
15-410, F'151

Protection
Nov. 30, 2015

Dave EckhardtDave Eckhardt

L34_Protection

15-410
“...1969 > 1999?...”

Synchronization

Upcoming lecturesUpcoming lectures
 Security, security
 …
 ...
 Transactions
 Device drivers
 Exam review

Attendance is probably in your best interestAttendance is probably in your best interest

15-410, F'153

Outline

Protection (OSC: Chapter 14)Protection (OSC: Chapter 14)
 Protection vs. Security
 Domains (Unix, Multics)
 Access Matrix

 Concept, Implementation

 Revocation – not really covered today (see text)

Mentioning EROSMentioning EROS

[Later lectures: techniques and cracks][Later lectures: techniques and cracks]

15-410, F'154

Protection vs. Security

Textbook's distinctionTextbook's distinction
 Protection happens inside a computer

 Which parts may access which other parts (how)?

 Security considers external threats
 Is the system's model intact or compromised?

15-410, F'155

Protection

GoalsGoals
 Prevent intentional attacks
 “Prove” access policies are always obeyed
 Detect bugs

 “Wild pointer” example

Policy specificationsPolicy specifications
 System administrators
 Users - May want to add new privileges to system

15-410, F'156

Objects

HardwareHardware
 Exclusive-use: printer, serial port, CD writer, ...
 Fluid aggregates: CPU, memory, disks, screen

LogicalLogical objects objects
 Files
 Processes
 TCP port 25
 Database tables

15-410, F'157

Operations

Depend on object!Depend on object!
 Disk: read_sector(), write_sector()
 CD-ROM: read_sector(...)
 TCP port: advertise(...)
 CPU

 Conceptually: context_switch(...), <interrupt>
 More sensibly: realtime_schedule(..., ...)

15-410, F'158

Access Control

Basic access controlBasic access control
 Your processes should access only “your stuff”
 Implemented by many systems

15-410, F'159

Access Control

Basic access controlBasic access control
 Your processes should access only “your stuff”
 Implemented by many systems

Principle of least privilegePrinciple of least privilege
 (text: “need-to-know”)
 cc -c foo.c

 should read foo.c, stdio.h, ...
 should write foo.o

15-410, F'1510

Access Control

Basic access controlBasic access control
 Your processes should access only “your stuff”
 Implemented by many systems

Principle of least privilegePrinciple of least privilege
 (text: “need-to-know”)
 cc -c foo.c

 should read foo.c, stdio.h, ...
 should write foo.o
 should not write ~/.cshrc

 This is harder

15-410, F'1511

Who Can Do What?

access right = (object, operations)access right = (object, operations)
 /etc/passwd, r
 /etc/passwd, r/w

process process →→ protection domainprotection domain
 P0 → de0u, P1 → mowry, ...

protection domain protection domain →→ list of access rights list of access rights
 de0u → (/etc/passwd, r), (/afs/andrew/usr/de0u/.cshrc, w)

15-410, F'1512

Protection Domain Example

Domain 1Domain 1
 /dev/null, read/write
 /usr/de0u/.cshrc, read/write
 /usr/mowry/.cshrc, read

Domain 2Domain 2
 /dev/null, read/write
 /usr/mowry/.cshrc, read/write
 /usr/de0u/.cshrc, read

15-410, F'1513

Using Protection Domains

Least privilege requires Least privilege requires domain changesdomain changes
 Doing different jobs requires different privileges
 One printer daemon, N users

 “Print each user's file with minimum necessary privileges...”

15-410, F'1514

Using Protection Domains

Least privilege requires Least privilege requires domain changesdomain changes
 Doing different jobs requires different privileges
 One printer daemon, N users

 “Print each user's file with minimum necessary privileges...”

Two general approachesTwo general approaches
 Hold constant the “process → domain” mapping

 Requires domains to add and drop privileges
 User “printer” gets & releases permission to read your file

 Hold constant the privileges of a domain
 Processes domain-switch between high-privilege, low-

privilege domains
 Printer process opens file as you, opens printer as “printer”

15-410, F'1515

Protection Domain Models

Three sample modelsThree sample models
 Domain = user
 Domain = process
 Domain = procedure
 (other models are possible)

15-410, F'1516

Domain = User

Object permissions depend on Object permissions depend on who you arewho you are

All processes you are running share privilegesAll processes you are running share privileges

Privilege adjustment?Privilege adjustment?
 Log off, log on (i.e., domain switch)

15-410, F'1517

Domain = Process

Resources managed by special processesResources managed by special processes
 Printer daemon, file server process, ...

