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Outline

Why remote file systems?
VFS interception
NFSv2/v3 vs. AFS

= Ping-pong mode: 5 topics discussed twice

NFSv4

= Partial description of evolution

Why talk about NFSv2?

= Still in use in some situations
= Better shows how design influences results
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Why?

Why remote file systems?

Lots of “access data everywhere” technologies
= Laptops
= iPods
= Multi-gigabyte flash-memory keychain USB devices

Are remote file systems dinosaurs?
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Remote File System Benefits
Reliability

= Not many people carry multiple copies of data
= Multiple copies with you aren't much protection
= Backups are nice
= Machine rooms are nice
» Temperature-controlled, humidity-controlled
» Fire-suppressed
= Time travel is nice too

Sharing
= Allows multiple users to access data
= May provide authentication mechanism
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Remote File System Benefits

Scalability

= Large disks are cheaper

Locality of reference
= You don't use every file every day...
= Why carry everything in expensive portable storage?

Auditability

= Easier to know who said what when with central storage...
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VFS interception

VFS provides “pluggable” file systems

Standard flow of remote access
= User process calls read()
= Kernel dispatches to VOP_READ() in some VFS
= nfs_read()
= check local cache
= send RPC to remote NFS server
= block process
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VFS interception

Standard flow of remote access (continued)
= client kernel process manages call to server
= retransmit if necessary
= convert RPC response to file system buffer
= store in local cache
= unblock user process
= back to nfs_read()
= copy bytes to user memory

Same story for AFS
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Comparisons

Compared today
= Sun Microsystems/Oracle NFS (mostly we discuss v2/v3)
= CMU/IBM/Transarc/IBM/OpenAFS.org AFS

Architectural assumptions & goals
= Architectural assumptions & goals

Namespace

Authentication, access control

I/0 flow

Rough edges

Wrap-up: NFS v4 evolution
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NFSv2 Assumptions, goals

Workgroup file system
= Small number of clients
= Very small number of servers
Single administrative domain
= All machines agree on “set of users”
= ...which users are in which groups
= Client machines run mostly-trusted OS
= “User #37 says read(...)”
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NFSv2 Assumptions, goals

“Stateless” file server
= Of course files are “state”, but...
= Server exports files without creating extra state
= No list of “who has this file open”
= No “pending transactions” across crash
= Result: crash recovery “fast”, protocol “simple”
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NFSv2 Assumptions, goals

“Stateless” file server
= Of course files are “state”, but...
= Server exports files without creating extra state
= No list of “who has this file open”
= No “pending transactions” across crash
= Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)
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NFSv2 Assumptions, goals

“Stateless” file server
= Of course files are “state”, but...
= Server exports files without creating extra state
= No list of “who has this file open”
= No “pending transactions” across crash
= Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)
= Handled by “separate service” “outside of NFS”
= Slick trick, eh?
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AFS Assumptions, goals

Global distributed file system
= Uncountable clients, servers
= “One AFS”, like “one Internet”
= Why would you want more than one?

Multiple administrative domains
= username @cellname
= deQu@andrew.cmu.edu
= davide@cs.cmu.edu
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AFS Assumptions, goals

Client machines are un-trusted
= Must prove they act for a specific user
= Secure RPC layer
= Anonymous “system:anyuser”

Client machines have disks (!!)
= Can cache whole files over long periods
Write/write and write/read sharing are rare
= Most files updated by one user
= Most users on one machine at a time
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AFS Assumptions, goals

Support many clients
= 1000 machines could cache a single file
= Some local, some (very) remote
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NFS Namespace

Constructed by client-side file system mounts
= mount server1:/usr/local /usr/local
= mount server2:/usr/spool/mail /usr/spool/mail

Group of clients can achieve common namespace
= Every machine can execute same mount sequence at boot
= If system administrators are diligent
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NFS Namespace

“Auto-mount” process mounts based on “maps”
= /home/dae means serveri:/home/dae
= /home/owens means server2:'home/owens

Referring to something in /home may trigger an
automatic mount

= “After a while” the remote file system may be
automatically unmounted
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NFS Security

Client machine presents credentials
= user #, list of group #s — from Unix process
Server accepts or rejects credentials

= “root squashing”
= map uid 0 to uid -1 unless client on “special machine” list

Kernel process on server “adopts” credentials
= Sets user #, group vector based on RPC
= Makes system call (e.g., read()) with those credentials
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AFS Namespace

Assumed-global list of AFS cells

Everybody sees same files in each cell
= Multiple servers inside cell invisible to user

