handler(int vm_num, regs_t *regs)
{
     regs->eflags = *(regs->esp);
     regs->esp++;
}

Related technologies

Software Fault Isolation (Lucco, UCB, 1993)

VX32 (Ford & Cox, MIT, 2008)
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Virtual Memory

� We've virtualized instruction execution

− How about other resources?
� Kernels access physical memory and implements 

virtual memory.

− How do we virtualize physical memory?
� Use virtual memory (obvious so far, isn’t it?)

− If guest kernel runs in virtual memory, how does it  
provide virtual memory for processes?

� VMM may have to “shadow” page-mapping tables
� Set-CR3 traps, constructs real virtual memory
� Writes to page directories and page tables are trap ped, 

mapped to “shadow” tables
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Hardware Assisted Virtualization

� Recent variants of the x86 ISA meet Popek & Goldber g 
requirements

− Intel VT-x (2005), AMD-V (2006)

� VT-x introduces two new operating modes:

− VMX root operation & VMX non-root operation

− VMM runs in VMX root, guest OS runs in non-root

− Both modes support all privilege rings

− Guest OS runs in (non-root) ring 0, no illusions ne cessary

� At least initially, binary translation faster than VT

− int $99  is a “regular” trap, faster than a “special trap”



27

Outline

� Introduction

� Virtualization

� x86 Virtualization

� Paravirtualization

� Alternatives for Isolation

� Alternatives for “running two OSes on same machine”

� Summary



28

Paravirtualization 
(Denali 2002, Xen 2003)

� Motivation

− Binary translation and shadow page tables are hard
� First observation:

− If OS is open, it can be modified at the source level  to make 
virtualization explicit (not transparent), and easi er

� Paravirtualizing VMMs (hypervisors) virtualize only  a subset of the 
x86 execution environment

� Run guest OS in rings 1-3

− No illusion about running in a virtual environment

− Guests may not use sensitive, unprivileged instruct ions and 
expect a privileged result

� Requires source modification only to guest kernels

− Abstracting page-tables is a big win
� No modifications to user-level code and application s
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Paravirtualization
(Denali 2002, Xen 2003)

� Second observation:

− Regular VMMs must emulate hardware for devices
� Disk, Ethernet, etc
� Performance is poor due to constrained device API

− To “send packet”, must emulate many device-register  
accesses (inb/outb or MMIO, interrupt enable/disabl e)

− Each step results in a trap

− Already modifying guest kernel, why not provide vir tual 
device drivers?

� Virtual Ethernet could export send_packet(addr, len )
− This requires only one trap

� “Hypercall” interface:

syscall : kernel :: hypercall : hypervisor
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VMware vs. Paravirtualization

� Kernel's device communication with VMware (emulated ):

void nic_write_buffer(char *buf, int size)
{
    for (; size > 0; size--) {

     nic_poll_ready();
     outb(NIC_TX_BUF, *buf++);
 }

}

� Kernel's device communication with hypervisor (hype rcall):

void nic_write_buffer(char *buf, int size)
{
    vmm_write(NIC_TX_BUF, buf, size);
}
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Xen (2003)

� Popular hypervisor supporting paravirtualization

− Hypervisor runs on hardware

− Runs two kinds of kernels

− Host kernel runs in domain 0 (dom0)
� Required by Xen to boot
� Hypervisor contains no peripheral device drivers
� dom0 needed to communicate with devices
� Supports all peripherals that Linux or NetBSD do!

− Guest kernels run in unprivileged domains (domU's)
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Xen (2003)

� Provides virtual devices to guest kernels

− Virtual block device, virtual ethernet device

− Devices communicate with hypercalls & ring buffers

− Can also assign PCI devices to specific domUs
� Video card

� Also supports hardware assisted virtualization (HVM )

− Allows Xen to run unmodified domU's

− Useful for bootstrapping

− Also used for “the OS” that can't be source modifie d
� Supports Linux & NetBSD as dom0 kernels

� Linux, FreeBSD, NetBSD, and Solaris as domU's
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chroot()

� Venerable Unix system call

� Runs a Unix process with a different root directory

−  Almost like having a separate file system 

� Share the same kernel & non-filesystem “things”

− Networking, process control 

� Only a minimal sandbox.

− /proc, /sys

− Resources: I/O bandwidth, cpu time, memory, 
disk space, …
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User-mode Linux

� Runs a guest Linux kernel as a user space process 
under a regular Linux kernel

� Requires highly modified Linux kernel

� No modification to application code

� Used to be popular among hosting providers

� More mature than Xen, roughly equivalent, but much 
slower because Xen is designed to host kernels
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Container-based OS Virtualization

� Allows multiple instances of an OS to run in isolat ed containers 
under the same kernel

� Assumptions:
− Want strong separation between “virtual machines”
− But we can trust the kernel
− Every “virtual machine” can use the same kernel ver sion

� It follows that:
− Don’t need to virtualize the kernel
− Instead, beef up naming and partitioning inside the  kernel: 

Each container can have:
� User id, pid, tid space
� Domain name
� Isolated file system, OS version, libraries, etc.

� Total isolation between containers without virtuali zation overhead.
� VServer, FBSD Jails, OpenVZ, Solaris Containers (ak a “Zones”)
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Full System Simulation
(Simics 1998)

� Software simulates hardware components that make up  
a target machine

� Interpreter executes each instruction & updates the  
software representation of the hardware state

� Approach is very accurate but very slow

� Great for OS development & debugging

� Break on triple fault is better than a reset
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System Emulation 
(Bochs, DOSBox, QEMU)

� Seeks to emulate just enough of system hardware com ponents to 
create an accurate “user experience”

� Typically CPU & memory subsystems are emulated

− Buses are not

− Devices communicate with CPU & memory directly
� Many shortcuts taken to achieve better performance

− Reduces overall system accuracy

− Code designed to run correctly on real hardware exe cutes 
“pretty well”

− Code not designed to run correctly on real hardware  exhibits 
wildly divergent behavior

� E.g. run legacy 680x0 code on PowerPC, run Windows on ??
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System Emulation Techniques

� Pure interpretation:

− Interpret each guest instruction 

− Perform a semantically equivalent operation on host

� Static translation:

− Translate each guest instruction to host once

− Happens at startup

− Limited applicability, no self-modifying code
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System Emulation Techniques

� Dynamic translation:

− Translate a block of guest instructions to host 
instructions just prior to execution of that block

− Cache translated blocks for better performance

� Dynamic recompilation & adaptive optimization:

− Discover what algorithm the guest code implements

− Substitute with an optimized version on the host

− Hard
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Are We Having Fun Yet?

� Virtualization is great if you need it

− If you must have 35 /etc/passwd's, 35 sets of users , 35 
Ethernet cards, etc.

− There are many techniques, which work (are secure a nd 
fast enough)

� Virtualization is overkill if we need only isolatio n

− Remember the Java “virtual machine”??
� Secure isolation for multiple applications
� Old approach – Smalltalk (1980)
� New approach – Google App Engine

� Open question

− How best to get isolation, machine independence?
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Summary

� Virtualization is big in enterprise hosting

� {Full, hardware assisted, para-}virtualization

� Containers: VM-like abstraction with high efficienc y

� Emulation is a slower alternative, more flexibility
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