INTRODUCTION LFL INSERT LFL DELETE RCU

000 [e] [e] 000
000000 00000000000 00000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Lock-free Programming

Nathaniel Wesley Filardo
David A. Eckhardt

November 20, 2015

CONCLUSION

(o]e]

101

00 0000000 00000
000000000 000000000000

000000000

00

Context

e Things recently have been confusing!

2/101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Context

e Things recently have been confusing!

e Instructions run “out-of-order” on every CPU!
e Single data items are cached many times on many CPUs!
e Causality is violated between variables!

e How can any program work??

2 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Context
e Within a CPU

e Instructions run “out-of-order”

e Data dependencies delay when instructions start

e Instruction outcomes are published when they are safe
— It is possible to write single-threaded code.

3 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Context
e Within a CPU

e Instructions run “out-of-order”
e Data dependencies delay when instructions start
e Instruction outcomes are published when they are safe
— It is possible to write single-threaded code.
o Cache coherence

e Caches talk to each other with a MSl-like protocol
— All caches return an up-to-date version of each cache line

3 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Context
e Within a CPU

e Instructions run “out-of-order”

e Data dependencies delay when instructions start

e Instruction outcomes are published when they are safe
— It is possible to write single-threaded code.

e Cache coherence

e Caches talk to each other with a MSl-like protocol
— All caches return an up-to-date version of each cache line
e Memory consistency
e Barrier instructions separate code regions that
import/export data across threads
— Programs can depend on causality across multiple cache
lines

3 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 o] o] 000 00
000000 00000000000 00000 00000
[e]e] 0000000 00000
000000000 000000000000
000000000
[e]e]
Today

e Lock-free programming

e A particular kind of multi-threaded code
e Multi-threaded access to a single data structure -
without locks!

1/101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 o] o] 000 00
000000 00000000000 00000 00000
[e]e] 0000000 00000
000000000 000000000000
000000000
[e]e]
Today

o Lock-free programming

A particular kind of multi-threaded code
Multi-threaded access to a single data structure -
without locks!

Something people might expect you to know about
An example to help think about modern machines

1/101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 o] o] 000 00
000000 00000000000 00000 00000
[e]e] 0000000 00000
000000000 000000000000
000000000
[e]e]
Today

o Lock-free programming
e A particular kind of multi-threaded code
e Multi-threaded access to a single data structure -
without locks!
e Something people might expect you to know about
e An example to help think about modern machines
e (Not a kind of code most people write.)

1 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Outline
Introduction

Lock-Free Linked List Insertion
Lock-Free Linked List Deletion

Read-Copy-Update Mutual Ezxclusion

5 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

e Suppose some madman says “We shouldn’t use locks!”
e You know that this results (eventually!) in inconsistent
data structures.
e Loss of invariants within the data structure
e Live pointers to dead memory
e Live pointers to undead memory (Hey, my type changed!
Stop poking there!)

6/101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

900 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

Locks Might Take A While

o Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)
as their core operation.

7/101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

@00 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

Locks Might Take A While

o Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)
as their core operation.
e We could spend an unbounded amount of time here
spinning. . .
o Contended locks will have very high latency. ..

7/101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

@00 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

Locks Might Take A While

Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)
as their core operation.

We could spend an unbounded amount of time here
spinning. . .

Contended locks will have very high latency. . .

Locks by definition reduce parallelism.

7/101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

[e] Je) (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

Locks Might Take A While

o Locks by definition reduce parallelism.
e If N people are contending for a lock, N — 1 of them are
just wasting time.
e “It would be nice” if they could all work at once ...
e ...but this requires a way to “handle” data-structure
conflicts.

8 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

ooe (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

Locks Might Take A While

e For a large data structure, we would like multiple /ocal
(independent) operations to be allowed concurrently.

e e.g. “lookup” and “insert” in parallel threads
e Approaches:

e “Data structure full of locks” — today
e Lock-free data structures — today
e “Hardware transactional memory” [Her] — not today

9 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONC
000 o o 000 oo
©00000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
(e}
Introduction

Locks Can Be. .. Not So Bad?

e Instead of a lock around a tree, we could have a tree with
locks:

|ROOT LOCK |

P

B LOCK | LOCK |

e The protocol: lock the root, then (lock child & unlock
parent) as you go down.
e This kind of lock handoff is a very common design.