Privilege adjustment?Privilege adjustment?
 Objects cross domain boundaries via IPC
 “Please send these bytes to the printer”

 /* concept only; pieces missing */

 s = socket(AF_UNIX, SOCK_STREAM, 0);

 connect(s, pserver, sizeof pserver);

 mh->cmsg_type = SCM_RIGHTS;

 mh->cmsg_len[0] = open(“/my/file”, 0, 0);

 sendmsg(s, &mh, 0);

15-410, F'1518

Domain = Procedure

Processor limits access at fine grainProcessor limits access at fine grain
 Hardware protection on a per-variable basis!

Domain switch – Domain switch – Inter-domain procedure callInter-domain procedure call
 nr = print(strlen(buf), buf);
 What is the “correct domain” for print()?

 Access to OS's data structures
 Permission to call OS's internal putbytes()
 Permission to read user's buf

15-410, F'1519

Domain = Procedure

Processor limits access at fine grainProcessor limits access at fine grain
 Hardware protection on a per-variable basis!

Domain switch – Domain switch – Inter-domain procedure callInter-domain procedure call
 nr = print(strlen(buf), buf);
 What is the “correct domain” for print()?

 Access to OS's data structures
 Permission to call OS's internal putbytes()
 Permission to read user's buf

 Ideally, correct domain automatically created by hardware
 Common case: “user mode” vs. “kernel mode”

» Only a rough approximation of the right domain

» But simple for hardware to implement

15-410, F'1520

Unix “setuid” concept

Assume Unix protection domain Assume Unix protection domain ≡≡ numeric user id numeric user id
 Not the whole story! This overlooks:

 Group id, group vector
 Process group, controlling terminal
 Superuser

 But let's pretend for today

Domain switch via Domain switch via setuid executablesetuid executable
 Special permission bit set with chmod u+s file

 Meaning: exec() sets uid to executable file's owner

 Gatekeeper programs
 “lpr” run by anybody can access printer's queue files

15-410, F'1521

Access Matrix Concept

ConceptConcept
 Formalization of “who can do what”

Basic ideaBasic idea
 Store all permissions in a matrix

 One dimension is protection domains
 Other dimension is objects
 Entries are access rights

15-410, F'1522

Access Matrix Concept

File1 File2 File3 Printer

rwxd rD1

r rwxd wD2

rwxd rwxd rwxd wD3

r r rD4

15-410, F'1523

Access Matrix Details

OS must still define process OS must still define process →→ domain mappingdomain mapping

OS must define, enforce domain-switching rulesOS must define, enforce domain-switching rules
 Ad-hoc approach

 Special domain-switch rules (e.g., log off/on)

 Can encode domain-switch in access matrix!
 Switching domains is a privilege like any other...
 Add domain columns (domains are objects)
 Add switch-to rights to domain objects

» “D2 processes can switch to D1 at will”
 Subtle (dangerous)

15-410, F'1524

Adding “Switch-Domain” Rights

File1 File2 File3 D1

rwxd rD1

r rwxd sD2

rwxd rwxd rwxdD3

r r rD4

15-410, F'1525

Updating the Matrix

Ad-hoc approachAd-hoc approach
 “System administrator” can update matrix

Matrix approachMatrix approach
 Add copy rights to objects

 “Domain D1 may copy read rights for File2”
 So D1 can give D2 the right to read File2

15-410, F'1526

Adding Copy Rights

File1 File2 File3

rwxdR rD1

r rwxdD2

rwxd rwxd rwxdD3

r r rD4

15-410, F'1527

Adding Copy Rights

File1 File2 File3

rwxdR rD1

r r rwxdD2

rwxd rwxd rwxdD3

r r rD4

15-410, F'1528

Updating the Matrix

Add Add owner rightsowner rights to objects to objects
 D1 has owner rights for O47
 D1 can modify the O47 column at will

 Can add, delete rights to O47 from all other domains

Add Add control rightscontrol rights to domain objects to domain objects
 D1 has control rights for D2
 D1 can modify D2's rights to any object

 D1 may be teacher, parent, ...

15-410, F'1529

Access Matrix Implementation

Implement matrix via matrix?Implement matrix via matrix?
 Huge, messy, slow

VeryVery clumsy for... clumsy for...
 “world readable file”

 Need one entry per domain
 Must fill rights in when creating new domain

 “private file”
 Lots of blank squares

» Can Alice read the file? - No

» Can Bob read the file? - No

» ...

