
Computer Science 15-412: Operating Systems
Midterm Exam, Spring 2003

1. This is a closed-book, closed-notes, in-class exam. You may not use any reference
materials during the exam.

2. You must complete the exam by the end of the class period.

3. Answer all questions. The weight of each question is indicated on the exam.

4. Please be concise in your answers. You will receive partial credit for partially correct
answers, but truly extraneous remarks may count against your grade.

5. Be sure to put your name and Andrew ID below and your Andrew ID at the top of
each following page.

Andrew
Username

Full
Name

Question Max Points Grader

1. 20

2. 20

3. 20

4. 20

5. 20

Andrew ID: 2

1. Are keyboard interrupts really necessary? Outline an approach, suitable for a pre-
emptively scheduled multi-user, multi-process operating system, for ensuring timely
delivery of keypress events from the keyboard controller’s I/O port to waiting processes
without the use of keyboard interrupts. Assume that a person pressing a key needs
to see the response on the screen in 50-60 milliseconds, that reasonable scheduling
quantum values range from 5 milliseconds to 20 milliseconds, and that your solution
must work even if there are “many” (e.g., 100) processes running and all of them
choose to call a blocking getchar() system call inside a tight loop.

Andrew ID: 3

2. (a) Imagine an OS kernel similar to the one you are implementing for P3. In par-
ticular, assume that the OS does not page or swap memory pages to disk. The
kernel supports a system call getfreeframecount() which returns the number of
memory frames which are currently free (i.e., frames which are not reserved for
kernel memory and could be assigned to user processes).
Imagine a situation where exactly two processes are running, parent and child.
The parent calls getfreeframecount(), records the value in a variable called fc1,
sends a “please exit now” message to the child process, wait()s for the child
process to exit(), and then calls getfreeframecount() again, recording the value
in a variable called fc2.
Immediately before the child process exited, its memory regions had the following
sizes:
128K code
64K data
16K bss
32K heap
16K stack

The parent process observes that (fc2 − fc1), when converted from frames to
bytes, works out to be 50K. Explain how this could be a correct outcome (i.e.,
not due to a bug).

Andrew ID: 4

(b) Here are graph nodes for three states a process can be in. Draw directed arcs (i.e.,
arrows) between the nodes to indicate all legal transitions. Label each arc with
a 1-word summary term and then, below the figure, provide a brief explanation
(1 or 2 sentences should suffice) of what you meant by each summary term. For
any node pair (i,j) you do not need to draw more than a single arc from i to
j, i.e., you do not need to draw more than six arcs (and you may need to draw
fewer). Another way to say this is that, for each transition, you need provide us
with only one explanation of why such a transition happens.

�
�

�
�running

�
�

�
�sleeping

�
�

�
�runnable

Andrew ID: 5

(c) Imagine you and your programming partner are both logged in to
UNIX3.ANDREW.CMU.EDU when you are seized by an impulse to disrupt
your partner’s calm, cool demeanor. Your first idea is to write a C program
which will write zeroes throughout the address space of your partner’s shell
(command interpreter, i.e., bash, tcsh, etc.). To your sadness you discover that
the operating system has placed an insurmountable hardware barrier in your
path. Explain why you have no hope of accessing memory belonging to your
partner’s processes.

Andrew ID: 6

3. On shared-memory multi-processor machines, mutexes are frequently implemented in
terms of two special instructions, called load-linked and store-conditional. The reason
for this is that the instructions commonly used on single-processor systems, such as
exchange(), compare-and-swap(), or test-and-set(), require bus locking, which can be
very expensive on multiprocessor systems. Instead of locking the system memory
bus, load-linked and store-conditional indicate that the processor should use a special
signalling protocol on the memory bus and also closely monitor how other processors
use the memory bus.

Load-linked(address1) returns the contents of the designated memory address. Store-
conditional(address2, value) attempts to perform the designated memory-store oper-
ation (i.e., “*address2 = value;”) and returns a boolean value indicating whether or
not the memory-store operation succeeded. The operation will typically succeed, but
may fail for one of the following reasons.