"LUSION

10 /101

INTRODUCTION LFL INSERT LFL DELETE RCU

CONCLUSION

Introduction
Locks Can Be. .. Not So Bad?
e Trying to find node A.
e Step 1: lock root pointer and top node
[ROOT LOCK]|
/IC LOCK]|
(B LOCK] \1 D LOCK]|
A LOCK | |E LOCK |

101

INTRODUCTION LFL INSERT LFL DELETE RCU

000 (e} (e} 000
00e000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

Locks Can Be. .. Not So Bad?

e Trying to find node A.
o Step 2: lock left child and unlock parent.

|ROOT LOCK |

CONCLUSION

(o]e]

e

B LOCK]| D

LOCK |

A LOCK | |E

LOCK |

12 /101

INTRODUCTION LFL INSERT LFL DELETE RCU

000 (e} (e} 000
000e00 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

Locks Can Be. .. Not So Bad?

e Trying to find node A.
o Step 3: lock left child and unlock parent

|ROOT LOCK |

CONCLUSION

(o]e]

z////)c LOCK |
\‘D

B LOCK]|

LOCK |

A LOCK]| |E

LOCK |

3 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [e]e)
0000e0 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

o This dance is sometimes called “hand-over-hand locking”.

e In a binary tree, each traversal by one thread “opens half
of the tree” for other threads.

14 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [e]e)
00000e 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Introduction

But let's see what we can do without any locks at all.

INTRODUCTION LFL INSERT

000
000000

[
00000000000
(e]e}

000000000

LFL DELETE

[e]

00000
0000000
000000000000
000000000

e]e]

Lock-Free Linked List Node

¢ Node definition is simple:

label_t label

void* next

e When drawing, we'll use a shorthand:

label_t labe

1=A

void* next

= &B

< |A

RCI
000
00000
00000

&B

CONCLUSION
oo

16 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 ©0000000000 00000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks
Insertion Code

insertAfter(after, newlabel) {
//lockList();
new = newNode(newlabel);
prev = findLabel(after);
new->next = prev->next;
prev->next = new,
//unlockList () ;

17 /101

INTRODUCTION LFL INSERT LFL DELETE RCI CONCLUSION

000 [e] [e] 000 (o]e]
000000 O@000000000 00000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks
“Good trace”

insertAfter(A,B) \insertAfter(A,C)‘
prev = &A

B.next=A.next
A.next=&B

prev = &A
C.next=A.next
A .next=&C

18 /101

INTRODUCTION LFL INSERT LFL DELETE RCI CONCLUSION

000 [e] [e] 000 (o]e]
000000 00@00000000 00000 00000
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks
Race trace

insertAfter(A,B) ‘insertAfter(A,C)‘
prev = &A
B.next = A.next

prev = &A
C.next = A.next
A.next = &B A.next = &C

o Either of these assignments makes sense in isolation, but
one of them will override the other!

19 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 000@0000000 00000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks
Precondition

A &D

e One list, two items on it: A and D.

INTRODUCTION LFL INSERT

000 o

000000 0000®000000
0o
000000000

LFL DELETE RCU

o 000
00000 00000
0000000 00000
000000000000

000000000

Insertion into a Linked List Without Locks
First step

B NULL|

B NULL

e Two threads get two nodes, B and C, and want to insert.

D NULL

new = newNode(B);

new = newNode(C);

prev = &A

prev = &A

CONCLUSION

(o]e]

21

101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 0O0000e00000 00000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks
Second step

e Two threads point their respective nodes C and B into
list at D

] B.next=&D H C.next=&D ‘

N
%]

101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000080000 00000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks
One thread goes

e Suppose the thread owning C completes its assignment
first.

’ H A.next=&C ‘

23 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000008000 00000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks
And the other. . .

e And the other (owning B) completes second, overwriting
’ A.next=&B H ‘
e Node C is unreachable!

24 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000800 00000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000

e]e]

Insertion into a Linked List Without Locks

e What went wrong?
1. Thread B observed that &A->next == D
2. Thread C observed that &A->next == D
3. Thread C changed &A->next “from D to C”
4. Thread B changed &A->next “from D to B" (oops!)

25 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000800 00000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000

e]e]

Insertion into a Linked List Without Locks

e What went wrong?

1. Thread B observed that &A->next == D

2. Thread C observed that &A->next == D

3. Thread C changed &A->next “from D to C”

4. Thread B changed &A->next “from D to B" (oops!)

e How to fix that?

25 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000800 00000 00000
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks

e What went wrong?

