
1L31_Lockfree

Lock-Free Programming

Geoff Langdale

2L31_Lockfree

Desynchronization

● This is an interesting topic

● This will (may?) become even more relevant with near
ubiquitous multi-processing

● Still: please don’t rewrite any Project 3s!

3L31_Lockfree

Synchronization
● We received notification via the web form that one

group has passed the P3/P4 test suite. Congratulations!

● We will be releasing a version of the fork-wait bomb
which doesn't make as many assumptions about task
id's.
– Please look for it today and let us know right away if it

causes any trouble for you.

● Personal and group disk quotas have been grown in
order to reduce the number of people running out over
the weekend
– if you try hard enough you'll still be able to do it.

4L31_Lockfree

Outline

● Problems with locking

● Definition of Lock-free programming

● Examples of Lock-free programming

● Linux OS uses of Lock-free data structures

● Miscellanea (higher-level constructs, ‘wait-freedom’)

● Conclusion

5L31_Lockfree

Problems with Locking

● This list is more or less contentious, not equally
relevant to all locking situations:
– Deadlock
– Priority Inversion
– Convoying
– “Async-signal-safety”
– Kill-tolerant availability
– Pre-emption tolerance
– Overall performance

6L31_Lockfree

Problems with Locking 2

● Deadlock
– Processes that cannot proceed because they are waiting

for resources that are held by processes that are waiting
for…

● Priority inversion
– Low-priority processes hold a lock required by a higher-

priority process
– Priority inheritance a possible solution

7L31_Lockfree

Problems with Locking 3

● Convoying
– Like the 61-series buses on Forbes Avenue

● Well, not exactly (overtaking stretches the metaphor?)
– Several processes need locks in a roughly similar order
– One slow process gets in first
– All the other processes slow to the speed of the first one

8L31_Lockfree

Problems with Locking 4

● ‘Async-signal safety’
– Signal handlers can’t use lock-based primitives
– Especially malloc and free
– Why?

● Suppose a thread receives a signal while holding a user-
level lock in the memory allocator

● Signal handler executes, calls malloc, wants the lock

● Kill-tolerance
– If threads are killed/crash while holding locks, what

happens?

9L31_Lockfree

Problems with Locking 5

● Pre-emption tolerance
– What happens if you’re pre-empted holding a lock?

● Overall performance
– Arguable
– Efficient lock-based algorithms exist
– Constant struggle between simplicity and efficiency
– Example. thread-safe linked list with lots of nodes

● Lock the whole list for every operation?
● Reader/writer locks?
● Allow locking individual elements of the list?

10L31_Lockfree

Lock-free Programming

● Thread-safe access to shared data without the use of
synchronization primitives such as mutexes

● Possible but not practical in the absence of hardware
support

● Example: Lamport’s “Concurrent Reading and Writing”
– CACM 20(11), 1977
– describes a non-blocking buffer
– limitations on number of concurrent writers

● Practical with hardware support
– Odd history: lots of user-level music software uses lock-

free data structures

11L31_Lockfree

General Approach to Lock-Free
Algorithms

● Designing generalized lock-free algorithms is hard

● Design lock-free data structures instead
– Buffer, list, stack, queue, map, deque, snapshot

● Often implemented in terms of simpler primitives
– e.g. ‘Multi-word Compare and Set’ (MCAS, CAS2, CASN)
– Cannot implement lock-free algorithms in terms of lock-

based data structures
– What’s going to be one of the scarier underlying lock-

free, thread-safe primitive?
● Hint: you usually need this for lists and stacks…

12L31_Lockfree

Simple Lock-Free Example

● Lock-free stack (aka LIFO queue)

● With integers! (wow…)

● Loosely adapted from example by Jean Gressmann
– Basically ‘uglied up’ (C++ to C)

13L31_Lockfree

class Node {

Node * next;

int data;

};

// stable ‘head of list’, not an real Node

Node * head;

Lock-free Stack Structures

● Not great style, just happens to fit on a slide

● Better to not gratuitously alias ‘whole data structure’ and ‘data
structure element’ classes/structures, IMO

14L31_Lockfree

Lock-free Stack Push

void push(int t) {

Node* node = new Node(t);

do {

node->next = head;

} while (!cas(&head, node, node->next));

}

15L31_Lockfree

Lock-Free Stack Pop
bool pop(int& t) {

Node* current = head;
while(current) {

if(cas(&head, current->next, current)) {
t = current->data; // problem?
return true;

}
current = head;

}
return false;

}

16L31_Lockfree

Lock-free Stack: ABA problem

● ‘ABA problem’
– Thread 1 looks at some shared variable, finds that it is ‘A’
– Thread 1 calculates some interesting thing based on the

fact that the variable is ‘A’
– Thread 2 executes, changes variable to B
– (if Thread 1 wakes up now and tries to compare-and-set,

all is well – compare and set fails and Thread 1 retries)
– Instead, Thread 2 changes variable back to A!
– OK if the variable is just a value, but…

17L31_Lockfree

Lock-free Stack: ABA problem
● In our example, variable in question is the stack head

– It’s a pointer, not a plain value!
Thread 1: pop()

read A from head

store A.next `somewhere’

cas with A suceeds

Thread 2:

pop()

pops A, discards it

First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B

Push(head, A)

18L31_Lockfree

ABA problem notes

● Work-arounds
– Keep a ‘update count’ (needs ‘doubleword CAS’)
– Don’t recycle the memory ‘too soon’

