15-410

NFS & AFS
Nov. 23, 2015

Dave Eckhardt
Garth Glbson

L35 NFSAFS

15-410, F'15



Outline

Why remote file systems?
VFS interception
NFSv2/v3 vs. AFS

= Ping-pong mode: 5 topics discussed twice

NFSv4

= Partial description of evolution

Why talk about NFSv2?

= Still in use in some situations
= Better shows how design influences results

15-410, F'15



Why?

Why remote file systems?

Lots of “access data everywhere” technologies
= Laptops
= iPods
= Multi-gigabyte flash-memory keychain USB devices

Are remote file systems dinosaurs?

15-410, F'15



Remote File System Benefits
Reliability

= Not many people carry multiple copies of data
= Multiple copies with you aren't much protection
= Backups are nice
= Machine rooms are nice
» Temperature-controlled, humidity-controlled
» Fire-suppressed
= Time travel is nice too

Sharing
= Allows multiple users to access data
= May provide authentication mechanism

15-410, F'15



Remote File System Benefits

Scalability

= Large disks are cheaper

Locality of reference
= You don't use every file every day...
= Why carry everything in expensive portable storage?

Auditability

= Easier to know who said what when with central storage...

15-410, F'15



VFS interception

VFS provides “pluggable” file systems

Standard flow of remote access
= User process calls read()
= Kernel dispatches to VOP_READ() in some VFS
= nfs_read()
= check local cache
= send RPC to remote NFS server
= block process

15-410, F'15



VFS interception

Standard flow of remote access (continued)
= client kernel process manages call to server
= retransmit if necessary
= convert RPC response to file system buffer
= store in local cache
= unblock user process
= back to nfs_read()
= copy bytes to user memory

Same story for AFS

15-410, F'15



Comparisons

Compared today
= Sun Microsystems/Oracle NFS (mostly we discuss v2/v3)
= CMU/IBM/Transarc/IBM/OpenAFS.org AFS

Architectural assumptions & goals
= Architectural assumptions & goals

Namespace

Authentication, access control

I/0 flow

Rough edges

Wrap-up: NFS v4 evolution

15-410, F'15



NFSv2 Assumptions, goals

Workgroup file system
= Small number of clients
= Very small number of servers
Single administrative domain
= All machines agree on “set of users”
= ...which users are in which groups
= Client machines run mostly-trusted OS
= “User #37 says read(...)”

15-410, F'15



10

NFSv2 Assumptions, goals

“Stateless” file server
= Of course files are “state”, but...
= Server exports files without creating extra state
= No list of “who has this file open”
= No “pending transactions” across crash
= Result: crash recovery “fast”, protocol “simple”

15-410, F'15



11

NFSv2 Assumptions, goals

“Stateless” file server
= Of course files are “state”, but...
= Server exports files without creating extra state
= No list of “who has this file open”
= No “pending transactions” across crash
= Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)

15-410, F'15



12

NFSv2 Assumptions, goals

“Stateless” file server
= Of course files are “state”, but...
= Server exports files without creating extra state
= No list of “who has this file open”
= No “pending transactions” across crash
= Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)
= Handled by “separate service” “outside of NFS”
= Slick trick, eh?

15-410, F'15



13

AFS Assumptions, goals

Global distributed file system
= Uncountable clients, servers
= “One AFS”, like “one Internet”
= Why would you want more than one?