1. Thread B observed that &A->next == D

2. Thread C observed that &A->next == D

3. Thread C changed &A->next “from D to C”

4. Thread B changed &A->next “from D to B" (oops!)
e How to fix that?

1. Give B and C critical sections and serialize them

e Then there is no gap between observation and changing
e But that requries locking, which we are avoiding...

25 /101

INTRODUCTION LFL INSERT LFL DELETE RCI CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000800 00000 00000
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks

e What went wrong?
1. Thread B observed that &A->next == D
2. Thread C observed that &A->next == D
3. Thread C changed &A->next “from D to C”
4. Thread B changed &A->next “from D to B" (oops!)

e How to fix that?
1. Give B and C critical sections and serialize them

e Then there is no gap between observation and changing
e But that requries locking, which we are avoiding...

2. The pattern for today

2.1 Assume update collisions happen rarely
2.2 Detect when they do happen — hardware support
2.3 Figure out how to “try again”

25 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 0000000000 00000 00000
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Insertion into a Linked List Without Locks
The Lock Free / Transactional Approach

while(not done)
Determine preconditions for the update
Prepare for update
ATOMICALLY
if(preconditions still hold)
make update;
done = true;

e Does this pattern finish in bounded time?

26 /101

INTRODUCTION LFL INSERT LFL DELETE RCI

000 [e] [e] 000

000000 0000000000 00000 00000
(e]e} 0000000 00000
000000000 000000000000

000000000
e]e]

Insertion into a Linked List Without Locks
The Lock Free / Transactional Approach

while(not done)
Determine preconditions for the update
Prepare for update
ATOMICALLY
if(preconditions still hold)
make update;
done = true;

e Does this pattern finish in bounded time?
e No: could “encounter trouble” unboundedly.

o But if threads “almost never” spatially collide...
e We gain “a lot" of parallelism by deleting locks.
e We pay “a little” work handling retries.

CONCLUSION

(o]e]

26

101

INTRODUCTION

000
000000

LFL INSERT

[e]
000000000 0e
(e]e}
000000000

LFL DELETE RCU
000
00000
00000

[e]

00000
0000000
000000000000
000000000

e]e]

Insertion into a Linked List Without Locks

e Re-writing list-insert in this pattern:

CONCLUSION
oo

’ insertAfter(A,B) \ insertAfter(A,C) ‘
while(!done) while(!done)
findLabel (A) findLabel (A)
ATOMICALLY ATOMICALLY
if (A->next == D) if (A->next == D)
A->next = B A->next = C
done = 1 done = 1

o If we do that, one critical section will safely fail out and

tell us to try again.

e How do we do this ATOMICALLY without locking?

7 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
[Jo} 0000000 00000
000000000 000000000000
000000000

e]e]

Review of Atomic Primitives

e Remember our old friend XCHG?
e XCHG (ptr, val)
ATOMICALLY
// “lock bus" (not really)
old_val = *ptr;
*ptr = val;
// ‘“unlock bus” (not really)
return old_val;

e Summary: one fetch and one store under (mini) lock.

28 /101

INTRODUCTION

000
000000

Note that CAS is no harder:

LFL INSERT

[e]
00000000000
oe
000000000

LFL DELETE RCU CONCLUSION

[e] 000 (o]e]
00000 00000
0000000 00000

000000000000
000000000
e]e]

Review of Atomic Primitives

XCHG (ptr,new) CAS(ptr, expect, new)
ATOMICALLY ATOMICALLY
old = *ptr; old = *ptr;

*ptr = new,;
return old;

if (old == expect)
*ptr = new,
return old;

e Still one read, one write under same lock.

¢ (logic time < memory time)

29 /101

INTRODUCTION

000
000000

LFL INSERT

[e]
00000000000
(e]e}
©00000000

LFL DELETE RCU
000
00000
00000

[e]

00000
0000000
000000000000
000000000

e]e]

Insertion into a Lock-free Linked List

e Our assignments were really supposed to be

’insertAfter(A,B) ‘insertAfter(A,C)
while(!done) while(!done)
findLabel (A) findLabel (A)
ATOMICALLY ATOMICALLY
if (A->next == D) if (A->next == D)
A->next = B A->next = C
done = 1 done = 1
e This translates into
while(!done)
prev = B->next = A->next;

done

(CAS (&A->next,prev,B) == prev)

o CAS will assign if match,

or bail otherwise.