Group of clients can achieve private namespace
= Use custom cell database
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AFS Security

Client machine presents Kerberos ticket

= Allows arbitrary binding of (machine,user) to
(realm,principal)

= davide on a cs.cmu.edu machine can be
deOu@andrew.cmu.edu

= iff the password is known!
Server checks against access control list
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AFS ACLs

Apply to directory, not to individual files
ACL format

= deOu rlidwka
= davide@cs.cmu.edu rl
= deQu:friends rl

Negative rights
= Disallow “joe rl” even though joe is in deOu:friends
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AFS ACLs

AFS ACL semantics are not Unix semantics
= Some parts obeyed in a vague way
= Cache manager checks for files being executable, writable
= Many differences

= Inherent/good: can name people in different administrative
domains

= “Just different”
» ACLs are per-directory, not per-file
» Different privileges: create, remove, lock
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NFS protocol architecture

root@client executes “mount filesystem” RPC
= returns “file handle” for root of remote file system

client RPC for each pathname component
= /usr/local/lib/emacs/foo.el in /usr/local file system
= h =lookup(root-handle, “lib”)
= h =lookup(h, “emacs”)
= h =lookup(h, “foo.el”)
= Allows disagreement over pathname syntax
= Look, Ma, no “/!
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NFS protocol architecture

VO RPCs are idempotent
= multiple repetitions have same effect as one
= lookup(h, “emacs”) generally returns same result
= read(file-handle, offset, length) = same bytes
= write(file-handle, offset, buffer, bytes) = “ok”

RPCs do not create server-memory state
= no RPC calls for open()/close()
= write() succeeds (to disk), or fails, before RPC completes
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NFS “file handles”

Goals
= Reasonable size
= Quickly map to file on server
= “Capability”
= Hard to forge, so possession serves as “proof”
Implementation (inode #, inode generation #)
= inode # - small, fast for server to map onto data
= “Inode generation #”’ - must match value stored in inode
= “unguessably random” number chosen in create()
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NFS Directory Operations

Primary goal
= Insulate clients from server directory format

Approach
= readdir(dir-handle, cookie, nbytes) returns list
= name, inode # (for display by Is -l), cookie
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AFS protocol architecture

Volume = miniature file system
= One user's files, project source tree, ...
= Unit of disk quota administration, backup
= Mount points are pointers to other volumes
Client machine has Cell-Server Database
= /afs/andrew.cmu.edu is a cell
= protection server handles authentication
= volume location server maps volumes to file servers
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AFS protocol architecture

Volume location is dynamic
= Moved between servers transparently to user

Volumes may have multiple replicas
= Increase throughput, reliability
= Restricted to “read-only” volumes
= /usr/local/bin
= /afs/andrew.cmu.edu/usr
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AFS Callbacks

Observations
= Client disks can cache files indefinitely
= Even across reboots
= Many files nearly read-only
= Contacting server on each open() is wasteful
Server issues callback promise
= “If this file changes in 15 minutes, | will tell you”
= Via callback break message
= 15 minutes of free open(), read() for that client
= More importantly, 15 minutes of peace for server
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AFS “file identifiers”

AFS “fid” has three parts

= Volume number
= Each file lives in a volume
= Unlike NFS “serveri's /usr0”

= File number
= inode # (as NFS)

= “Uniquifier”
= allows inodes to be re-used
= Similar to NFS file handle inode generation #s
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AFS Directory Operations

Primary goal
= Don't overload servers!

Approach
= Server stores directory as hash table on disk
= Client fetches entire directory as if a file
= Client parses hash table
= Directory maps name to fid
= Client caches directory (indefinitely, across reboots)
= Server load reduced
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AFS access pattern

open(“/afs/cs.cmu.edu/service/systypes”)

VFS layer hands off “/afs” to AFS client module
Client maps cs.cmu.edu to pt & vidb servers
Client authenticates to pt server

Client volume-locates root.cell volume

Client fetches “/” directory

Client fetches “service” directory

Client fetches “systypes” file
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AFS access pattern

open(‘“/afs/cs.cmu.edu/service/newCSDB”)
= VFS layer hands off “/afs” to AFS client module
= Client fetches “newCSDB” file

open(“/afs/cs.cmu.edu/service/systypes”)
= Assume
= File is in cache
= Server hasn't broken callback
= Callback hasn't expired
= Client can read file with no server interaction
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AFS access pattern

