15-410
“..1969 > 199972...”

Protection
Nov. 30, 2015

Dave Eckhardt

L3 4 Protection

15-410, F'15



Synchronization

Upcoming lectures
= Security, security

= Transactions
= Device drivers
= Exam review

Attendance is probably in your best interest



Outline

Protection (OSC: Chapter 14)

= Protection vs. Security
= Domains (Unix, Multics)

= Access Matrix
= Concept, Implementation

= Revocation — not really covered today (see text)

Mentioning EROS
[Later lectures: techniques and cracks]

15-410, F'15



Protection vs. Security

Textbook's distinction

= Protection happens inside a computer
= Which parts may access which other parts (how)?

= Security considers external threats
= |s the system's model intact or compromised?

15-410, F'15



Protection

Goals
= Prevent intentional attacks
= “Prove” access policies are always obeyed

= Detect bugs
= “Wild pointer” example

Policy specifications
= System administrators
= Users - May want to add new privileges to system

15-410, F'15



Objects

Hardware
= Exclusive-use: printer, serial port, CD writer, ...
= Fluid aggregates: CPU, memory, disks, screen

Logical objects
= Files
= Processes
= TCP port 25
= Database tables

15-410, F'15



Operations

Depend on object!
= Disk: read_sector(), write_sector()
= CD-ROM: read_sector(...)
= TCP port: advertise(...)

= CPU
= Conceptually: context_switch(...), <interrupt>
= More sensibly: realtime_schedule(..., ...)

15-410, F'15



Access Control

Basic access control
= Your processes should access only “your stuff”
= Implemented by many systems

15-410, F'15



Access Control

Basic access control
= Your processes should access only “your stuff”
= Implemented by many systems

Principle of least privilege
= (text: “need-to-know”)

= ¢c¢c -¢ foo.c
= should read foo.c, stdio.h, ...
= should write foo.0

15-410, F'15



10

Access Control

Basic access control
= Your processes should access only “your stuff”
= Implemented by many systems

Principle of least privilege
= (text: “need-to-know”)

= c¢c -c¢ foo.c
= should read foo.c, stdio.h, ...
= should write foo.o
« should not write ~/.cshrc

= This is harder

15-410, F'15



11

Who Can Do What?

access right = (object, operations)
= /etc/passwd, r
= /etc/passwd, r/w

process = protection domain
= PO - deOu, P1 - mowry, ...

protection domain = list of access rights
= deOu - (/etc/passwd, r), (/afs/andrew/usr/deQu/.cshrc, w)

15-410, F'15



12

Protection Domain Example

Domain 1
= /dev/null, read/write
= /usr/deOu/.cshrc, read/write
= /usr/mowry/.cshrc, read

Domain 2
= /dev/null, read/write
= /usr/mowry/.cshrc, read/write
= /usr/deOu/.cshrc, read

15-410, F'15



13

Using Protection Domains

Least privilege requires domain changes
= Doing different jobs requires different privileges

= One printer daemon, N users
= “Print each user's file with minimum necessary privileges...”

15-410, F'15



Using Protection Domains

Least privilege requires domain changes
= Doing different jobs requires different privileges

= One printer daemon, N users
= “Print each user's file with minimum necessary privileges...”

Two general approaches

= Hold constant the “process < domain” mapping
= Requires domains to add and drop privileges
= User “printer” gets & releases permission to read your file

= Hold constant the privileges of a domain

= Processes domain-switch between high-privilege, low-
privilege domains
= Printer process opens file as you, opens printer as “printer”

14 15-410, F'15



15

Protection Domain Models

Three sample models
= Domain = user
= Domain = process
= Domain = procedure
= (other models are possible)

15-410, F'15



16

Domain = User

Object permissions depend on who you are
All processes you are running share privileges

Privilege adjustment?
= Log off, log on (i.e., domain switch)

15-410, F'15



17

Domain = Process

Resources managed by special processes
= Printer daemon, file server process, ...

Privilege adjustment?
= Objects cross domain boundaries via IPC

= “Please send these bytes to the printer”
/* concept only; pieces missing */
s = socket (AF_UNIX, SOCK_STREAM, O0);
connect (s, pserver, sizeof pserver);
mh->cmsg_type = SCM_RIGHTS;
mh->cmsg len[0] = open(“/my/file”, 0, 0);
sendmsg (s, &mh, 0);

15-410, F'15



18

Domain = Procedure

Processor limits access at fine grain
= Hardware protection on a per-variable basis!

Domain switch - Inter-domain procedure call
= nr = print(strlen(buf), buf);

= What is the “correct domain” for print()?
= Access to OS's data structures
= Permission to call OS's internal putbytes ()
= Permission to read user's buf

15-410, F'15



Domain = Procedure

Processor limits access at fine grain
= Hardware protection on a per-variable basis!