Multiple administrative domains
= username @cellname
= deQu@andrew.cmu.edu
= davide@cs.cmu.edu

15-410, F'15



14

AFS Assumptions, goals

Client machines are un-trusted
= Must prove they act for a specific user
= Secure RPC layer
= Anonymous “system:anyuser”

Client machines have disks (!!)
= Can cache whole files over long periods
Write/write and write/read sharing are rare
= Most files updated by one user
= Most users on one machine at a time

15-410, F'15



15

AFS Assumptions, goals

Support many clients
= 1000 machines could cache a single file
= Some local, some (very) remote

15-410, F'15



NFS Namespace

Constructed by client-side file system mounts
= mount server1:/usr/local /usr/local
= mount server2:/usr/spool/mail /usr/spool/mail

Group of clients can achieve common namespace
= Every machine can execute same mount sequence at boot
= If system administrators are diligent

16 15-410, F'15



17

NFS Namespace

“Auto-mount” process mounts based on “maps”
= /home/dae means serveri:/home/dae
= /home/owens means server2:'home/owens

Referring to something in /home may trigger an
automatic mount

= “After a while” the remote file system may be
automatically unmounted

15-410, F'15



NFS Security

Client machine presents credentials
= user #, list of group #s — from Unix process
Server accepts or rejects credentials

= “root squashing”
= map uid 0 to uid -1 unless client on “special machine” list

Kernel process on server “adopts” credentials
= Sets user #, group vector based on RPC
= Makes system call (e.g., read()) with those credentials

18 15-410, F'15



19

AFS Namespace

Assumed-global list of AFS cells

Everybody sees same files in each cell
= Multiple servers inside cell invisible to user

Group of clients can achieve private namespace
= Use custom cell database

15-410, F'15



20

AFS Security

Client machine presents Kerberos ticket

= Allows arbitrary binding of (machine,user) to
(realm,principal)

= davide on a cs.cmu.edu machine can be
deOu@andrew.cmu.edu

= iff the password is known!
Server checks against access control list

15-410, F'15



21

AFS ACLs

Apply to directory, not to individual files
ACL format

= deOu rlidwka
= davide@cs.cmu.edu rl
= deQu:friends rl

Negative rights
= Disallow “joe rl” even though joe is in deOu:friends

15-410, F'15



22

AFS ACLs

AFS ACL semantics are not Unix semantics
= Some parts obeyed in a vague way
= Cache manager checks for files being executable, writable
= Many differences

= Inherent/good: can name people in different administrative
domains

= “Just different”
» ACLs are per-directory, not per-file
» Different privileges: create, remove, lock

15-410, F'15



23

NFS protocol architecture

root@client executes “mount filesystem” RPC
= returns “file handle” for root of remote file system

client RPC for each pathname component
= /usr/local/lib/emacs/foo.el in /usr/local file system
= h =lookup(root-handle, “lib”)
= h =lookup(h, “emacs”)
= h =lookup(h, “foo.el”)
= Allows disagreement over pathname syntax
= Look, Ma, no “/!

15-410, F'15



NFS protocol architecture

VO RPCs are idempotent
= multiple repetitions have same effect as one
= lookup(h, “emacs”) generally returns same result
= read(file-handle, offset, length) = same bytes
= write(file-handle, offset, buffer, bytes) = “ok”

RPCs do not create server-memory state
= no RPC calls for open()/close()
= write() succeeds (to disk), or fails, before RPC completes

24 15-410, F'15



25

NFS “file handles”

Goals
= Reasonable size
= Quickly map to file on server
= “Capability”
= Hard to forge, so possession serves as “proof”
Implementation (inode #, inode generation #)
= inode # - small, fast for server to map onto data
= “Inode generation #”’ - must match value stored in inode
= “unguessably random” number chosen in create()

15-410, F'15



26

NFS Directory Operations

Primary goal
= Insulate clients from server directory format

Approach
= readdir(dir-handle, cookie, nbytes) returns list
= name, inode # (for display by Is -l), cookie

15-410, F'15



27

AFS protocol architecture

Volume = miniature file system
= One user's files, project source tree, ...
= Unit of disk quota administration, backup
= Mount points are pointers to other volumes
Client machine has Cell-Server Database
= /afs/andrew.cmu.edu is a cell
= protection server handles authentication
= volume location server maps volumes to file servers