Data transfer is by chunks
= Minimally 64 KB
= May be whole-file

Writeback cache
= AFSv2 stored entire file back atomically
= AFSv3 stores “chunks” back to server
= When cache overflows
= On last user close()
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AFS access pattern

Is writeback crazy?
= Write conflicts “assumed rare”
= Who needs to see a half-written file?
= Locking can be used (often isn't)
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NFS v2/v3 “rough edges”

Locking

= Inherently stateful

= lock must persist across client calls
» lock(), read(), write(), unlock()

= “Separate service”
= Handled by same server
= Horrible things happen on server crash
= Horrible things happen on client crash
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NFS v2/v3 “rough edges”

Some operations not really idempotent
= unlink(file) returns “ok’ once, then “no such file”
= server caches “a few” client requests

Caching
= No real consistency guarantees
= Clients typically cache attributes, data “for a while”
= No way to know when they're wrong
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NFS v2/v3 “rough edges”

Large NFS installations are brittle
= Everybody must agree on many mount points
= Hard to load-balance files among servers
= No volumes
= No atomic moves

Cross-realm NFS access basically nonexistent
= No good way to map uid#47 from an unknown host
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AFS “rough edges”

Locking
= Server refuses to keep a waiting-client list
= Client cache manager refuses to poll server
= Result
= Lock returns “locked” or “try again later”
= User program must invent polling strategy

Chunk-based VO
= No real consistency guarantees
= close() failures are surprising to many programs
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AFS “rough edges”

ACLs apply to directories

= “Makes sense” if files in a directory logically should be
protected the same way

= Not always true
= Confuses users
New directories inherit ACL from parent
= Easy to expose a whole tree accidentally
= What else to do?
= No good solution known
= (Though complex solutions exist...)
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AFS “rough edges”

Small AFS installations are punitive
= Step 1: Install Kerberos
= 2-3 servers
= Inside locked boxes!
= Step 2: Install ~4 AFS servers (2 data, 2 pt/vidb)
= Step 3: Explain Kerberos to your users
= Ticket expiration!
= Step 4: Explain ACLs to your users
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Summary - NFSv2

Workgroup network file service
Any Unix machine can be a server (easily)

Machines can be both client & server
= My files on my disk, your files on your disk
= Everybody in group can access all files

Serious trust, scaling problems
“Stateless file server” model only partial success
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Summary - AFS

Worldwide file system
Good security, scaling
Global namespace

“Professional” server infrastructure per cell
= Don't try this at home
= Only ~200 public AFS cells as of 2014-11-24
= 9 are cmu.edu, ~15 are in Pittsburgh
= These numbers are basically static since 2002

“No write conflict” model only partial success
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NFSv4 Changes

Genuine authentication

Each client RPC is authenticated via Kerberos

ACL's

“Like NTFS”, “Like POSIX”
Include allow/deny, plus audit/alarm
“Create file” is a separate ability from “create directory’

Can specify different access for “network user” and
“dialup user” (??7?)

NFSv4 ACL's don't match any OS native ACL format
= Server can approximate or reject any ACL you try to set
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NFSv4 Changes

Compound RPC

= open()+lock()+read()+write()+unlock()+close() in one
packet

= Can look up multiple pathname components

= Greatly speeds up performance on long-latency wide-area
networks

“Delegations” of file data & metadata to clients
= More general than AFS callbacks

Better locking architecture
= Locks can persist across crashes
= Requires tricky “client identification” semantics
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NFSv4 Changes

Other additions
= Replication of mostly-read-only trees
= “Redirect” support for file relocation
= Tricky pathname-rewrite step
NFSv4.2 in progress
= Multi-realm operation
= Parallel NFS
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Conclusions

NFS v2

= Goals limited to near-term achievability

AFS

= Available-now large cells and cross-realm operation

NFS v4

= Evolution may be a better strategy than revolution!
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Further Reading

NFS
= RFC 1094 for v2 (3/1989)
= RFC 1813 for v3 (6/1995)
= RFC 3530 for v4 (4/2003, not yet universally available)
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Further Reading

AFS

“The ITC Distributed File System: Principles and Design”,
Proceedings of the 10th ACM Symposium on Operating
System Principles, Dec. 1985, pp. 35-50.

“Scale and Performance in a Distributed File System”,
ACM Transactions on Computer Systems, Vol. 6, No. 1,
Feb. 1988, pp. 51-81.

IBM AFS User Guide, version 36
http:/www.cs.cmu.edu/~help/afs/index.html
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