Domain switch - Inter-domain procedure call
= nr = print(strlen(buf), buf);

= What is the “correct domain” for print()?
= Access to OS's data structures
= Permission to call OS's internal putbytes ()
= Permission to read user's buf

= |deally, correct domain automatically created by hardware
= Common case: “user mode” vs. “kernel mode”
» Only a rough approximation of the right domain
» But simple for hardware to implement

15-410, F'15



20

Unix “setuid” concept

Assume Unix protection domain = numeric user id

= Not the whole story! This overlooks:
= Group id, group vector
= Process group, controlling terminal
= Superuser

= But let's pretend for today

Domain switch via setuid executable
= Special permission bit set with chmod u+s file
= Meaning: exec() sets uid to executable file's owner

= Gatekeeper programs
= “lpr” run by anybody can access printer's queue files

15-410, F'15



21

Access Matrix Concept

Concept
= Formalization of “who can do what”

Basic idea

= Store all permissions in a matrix
= One dimension is protection domains
= Other dimension is objects
= Entries are access rights

15-410, F'15



22

Access Matrix Concept

15-410, F'15



23

Access Matrix Details

OS must still define process - domain mapping

OS must define, enforce domain-switching rules

= Ad-hoc approach
= Special domain-switch rules (e.g., log off/on)

= Can encode domain-switch in access matrix!
= Switching domains is a privilege like any other...
= Add domain co/lumns (domains are objects)
= Add switch-to rights to domain objects
» “D2 processes can switch to D1 at will”
= Subtle (dangerous)

15-410, F'15



24

Adding “Switch-Domain” Rights

D1

15-410, F'15



25

Updating the Matrix

Ad-hoc approach

= “System administrator” can update matrix

Matrix approach

= Add copy rights to objects
= “Domain D1 may copy read rights for File2”
= So D1 can give D2 the right to read File2

15-410, F'15



26

Adding Copy Rights

15-410, F'15



27

Adding Copy Rights

rwxdR
r

15-410, F'15



28

Updating the Matrix

Add owner rights to objects
= D1 has owner rights for 047

= D1 can modify the 047 column at will
= Can add, delete rights to 047 from all other domains

Add control rights to domain objects
= D1 has control rights for D2

= D1 can modify D2's rights to any object
= D1 may be teacher, parent, ...

15-410, F'15



29

Access Matrix Implementation

Implement matrix via matrix?
= Huge, messy, slow

Very clumsy for...

= “world readable file”
= Need one entry per domain
= Must fill rights in when creating new domain
= “private file”
= Lots of blank squares
» Can Alice read the file? - No
» Can Bob read the file? - No

)) [

Two typical approaches — “ACL”, “capabilities”

15-410, F'15



30

Access Control List

15-410, F'15



31

Access Control List (ACL)

List per matrix column (object)
= deOu, read; mowry, read+write

Naively, domain = user
AFS ACLs

= domain = user, user:group, system:anyuser, machine list
(system:campushost)

= positive rights, negative rights
= deOu:staff rlid
= mdehesaa -rlid

Cool!

15-410, F'15



Access Control List (ACL)

List per matrix column (object)
= deOu, read; mowry, read+write

Naively, domain = user
AFS ACLs

= domain = user, user:group, system:anyuser, machine list
(system:campushost)

= positive rights, negative rights
= deOu:staff rlid
= mdehesaa -rlid

Doesn't really do least privilege
= Adding and deleting users is a heavy-weight operation
= System stores many privileges per user, permanently...



33

Capability List

15-410, F'15



34

Capability Lists

Capability Lists
= List per matrix row (domain)

= Naively, domain = user
= More typically, domain = process

Permit least privilege

= Domains can transfer & forget capabilities
= Possible to create “just right” domains
» c¢c which can't write to .cshrc
= Bootstrapping problem
= Who gets which rights at boot?
= Who gets which rights at login?
= Typical solution: store capability lists in files somehow

15-410, F'15



35

Mixed Approach

Permanently store ACL for each file
= Must fetch ACL from disk to access file
= ACL fetch & evaluation may be long, complicated

open() checks ACL, creates capability
= “Process 33 has read-only access to vhode #5894”
= Records access rights for this process
= Quick verification on each read(), write()

= Result: per-process fd table “caches” results of ACL
checks

15-410, F'15



36

Internal Protection?

Understood so far:

= Which user process should be allowed to access what?
= Job performed by OS

= How to protect OS code, data from user processes
= Hardware user/kernel boundary

Can we do better?
= Can we protect parts of the OS from other parts?

15-410, F'15



37

Traditional OS Layers

15-410, F'15



38

Traditional OS Layers

Smaller
Simpler
More Critical

15-410, F'15



39

Traditional OS Layers

Equally
Trusted!!

15-410, F'15



40

Traditional OS Layers

Wild Pointer
Access

15-410, F'15



41

Multics

Multics =
= Multiplexed Information and Computing Service

= Plan: “information utility”
= Mainframe per city

Designed to scale
= Many users, many programmers
= Protection seen as a key ingredient of reliability

15-410, F'15



42

Multics Approach

Trust hierarchy

Small “simple” very-trusted kernel
= Main job: access control
= Goal: “prove” it correct

Privilege layers (nested “rings”)

Ring 0 = kernel, “inside” every other ring
Ring 1 = operating system core

Ring 2 = operating system services

Ring 7 = user programs

15-410, F'15



43

Multics Ring Architecture

Segmented virtual address space

= “Print module” may contain
= Entry points in a code segment

» list printers(), list queue(), enqueue(), ...