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000
0O@0000000 000000000000
000000000

Insertion into a Lock-free Linked List
Simple case, setup

A &D

e Some thread constructs the bottom node C; wishes to
place it between the two above, A and D.

e new = newNode(C);
e prev = findLabel(A); /* == &A x/

31 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000
00@000000 000000000000
000000000

Insertion into a Lock-free Linked List
Simple case, first step

&

>
o

C NULL

e Thread points C node’s next into list at D.
e C.next = A.next;

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000
000e00000 000000000000
000000000
e]e]

Insertion into a Lock-free Linked List
Simple case, second step

33

101

INTRODUCTION LFL INSERT

000 o

000000 00000000000
0o
0000@0000

LFL DELETE RCU

o 000
00000 00000
0000000 00000
000000000000

000000000

Insertion into a Lock-free Linked List
Race case, setup

C NULL

A &D

B NULL

e Two threads get their respective nodes B and C.

D NULL

new = newNode(B);

new = newNode(C);

prev = &A

prev = &A

CONCLUSION
0o

34 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000
0O0000e000 000000000000
000000000
e]e]

Insertion into a Lock-free Linked List
Race case, first step

o Both set their new node's next pointer.

’ B.next=&D H C.next=&D ‘

35 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000
0O00000e00 000000000000
000000000
e]e]

Insertion into a Lock-free Linked List
Race case, first thread

e Thread C goes first . ..

| | cAS(&A->next, D, O) |

36 /101

INTRODUCTION LFL INSERT LFL DELETE RCU

000 [e] [e] 000
000000 00000000000 00000 00000
(e]e} 0000000 00000
000000080 000000000000
000000000
e]e]

Insertion into a Lock-free Linked List
Race case, second thread

%
“CAS(prev—>next,new—>next,new)
B &D

e And the other (owning B)...

[CAS(&A->next, D, B) |

e ... fails since A->next == C, not D.
e So this thread tries again.

CONCLUSION

(o]e]

37

101

INTRODUCTION LFL INSERT LFL DELETE RCI

000 [e] [e] 000
000000 00000000000 00000 00000
(e]e} 0000000 00000
0O0000000e 000000000000
000000000

e]e]

Insertion into a Lock-free Linked List

e Rewrite the insertion code to be
insertAfter(after, newlabel) {
new = newNode(newlabel);
do {
prev = findLabel(after);
expected = new->next = prev->next;
} while
(CAS(&prev->next, expected, new)
= expected);

CONCLUSION
oo

38 /101

INTRODUCTION LFL INSERT LFL DELETE RCT CONCLUSION

000 [e] o 000 (o]e]
000000 00000000000 00000 00000

(e]e} 0000000 00000

000000000 000000000000

000000000
e]e]

That’s great!

e |t works!
e No locks!

e Threads can simultaneously scan and scan the list...
e Threads can simultaneously scan and grow the list!
e Threads can simultaneously grow and grow the list!

e All those while loops... (retrying over and over?)
e Remember, mutexes had while loops too...
e maybe even around CAS()!

e Here, whenever we retry we know somebody else got
work done!

e Are we done?

e Have we implemented all the standard operations?

39 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 @0000 00000
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Deletion is easy?

e Suppose we have

e And want to get rid of C.
e So CAS(&A .next, &C, &E)

10 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 0®000 00000
0o 0000000 00000
000000000 000000000000
000000000
oo

Deletion is easy?

e Now we have

e Great, looks like deletion to me!
e It's off the data-structure (logically deleted) - - -
e But not freed (“actually” deleted / reclaimed).

11 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 [e]e] le]e} 00000
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Deletion is easy?
Continued

e Imagine there was another thread accessing C (say,
scanning the list).

Some
other
thread

e We don’'t know when that thread is done with C!
e So we can never free(C);

12 /101

INTRODUCTION LFL INSERT LFL DELETE RCI CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 [e]e]e] lo} 00000

(e]e} 0000000 00000

000000000 000000000000

000000000
e]e]

Deletion is easy?
What’s to be done?

o We need some way to reclaim that memory for reuse..

e Some implementations cheat and assume a stop-the-world
garbage collector.

e (That's like a giant lock!)
¢ Doing deletion honestly is remarkably tricky!

e We're not going to really have time to cover it.

3 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 [e]e]ele] } 00000
(e]e} 0000000 00000
000000000 000000000000
000000000

e]e]

Deletion is easy?
What’s to be done?

e Assume: once some memory is committed to being a LF
list node that it's OK if it's always a LF list node.

e So we can have two lists: the “real” list and a “free” list.
e This is not real free() but is hard enough.

e In particular, we run into the “ABA problem”.