15-410, F’'15



28

AFS protocol architecture

Volume location is dynamic
= Moved between servers transparently to user

Volumes may have multiple replicas
= Increase throughput, reliability
= Restricted to “read-only” volumes
= /usr/local/bin
= /afs/andrew.cmu.edu/usr

15-410, F'15



29

AFS Callbacks

Observations
= Client disks can cache files indefinitely
= Even across reboots
= Many files nearly read-only
= Contacting server on each open() is wasteful
Server issues callback promise
= “If this file changes in 15 minutes, | will tell you”
= Via callback break message
= 15 minutes of free open(), read() for that client
= More importantly, 15 minutes of peace for server

15-410, F'15



30

AFS “file identifiers”

AFS “fid” has three parts

= Volume number
= Each file lives in a volume
= Unlike NFS “serveri's /usr0”

= File number
= inode # (as NFS)

= “Uniquifier”
= allows inodes to be re-used
= Similar to NFS file handle inode generation #s

15-410, F'15



31

AFS Directory Operations

Primary goal
= Don't overload servers!

Approach
= Server stores directory as hash table on disk
= Client fetches entire directory as if a file
= Client parses hash table
= Directory maps name to fid
= Client caches directory (indefinitely, across reboots)
= Server load reduced

15-410, F'15



32

AFS access pattern

open(“/afs/cs.cmu.edu/service/systypes”)

VFS layer hands off “/afs” to AFS client module
Client maps cs.cmu.edu to pt & vidb servers
Client authenticates to pt server

Client volume-locates root.cell volume

Client fetches “/” directory

Client fetches “service” directory

Client fetches “systypes” file

15-410, F'15



33

AFS access pattern

open(‘“/afs/cs.cmu.edu/service/newCSDB”)
= VFS layer hands off “/afs” to AFS client module
= Client fetches “newCSDB” file

open(“/afs/cs.cmu.edu/service/systypes”)
= Assume
= File is in cache
= Server hasn't broken callback
= Callback hasn't expired
= Client can read file with no server interaction

15-410, F'15



34

AFS access pattern

Data transfer is by chunks
= Minimally 64 KB
= May be whole-file

Writeback cache
= AFSv2 stored entire file back atomically
= AFSv3 stores “chunks” back to server
= When cache overflows
= On last user close()

15-410, F'15



35

AFS access pattern

Is writeback crazy?
= Write conflicts “assumed rare”
= Who needs to see a half-written file?
= Locking can be used (often isn't)

15-410, F'15



36

NFS v2/v3 “rough edges”

Locking

= Inherently stateful

= lock must persist across client calls
» lock(), read(), write(), unlock()

= “Separate service”
= Handled by same server
= Horrible things happen on server crash
= Horrible things happen on client crash

15-410, F'15



37

NFS v2/v3 “rough edges”

Some operations not really idempotent
= unlink(file) returns “ok’ once, then “no such file”
= server caches “a few” client requests

Caching
= No real consistency guarantees
= Clients typically cache attributes, data “for a while”
= No way to know when they're wrong

15-410, F'15



38

NFS v2/v3 “rough edges”

Large NFS installations are brittle
= Everybody must agree on many mount points
= Hard to load-balance files among servers
= No volumes
= No atomic moves

Cross-realm NFS access basically nonexistent
= No good way to map uid#47 from an unknown host

15-410, F'15



39

AFS “rough edges”

Locking
= Server refuses to keep a waiting-client list
= Client cache manager refuses to poll server
= Result
= Lock returns “locked” or “try again later”
= User program must invent polling strategy

Chunk-based VO
= No real consistency guarantees
= close() failures are surprising to many programs

15-410, F'15



40

AFS “rough edges”

ACLs apply to directories

= “Makes sense” if files in a directory logically should be
protected the same way

= Not always true
= Confuses users
New directories inherit ACL from parent
= Easy to expose a whole tree accidentally
= What else to do?
= No good solution known
= (Though complex solutions exist...)