● Theoretically not a problem for LL/SC-based
approaches
– ‘Ideal’ semantics of Load-linked/Store-conditional don’t

suffer from this problem
– No ‘ideal’ implementation of load-linked/store-conditional

exists (so all new problems instead of ABA)
● Spurious failures
● Limited or no access to other shared variables between

LL/SC pairs

19L31_Lockfree

Lock-Free Stack Caveats

● This is not an especially wonderful example
– Could implement with a single mutex and expose only

push() and pop()
– Overhead of a single lock is not prohibitive

● Still illustrates some important ideas
– No overhead
– Common lock-free technique: atomically switching

pointers
– No API possible to ‘hold lock’
– Illustrates ABA problem

20L31_Lockfree

Lock-free Linked Lists

● Better example: lock-free linked lists

● Potentially a long traversal

● Unpleasant to lock list during whole traversal

● High overhead to festoon entire list with locks

● Readers-writers locks only solve part of the problem
– P2 demonstrated all the difficulties with rwlocks…

21L31_Lockfree

Lock-free Linked Lists

● Example operation: append

● Search for the right spot in the list

● Append using same CAS pointer trick

A B C

D

A B C

CAS A.next

22L31_Lockfree

Lock-free Linked Lists: Deletion

● Problem
– A thread deleting of B requires an atomic action on

node’s predecessor
– Suppose another thread tries to insert E after B

(concurrently)
– B.next -> E
– B no longer on list, E ‘somewhere’

E

A B C

CAS B.next
CAS A.next

23L31_Lockfree

L-F Linked Lists: Deletion Solutions
● A myriad of solutions, for example:

● Harris, “A pragmatic implementation of non-blocking
linked-lists”, 2001 (15th International Symposium on
Distributed Computing)
– Place a ‘mark’ in the next pointer of the soon-to-be-

deleted node
● Easy on aligned architectures (free couple of low-order bits

in most pointers)
– Always fail if we try to CAS this (doesn’t look like a real

pointer)
– If we detect this problem, restart

● Have to go back to the start of the list (we’ve ‘lost our place’)

24L31_Lockfree

Lock-free OS Examples
● ACENIC Gigabit Ethernet driver

– Circular receive buffers with no requirement for spin-lock
● Various schemes proposed for Linux lock-free list

traversal
– “Read-copy-update” (RCU) in 2.5 kernel
– Yet Another type of Lock-free programming
– Summary

● To modify a data structure, put a copy in place
● Wait until it’s known all threads have given up all of the

locks that they held (easy in non-preemptive kernel)
● Then, delete the original
● Requires memory barriers but no CAS or LL/SC.

25L31_Lockfree

Lock-Free Memory Allocation

● Michael (PLDI 2004), “Scalable Lock-Free Dynamic
Memory Allocation”

● Thread-safe malloc() and free() with no locks

● Claim:
– Near-perfect scalability with added processors under a

range of contention levels
– Lower latency than other highly tuned malloc

implementations (even with low contention)

26L31_Lockfree

Higher-Level Concepts

● Difficulties with lock-free programming
– Have to make sure that everyone behaves

● True of mutexes too; C/C++ can’t force you to acquire the
right mutex for a given structure

● Although they can try
– Hard to generalize to arbitrary sets of complex operations

● Object-based Software Transactional Memory
– Uses object-based programming
– Uses underlying lock-free data-structures
– Group operations and commit/fail them atomically
– Not really a OS-level concept (yet?)

27L31_Lockfree

Lock-Free Warnings

● Not a cure for contention
– It’s still possible to have too many threads competing for

a lock free data structure
– Starvation is still a possibility

● Requires the same hardware support as mutexes do

● Not a magic bullet

● Requires:
– A fairly simple problem (e.g. basic data structure), or
– Roll your own lock-free algorithm (fun!)

28L31_Lockfree

Wait-Freedom
● Don’t confuse this!

● Wait-Free definition: Each operation completes in a
finite number of steps

● Wait-free implies lock-free

● Lock-free algorithms does not imply wait-free
– Note while loops in our lock-free algorithms…

● Wait-free synchronization much harder
– Impossible in many cases
– Usually specifiable only given a fixed number of threads

● Generally appear only in ‘hard’ real time systems

29L31_Lockfree

Conclusion

● Lock-free programming can produce good performance

● Difficult to get right
– Performance and correctness (ABA problem)

● Well-established, tested, tuned implementations of
common data structures are available

● Good starting points
– Google: “lock-free programming”
– http://www.audiomulch.com/~rossb/code/lockfree/ is a

good summary

	Lock-Free Programming
	Desynchronization
	Synchronization
	Outline
	Problems with Locking
	Problems with Locking 2
	Problems with Locking 3
	Problems with Locking 4
	Problems with Locking 5
	Lock-free Programming
	General Approach to Lock-Free Algorithms
	Simple Lock-Free Example
	Lock-free Stack Structures
	Lock-free Stack Push
	Lock-Free Stack Pop
	Lock-free Stack: ABA problem
	Lock-free Stack: ABA problem
	ABA problem notes
	Lock-Free Stack Caveats
	Lock-free Linked Lists
	Lock-free Linked Lists
	Lock-free Linked Lists: Deletion
	L-F Linked Lists: Deletion Solutions
	Lock-free OS Examples
	Lock-Free Memory Allocation
	Higher-Level Concepts
	Lock-Free Warnings
	Wait-Freedom
	Conclusion