14 /101

INTRODUCTION LFL INSERT LFL DELETE RCI

CONCLUSION
000 o o 000 oo
000000 00000000000 00000 00000
00 ©000000 00000
000000000 000000000000
000000000

e]e]

ABA Problem: Introduction

e A problem of confused identity

global = malloc(sizeof(Foo))

local; = global local, = global
global = NULL
free(localy)
global = malloc(sizeof(Foo))

/* Validity check */
if (global == local,)
global->foo_baz = ...

5/101

INTRODUCTION LFL INSERT LFL DELETE RCT CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000

(e]e} 0O@00000 00000

000000000 000000000000

000000000
e]e]

ABA Problem: Introduction

e A problem of confused identity

global = malloc(sizeof(Foo)) //0x1337
local; = global local, = global
global = NULL
free(localy) //0x1337
global = malloc(sizeof(Foo)) //0x1337
/* Validity check */
if (global == local,)
global->foo_baz = . ..

e Even though local, and global might point to the same
address, they don't really mean the same thing.

16 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 00000 00000
0o 00®0000 00000
000000000 000000000000
000000000

e]e]

ABA Problem: Introduction
Preliminaries

e We begin with an innocent linked list:

A &B[—"B &CF—C

head

e Where head is a a global pointer to the list.

o We're just going to do operations at the head — treating
the list like a stack.

17 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

ABA Problem: Introduction
Pop
o We begin with a linked list:
A &B[—"B &CF—C
head
¢ Removing the head looks like
ohead = head /x == &A */
onext = ohead->next /*x == &B *x/
CAS(head, ohead, onext);

o If not, retry.

18 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION
000 o] o] 000 00
000000 00000000000 00000 00000
[e]e] 0000e00 00000
000000000 000000000000
000000000
[e]e]
ABA Problem: Introduction
Pop
e If successful,
A &B—B &C—|C
ohead head
e is the result of
ohead = head [*x == &A *x/
onext = ohead->next /*x == &B x/
CAS(head, ohead, onext);

o If not, retry.

19 /101

INTRODUCTION LFL INSERT LFL DELETE RCU

CONCLUSION
000 o o 000 oo
000000 00000000000 00000 00000
00 0000080 00000
000000000 000000000000
000000000

e]e]

ABA Problem: Introduction

Push
e We begin with a linked list and private item
|A NULL | B &CF—C
head
e Inserting at the head looks like
ohead = head /*x == &B */
A.next = ohead /* A points at B */
CAS(head, ohead, &A);

o If not, retry.

50 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

ABA Problem: Introduction
Push
e If that works, we get
A &Bf[—"B &CF—C
head ohead
e from
ohead = head /* == &B */
A.next = ohead /* A points at B */
CAS(head, ohead, &A);

o If not, retry.

51 /101

INTRODUCTION LFL INSERT LFL DELETE RCI

CONCLUSION
000 o o 000 oo
000000 00000000000 00000 00000
00 0000000 00000
000000000 ©00000000000
000000000

e]e]

ABA Problem: Things go south
And now it breaks!

Here's a 30,000-foot look at how this is going to break.

Thread 1 | Thread 2 | Thread 3
Pop
Pop Pop
Push
BANG!

o An extremely slow pop is racing against

e A thread which pops and then immediately pushes.
e A third which thread executes a pop.

52 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 00000 00000
0o 0000000 00000
000000000 0®0000000000
000000000
oo

ABA Problem: Things go south

A &B B &CF—C v |

head

o The first thread gets one instruction into its pop, while
e The second thread completes its pop operation:

hl = head h2 = head == &A
n2 = h2->next == &B
CAS(head, h2, n2) Success!

53 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000
000000000 0O0@000000000
000000000

e]e]

ABA Problem: Things go south

A &B B &CF—C v |

h1l h2 head

e The first thread got one instruction into its pop, while
e The second thread completed its pop operation.

hl = head h2 = head == &A
n2 = h2->next == &B
CAS(head, h2, n2) Success!

54 /101

INTRODUCTION

LFL INSERT LFL DELETE RCU CONCLUSION
000 o o 000 oo
000000 00000000000 00000 00000
00 0000000 00000
000000000 00000000000
000000000
(e}

ABA Problem: Things go south

A &B B &CFH—C |

h1l h2 head

e The third thread executes a pop operation.