Two typical approaches – “ACL”, “capabilities”Two typical approaches – “ACL”, “capabilities”

15-410, F'1530

Access Control List

File1

D1

rD2

rwxdD3

rD4

15-410, F'1531

Access Control List (ACL)

List per matrix column (object)List per matrix column (object)
 de0u, read; mowry, read+write

Naively, domain = userNaively, domain = user

AFS ACLsAFS ACLs
 domain = user, user:group, system:anyuser, machine list

(system:campushost)
 positive rights, negative rights

 de0u:staff rlid
 mdehesaa -rlid

Cool!Cool!

Access Control List (ACL)

List per matrix column (object)List per matrix column (object)
 de0u, read; mowry, read+write

Naively, domain = userNaively, domain = user

AFS ACLsAFS ACLs
 domain = user, user:group, system:anyuser, machine list

(system:campushost)
 positive rights, negative rights

 de0u:staff rlid
 mdehesaa -rlid

Doesn't really do Doesn't really do least privilegeleast privilege
 Adding and deleting users is a heavy-weight operation
 System stores many privileges per user, permanently...

15-410, F'1533

Capability List

File1 File2 File3

rwxdR rD1

15-410, F'1534

Capability Lists

CapabilityCapability Lists Lists
 List per matrix row (domain)
 Naively, domain = user

 More typically, domain = process

Permit Permit least privilegeleast privilege
 Domains can transfer & forget capabilities

 Possible to create “just right” domains

» cc which can't write to .cshrc

 Bootstrapping problem
 Who gets which rights at boot?
 Who gets which rights at login?
 Typical solution: store capability lists in files somehow

15-410, F'1535

Mixed Approach

Permanently store ACL for each filePermanently store ACL for each file
 Must fetch ACL from disk to access file
 ACL fetch & evaluation may be long, complicated

open() checks ACL, creates capabilityopen() checks ACL, creates capability
 “Process 33 has read-only access to vnode #5894”
 Records access rights for this process
 Quick verification on each read(), write()
 Result: per-process fd table “caches” results of ACL

checks

15-410, F'1536

Internal Protection?

Understood so far:Understood so far:
 Which user process should be allowed to access what?

 Job performed by OS

 How to protect OS code, data from user processes
 Hardware user/kernel boundary

Can we do better?Can we do better?
 Can we protect parts of the OS from other parts?

15-410, F'1537

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

15-410, F'1538

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Smaller
Simpler

More Critical

15-410, F'1539

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Equally
Trusted!!

15-410, F'1540

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Wild Pointer
Access

15-410, F'1541

Multics

Multics =Multics =
 Multiplexed Information and Computing Service
 Plan: “information utility”

 Mainframe per city

Designed to scaleDesigned to scale
 Many users, many programmers
 Protection seen as a key ingredient of reliability

15-410, F'1542

Multics Approach

Trust Trust hierarchyhierarchy

Small “simple” very-trusted Small “simple” very-trusted kernelkernel
 Main job: access control
 Goal: “prove” it correct

Privilege layers (nested “rings”)Privilege layers (nested “rings”)
 Ring 0 = kernel, “inside” every other ring
 Ring 1 = operating system core
 Ring 2 = operating system services
 ...
 Ring 7 = user programs

15-410, F'1543

Multics Ring Architecture

Segmented virtual address spaceSegmented virtual address space
 “Print module” may contain

 Entry points in a code segment

» list_printers(), list_queue(), enqueue(), ...
 Data segment

» List of printers, accounting data, queues

 Segment ≡ file (segments persist across reboots)

 VM permissions focus on segments, not pages

Access checked by hardwareAccess checked by hardware
 Which procedures can you call?
 Is access to that segment's data legal?

15-410, F'1544

Multics Rings

File System
Page Store

Disk

Kernel

15-410, F'1545

Multics Rings

File System
Page Store

Disk

Kernel
Wild Pointer

Access

15-410, F'1546

Multics Rings

File System
Page Store

Disk

Kernel
Wild Pointer

Access

 Fault

15-410, F'1547

Multics Domain Switching

CPU has CPU has current ring numbercurrent ring number register register
 Current privilege level, [0..7]

Segment descriptors includeSegment descriptors include
 “Traditional stuff”

 Segment's limit (size)
 Segment's base in physical memory
 Access bits (read, write, execute)

 Ring number
 Access bracket [min, max]

 Segment “appears in” ring min...ring max

 Entry limit - “you must be this tall to access this segment”
 List of gates (procedure entry points)

15-410, F'1548

Multics Domain Switching

Every procedure callEvery procedure call is a potential domain switch is a potential domain switch

Calling a procedure at current privilege level?Calling a procedure at current privilege level?
 Just call it

Calling a more-privileged procedure?Calling a more-privileged procedure?
 Call mechanism checks entry point is legal
 We enter more-privileged mode
 Called procedure can read & write all of our data