(a) Within a process, each load-linked() operation cancels any previous outstanding
load-linked() operation. That is, the following sequence will always fail:
v1 = load-linked(a1);
v2 = load-linked(a2);
ok = store-conditional(a1, 99); /* a2 has cancelled a1, ok == false */

(b) Any trap, exception, or interrupt which “distracts” the processor which was
running our process from the time it began executing the load-linked() instruc-
tion until the time the matching store-conditional() completes causes the store-
conditional() to fail.

(c) If, from the time when our processor begins to execute load-linked(a1) on our
behalf until the time when our processor begins to execute store-conditional(a1,
v), some other process or thread executing on another processor has executed
load-linked(a3) and the virtual memory system maps our a1 and that pro-
cess’s/thread’s a3 to the same physical memory address, our store-conditional()
will fail.

Please write pseudo-code for the following thread library functions, in terms of load-
linked and store-conditional. You may assume that the result of calling mutex lock()
or mutex unlock() on a mutex before mutex init() is undefined.

In addition to load-linked() and store-conditional(), you may use standard C variables
and short scraps of code (but you may not call arbitrary library routines). You may
also use the following version of the yield() system call: “void yield(void);”. Observe
that to get full credit for this question your design must take into account that it is
targeted at multiprocessor machines.

Andrew ID: 7

struct mutex {

}

void mutex_init(struct mutex *mp)
{

}

void mutex_lock(struct mutex *mp)
{

}

void mutex_unlock(struct mutex *mp)
{

}

Andrew ID: 8

4. Imagine a multi-threaded version of the children’s card game “Concentration”. The
game is played with a two-dimensional array of cards which are face-down. Players
take turns selecting two cards and turning them face-up. If the cards match, the player
captures the pair of cards; otherwise, the player must turn both cards face-down and
another player takes a turn. The code below plays the game according to a very naive
strategy, but that is not as significant as the fact that it will occasionally deadlock if
multiple threads run play() simultaneously.

int cards[6][6];
mutex lock[6][6];
mutex pairs_lock;
int pairs_left;
int everybody_done;

void init(void) {
...shuffle 36-card deck into cards[][]
...mutex_init() all of lock[][]...
mutex_init(&pairs_lock);
pairs_left = 18; everybody_done = 0;

}

int play()
{

int score = 0;
while (!everybody_done) {

int i1, j1, i2, j2, tmp1, tmp2, tmp3, tmp4;

i1 = generate_random(0, 5); j1 = generate_random(0, 5);
i2 = generate_random(0, 5); j2 = generate_random(0, 5);

if ((i1 == i2) && (j1 == j2))
continue;

mutex_lock(lock[i1][j1]); mutex_lock(lock[i2][j2]);

if ((cards[i1][j1] == cards[i2][j2]) && (cards[i1][j1] != GONE)) {
++score; cards[i1][j1] = cards[i2][j2] = GONE;
mutex_lock(pairs_lock);
if (--pairs_left == 0)
everybody_done = 1;

mutex_unlock(pairs_lock);
}
mutex_unlock(lock[i1][j1]); mutex_unlock(lock[i2][j2]);

}
return (score);

}

Andrew ID: 9

(a) Draw a “system resource-allocation graph” (as presented in the text and in class)
depicting a deadlock situation that can arise from running this code as described.
Your graph must depict both threads and resources.

(b) Present a small modification to the code above which will ensure it will not
deadlock. You should not modify the thread library or call library routines which
are not already being called. There are multiple correct answers, but some are
better than others. It is acceptable for you to present one or more sequences of
code to be substituted and/or added, instead of presenting the entire new version
of play(), as long as your “edit” specification(s) is/are clear.

Andrew ID: 10

5. Consider the following critical-section protocol:

boolean waiting[2] = { false, false };
int turn = 0;

1. waiting[i] = true;
2. while (turn != i) {
3. while (waiting[j])
4. /* do nothing */ ;
5. turn = i;

}
6. ...critical section...
7. waiting[i] = false;
8. ...remainder section...

(This protocol is presented in the standard form, i.e., if process 0 is running this code,
i == 0 and j == 1; if process 1 is running this code, i == 1 and j == 0.)

There is a problem with this protocol. That is, it does not ensure that all three require-
ments (mutual exclusion, progress, and bounded waiting) are always met. Identify a
requirement which is not met and lay out a scenario which demonstrates your claim.
Use the format presented in class, i.e.,

P0 P1
waiting[0] = false;

turn = 0;

