
1

Exam Feedback

Dave Eckhardt
de0u@andrew.cmu.edu

2

Exam – overall

� Grade distribution

� 24 A's (90..100)

� 20 B's (80..89)

� 12 C''s (70..79)

� 4 other

� No obvious need to curve

� Final exam could be harder

� Grade change requests: end of week

3

Exam - overall

� “And then the OS ...”

� No!

4

Exam – overall

� “And then the OS ...”

� This is an OS class!

� We are under the hood!

� The job is to understand the parts of the OS

� What they do

� How they interact

� Why

5

Q1

� Are keyboard interrupts really necessary?

� Conditions which remain the same

� Input may arrive early (input queue)

� Processes may arrive early (waiting queue)

� Focus on what is different

� Detecting new input

� Carrying it to existing input queue/wait queue

6

Q1

� “Polling” approach

� When?

� How long?

� “Create a special process” approach

� When does it run?

� How long?

� Polling for all of every other quantum is not good

� How to interact with wait queue?

7

Q1 (summary)

� Observe that CPU quantum can be set to 5 ms

� Observe people don't need echo for 50 ms

� Re-wire scheduler

� Scan keyboard hardware for new scan codes

� Invoke pseudo-interrupt

� Basically, same code as your keyboard interrupt handler

� Pseudo-interrupt gives keystroke to process

� Put near front of scheduler queue

8

Q2 (a)

� The “ process exit” question

� Sum of process memory is 256 K

� Memory freed on exit is 50 K

� “ Not a multiple of 4 K”

� So? We didn't say it's an x86...

� Trying to change the problem:

� 50K “ is approximately 16K stack + 32K heap”

9

Q2 (a) - summary

� Virtual-freed != physical-freed due to sharing

� Could be copy-on-write

� Could be shared read-only text regions

� Insight: physical memory is used to make virtual

� They are not “ the same”

10

Q2 (b)

� Process state graph

� Went well overall

11

Q2 (c)

� Explain why you have no hope of accessing
memory belonging to your partner's processes.

� Key concept: address space

� Everybody gets their own 0..4 GB

� Other options possible

� Segmented address space (Multics)

� But you needed to explain

� Common case: every main() in same place

� Sparse virutal address space (EROS)

12

Q3: load_linked()/store_conditional()

� Required to consider multi-processor target

� test-and-yield() is bad

� unless you carefully explained it

� Common concern: lock/unlock conflict

� Real load-linked()/store-conditional() a bit better

� Still an issue (see Hennessey & Patterson)

� random back-off

� occasional yield

13

Q4: “ Concentration” card game

� “ Global mutex” approach

� “ Solves” concurrency problems by removing
concurrency!

� Can be devastating

� (not a technique we covered in class)

� Deadlock avoidance/detection approaches

� Hard to get right

� There is another option

14

Deadlock prevention

� “ Pass a law”

� So every possible sequence violates one of:

� Mutual exclusion

� Hold & Wait

� Non-preemption

� Wait cycles

15

Common case

� Violate “ wait cycles”

� Establish locking order

� Total order on mutexes in system

� Pre-sort locks according to order

� Or, dump & start over

� Good locking order: memory addresses

� &card[i][j]

� each lock is unique

� every lock is comparable to every other lock

16

A subtle mistake

i1 = generate_random(0, 5);
j1 = generate_random(0, 5);
i2 = generate_random(i1, 5);
j2 = generate_random(j1, 5);

� Good news

� No wait cycles

� Bad news?

� Starvation of certain cards

� (well, serious bias against)

17

Q5: Critical Section Protocol

� “ Hyman's algorithm”

� Comments on a Problem in Concurrent Programming

	 CACM 9:1 (1966)

	 (retracted)

� Doesn't provide mutual exclusion

� Doesn't provide bounded waiting

18

Q5: Critical Section Protocol

� You should understand these problems

� You won't implement mutexes often

� Thought patterns matter for concurrent
programming