= Data segment
» List of printers, accounting data, queues

= Segment = file (segments persist across reboots)
= VM permissions focus on segments, not pages

Access checked by hardware
= Which procedures can you call?
= Is access to that segment's data legal?

15-410, F'15



et

Multics Rings

15-410, F'15



45

Multics Rings

Wild Pointer
Access

15-410, F'15



46

Multics Rings

Fault

Wild Pointer
Access

15-410, F'15



47

Multics Domain Switching

CPU has current ring number register
= Current privilege level, [0..7]

Segment descriptors include

= “Traditional stuff”
= Segment's limit (size)
= Segment's base in physical memory
= Access bits (read, write, execute)

Ring number

Access bracket [min, max]

= Segment “appears in” ring min...ring max
Entry limit - “you must be this tall to access this segment”
List of gates (procedure entry points)

15-410, F'15



48

Multics Domain Switching

Every procedure call is a potential domain switch

Calling a procedure at current privilege level?
= Just call it

Calling a more-privileged procedure?
= Call mechanism checks entry point is legal
= We enter more-privileged mode
= Called procedure can read & write all of our data

Calling a less-privileged procedure?
= We want to show it some of our data (procedure params)
= We don't want it to modify our data

15-410, F'15



49

Multics Domain Switching

min <= current-ring <= max
= We are executing in ring 3
= Procedure is “part of” rings 2..4
= Standard procedure call

15-410, F'15



50

Multics Domain Switching

current-ring > max

Calling a more-privileged procedure \
It can do whatever it wants to us

Implementation

Hardware traps to ring 0 permission-management kernel

Ring 0 checks current-ring < entry-limit
= User code may be forbidden to call ring 1 directly

Ring 0 checks call address is a legal entry point
= Less-privileged code can't jJump into middle of a procedure

Ring 0 sets current-ring to segment-ring
= Privilege elevation — after consulting callee's rules

Runs procedure call

15-410, F'15



51

Multics Domain Switching

current-ring < min
= Calling a less-privileged procedure

Implementation
= Trap to ring 0 permission-management kernel

= Ring 0 copies “privileged” procedure call parameters
= Must be in low-privilege segment for callee to access

= Ring 0 sets current-ring to segment-ring
= Privilege lowering — callee gets r/o access to carefully
chosen privileged state

= Runs procedure call

/V

15-410, F'15



52

Multics Ring Architecture

Does this look familiar?
= It should really remind you of something...

Benefits
= Core security policy small, centralized
= Damage limited vs. Unix “superuser” model

Concerns
= Hierarchy # least privilege
= Requires specific hardware
= Performance (maybe)

15-410, F'15



53

More About Multics

Back to the future

Symmetric multiprocessing

Hierarchical file system (access control lists)
Memory-mapped files

Hot-pluggable CPUs, memory, disks

1969!!!

Significant influence on Unix
= Ken Thompson was a Multics contributor

The One True OS
= |In use 1968-2000
= www.multicians.org

15-410, F'15



54

Mentioning EROS

Text mentions Hydra, CAP
= Late 70's, early 80's
= Dead

EROS (“Extremely Reliable Operating System”)
= UPenn, Johns Hopkins
= Based on commercial GNOSIS/KeyKOS OS
= WWW.eros-0s.0org
= “Arguably less dead” (see below)

15-410, F'15



55

EROS Overview

“Pure capability” system
= “ACLs considered harmful”

“Pure principle system”
= Don't compromise principle for performance

Aggressive performance goal
= Domain switch ~100X procedure call

Unusual approach to capability-bootstrap problem
= Persistent processes!

15-410, F'15



Persistent Processes??

No such thing as reboot
Processes last “forever” (until exit)

OS kernel checkpoints system state to disk
= Memory & registers defined as cache of disk state

Restart restores system state into hardware
“Login” reconnects you to your processes

56 15-410, F'15



57

EROS Objects

Disk pages

= capabilities: read/write, read-only

Capability nodes

= Arrays of capabilities

Numbers

= Protected capability ranges
= “Disk pages 0...16384”

Process — executable node

15-410, F'15



EROS Revocation Stance

Really revoking access is hard
= The user could have copied the file

Don't give out real capabilities
= Give out proxy capabilities
= Then revoke however you wish

Verdict

= Not really satisfying

= Unclear there is a better answer
= Palladium/“trusted computing” isn't clearly better

58

15-410, F'15



59

EROS Quick Start

http://www.eros-o0s.org/

= essays/
= reliability/paper.html
= capintro.html
= wherefrom.html
= ACLSvCaps.html

Current status
= EROS code base transitioned to CapROS.org

= Follow-on research project at Coyotos.org

15-410, F'15



60

Concept Summary

Object

= Operations

Domain
= Switching

Capabilities
= Revoking is hard, see text

“Protection” vs. “security”
= Protection is what our sysadmin hopes is happening...

Further reading?
= PLASH - “principle of least authority” shell for Linux

15-410, F'15



	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