Calling a less-privileged procedure?Calling a less-privileged procedure?
 We want to show it some of our data (procedure params)
 We don't want it to modify our data

15-410, F'1549

Multics Domain Switching

min <= current-ring <= maxmin <= current-ring <= max
 We are executing in ring 3
 Procedure is “part of” rings 2..4
 Standard procedure call

15-410, F'1550

Multics Domain Switching

current-ring > maxcurrent-ring > max
 Calling a more-privileged procedure
 It can do whatever it wants to us

ImplementationImplementation
 Hardware traps to ring 0 permission-management kernel
 Ring 0 checks current-ring < entry-limit

 User code may be forbidden to call ring 1 directly

 Ring 0 checks call address is a legal entry point
 Less-privileged code can't jump into middle of a procedure

 Ring 0 sets current-ring to segment-ring
 Privilege elevation – after consulting callee's rules

 Runs procedure call

15-410, F'1551

Multics Domain Switching

current-ring < mincurrent-ring < min
 Calling a less-privileged procedure

ImplementationImplementation
 Trap to ring 0 permission-management kernel
 Ring 0 copies “privileged” procedure call parameters

 Must be in low-privilege segment for callee to access

 Ring 0 sets current-ring to segment-ring
 Privilege lowering – callee gets r/o access to carefully

chosen privileged state

 Runs procedure call

15-410, F'1552

Multics Ring Architecture

Does this look familiar?Does this look familiar?
 It should really remind you of something...

BenefitsBenefits
 Core security policy small, centralized
 Damage limited vs. Unix “superuser”' model

ConcernsConcerns
 Hierarchy ≠ least privilege

 Requires specific hardware
 Performance (maybe)

15-410, F'1553

More About Multics

Back to the futureBack to the future
 Symmetric multiprocessing
 Hierarchical file system (access control lists)
 Memory-mapped files
 Hot-pluggable CPUs, memory, disks
 1969!!!

Significant influence on UnixSignificant influence on Unix
 Ken Thompson was a Multics contributor

The One True OSThe One True OS
 In use 1968-2000
 www.multicians.org

15-410, F'1554

Mentioning EROS

Text mentions Hydra, CAPText mentions Hydra, CAP
 Late 70's, early 80's
 Dead

EROS (“Extremely Reliable Operating System”)EROS (“Extremely Reliable Operating System”)
 UPenn, Johns Hopkins
 Based on commercial GNOSIS/KeyKOS OS
 www.eros-os.org
 “Arguably less dead” (see below)

15-410, F'1555

EROS Overview

““Pure capability” systemPure capability” system
 “ACLs considered harmful”

““Pure principle system”Pure principle system”
 Don't compromise principle for performance

Aggressive performance goalAggressive performance goal
 Domain switch ~100X procedure call

Unusual approach to capability-bootstrap problemUnusual approach to capability-bootstrap problem
 Persistent processes!

15-410, F'1556

Persistent Processes??

No such thing as rebootNo such thing as reboot

Processes last “forever” (until exit)Processes last “forever” (until exit)

OS kernel checkpoints system state to diskOS kernel checkpoints system state to disk
 Memory & registers defined as cache of disk state

Restart restores system state into hardwareRestart restores system state into hardware

““Login” Login” reconnectsreconnects you to your processes you to your processes

15-410, F'1557

EROS Objects

Disk pagesDisk pages
 capabilities: read/write, read-only

Capability nodesCapability nodes
 Arrays of capabilities

NumbersNumbers
 Protected capability ranges

 “Disk pages 0...16384”

Process – executable nodeProcess – executable node

15-410, F'1558

EROS Revocation Stance

ReallyReally revoking access is hard revoking access is hard
 The user could have copied the file

Don't give out real capabilitiesDon't give out real capabilities
 Give out proxy capabilities
 Then revoke however you wish

VerdictVerdict
 Not really satisfying
 Unclear there is a better answer

 Palladium/“trusted computing” isn't clearly better

15-410, F'1559

EROS Quick Start

http://www.eros-os.org/http://www.eros-os.org/
 essays/

 reliability/paper.html
 capintro.html
 wherefrom.html
 ACLSvCaps.html

Current statusCurrent status
 EROS code base transitioned to CapROS.org
 Follow-on research project at Coyotos.org

15-410, F'1560

Concept Summary

ObjectObject
 Operations

DomainDomain
 Switching

CapabilitiesCapabilities
 Revoking is hard, see text

““Protection” vs. “security”Protection” vs. “security”
 Protection is what our sysadmin hopes is happening...

Further reading?Further reading?
 PLASH - “principle of least authority” shell for Linux

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