15-410, F'15



41

AFS “rough edges”

Small AFS installations are punitive
= Step 1: Install Kerberos
= 2-3 servers
= Inside locked boxes!
= Step 2: Install ~4 AFS servers (2 data, 2 pt/vidb)
= Step 3: Explain Kerberos to your users
= Ticket expiration!
= Step 4: Explain ACLs to your users

15-410, F'15



42

Summary - NFSv2

Workgroup network file service
Any Unix machine can be a server (easily)

Machines can be both client & server
= My files on my disk, your files on your disk
= Everybody in group can access all files

Serious trust, scaling problems
“Stateless file server” model only partial success

15-410, F'15



43

Summary - AFS

Worldwide file system
Good security, scaling
Global namespace

“Professional” server infrastructure per cell
= Don't try this at home
= Only ~200 public AFS cells as of 2014-11-24
= 9 are cmu.edu, ~15 are in Pittsburgh
= These numbers are basically static since 2002

“No write conflict” model only partial success

15-410, F'15



o

NFSv4 Changes

Genuine authentication

Each client RPC is authenticated via Kerberos

ACL's

“Like NTFS”, “Like POSIX”
Include allow/deny, plus audit/alarm
“Create file” is a separate ability from “create directory’

Can specify different access for “network user” and
“dialup user” (??7?)

NFSv4 ACL's don't match any OS native ACL format
= Server can approximate or reject any ACL you try to set

15-410, F'15



45

NFSv4 Changes

Compound RPC

= open()+lock()+read()+write()+unlock()+close() in one
packet

= Can look up multiple pathname components

= Greatly speeds up performance on long-latency wide-area
networks

“Delegations” of file data & metadata to clients
= More general than AFS callbacks

Better locking architecture
= Locks can persist across crashes
= Requires tricky “client identification” semantics

15-410, F'15



46

NFSv4 Changes

Other additions
= Replication of mostly-read-only trees
= “Redirect” support for file relocation
= Tricky pathname-rewrite step
NFSv4.2 in progress
= Multi-realm operation
= Parallel NFS

15-410, F'15



47

Conclusions

NFS v2

= Goals limited to near-term achievability

AFS

= Available-now large cells and cross-realm operation

NFS v4

= Evolution may be a better strategy than revolution!

15-410, F'15



48

Further Reading

NFS
= RFC 1094 for v2 (3/1989)
= RFC 1813 for v3 (6/1995)
= RFC 3530 for v4 (4/2003, not yet universally available)

15-410, F'15



49

Further Reading

AFS

“The ITC Distributed File System: Principles and Design”,
Proceedings of the 10th ACM Symposium on Operating
System Principles, Dec. 1985, pp. 35-50.

“Scale and Performance in a Distributed File System”,
ACM Transactions on Computer Systems, Vol. 6, No. 1,
Feb. 1988, pp. 51-81.

IBM AFS User Guide, version 36
http:/www.cs.cmu.edu/~help/afs/index.html

15-410, F'15



	Title
	Outline
	Slide 3
	Remote File System Benefits
	Slide 5
	VFS interception
	Slide 7
	Comparison
	NFSv2 Assumptions, goals
	Slide 10
	Slide 11
	Slide 12
	AFS Assumptions, goals
	Slide 14
	Slide 15
	NFS Namespace
	Slide 17
	NFS Security
	AFS Namespace
	AFS Security
	AFS ACLs
	Slide 22
	NFS protocol architecture
	Slide 24
	NFS file handles
	NFS Directory Operations
	AFS protocol architecture
	Slide 28
	AFS Callbacks
	AFS file identifiers
	AFS Directory Operations
	AFS access pattern
	Slide 33
	Slide 34
	Slide 35
	NFS “rough edges”
	Slide 37
	Slide 38
	AFS “rough edges”
	Slide 40
	Slide 41
	Summary - NFS
	Summary – AFS
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Further Reading
	Slide 49