55 /101

INTRODUCTION

LFL INSERT LFL DELETE RCU CONCLUSION
000 o o 000 oo
000000 00000000000 00000 00000
00 0000000 00000
000000000 0000@0000000
000000000
(e}

ABA Problem: Things go south

A &B B &CI—C v |

hl h2 h3 head

e The third thread executed a pop operation.

56 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 00000 00000
0o 0000000 00000
000000000 000008000000
000000000
oo

ABA Problem: Things go south

!

hl h2 h3 head

A &B

&CI—C v |

And the slower thread gets a few more instructions:

’ nl = hil->next;

| = 5]

57 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 00000 00000
0o 0000000 00000
000000000 000000e00000
000000000
oo

ABA Problem: Things go south

!

hl h2 nl h3 head

A &B

&CI—C v |

And the slower thread got a few more instructions:

’ nl = hil->next;

| = 5]

58 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000
000000000 000000080000
000000000
e]e]

ABA Problem: Things go south

!

hl h2 nl h3 head

A &B

&CI—C v |

Now the second thread does its push operation...

h2 = head; == &C
h2->next = h2; A.next < &C
CAS(head, h2, &A) | Success!

59 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000
000000000 00000000 e000
000000000
e]e]

ABA Problem: Things go south

f A

hl head nl h3

A &C B &CI—C v |

Now the second thread did its push operation...

h2 = head; == &C
h2->next = h2; A.next < &C
CAS(head, h2, &A) | Success!

60 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU
000 o] o] 000
000000 00000000000 00000 00000
[e]e] 0000000 00000
000000000 000000000800
000000000
[e]e]

ABA Problem: Things go south

fA

hl head nl h3

A &C B &CI—C v |

And the slower thread finally completes its pop operation...

| CAS(head, hi, n1) | | Success! |

CONCLUSION
0o

61 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 00000 00000
0o 0000000 00000
000000000 000000000080
000000000

e]e]

ABA Problem: Things go south

head h3

And the slower thread finally completed its pop operation...

| CAS(head, hi, n1) | | Success? |

B, which was well and quite off the list, and not owned by
Thread 1, is now at the head!

62 /101

INTRODUCTION LFL INSERT LFL DELETE RCI CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000

(e]e} 0000000 00000

000000000 00000000000 e

000000000
e]e]

ABA Problem: Things go south

e Thread 1 missed its chance to be notifed of having stale
data.

e All that matters is that A ended up back on the list head
when Thread 1 was CAS-ing.

o There's relatively little that thread 1 can do about this!

e For fun, try designing a different failure case.
e Try getting a circular list.

63 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 o] o] 000 00
000000 00000000000 00000 00000
[e]e] 0000000 00000
000000000 000000000000
000000000
[e]e]
Fizing ABA

e Generation counters are a simple way to solve ABA
e Let's replace all pointers with
struct versioned ptr {
void * p; /* Pointer */
unsigned int v; /* Version */
}s
e This will allow a “reasonably large” number of pointer
updates before we have to worry.

64 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 00000 00000
0o 0000000 00000
000000000 000000000000
0®0000000
oo
Fizing ABA

e Suppose we had a primitive which let us write things like
ATOMICALLY

if ((head.p == &C) && (head.v == 4))
head.p = &D
head.v = 5

65 /101

INTRODUCTION LFL INSERT LFL DELETE RCT CONCLUSION

000 o] o] 000 00
000000 00000000000 00000 00000
[e]e] 0000000 00000
000000000 000000000000
00e000000
[e]e]
Fizing ABA

o Like CAS, we want a CAS2, which operates on two
(adjacent) words at once:
CAS2(*curs, *expects, *news) atomically:
0lds[0] = curs[0]; olds[1] = curs[1];
if (curs[0]==expects[0] && curs[1]==expects[1])
curs[0] = news[0]; curs[1l]= news[1];
return { olds[0], olds[1] };
e CAS2 looks more expensive than CAS?
e Two reads, two writes.
e With luck, it's one cache line; without, it could be two.
e May be (1 + €) times as hard as CAS...
e May be oo times as hard as CAS...

66 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 o] o] 000 00
000000 00000000000 00000 00000
[e]e] 0000000 00000
000000000 000000000000
000e00000
[e]e]
Fizing ABA

24 thread pops. . .

A &B B . |

head,0
hl = head.p h2 = head.p == &A
vl = head.v
n2 = h2->next.p == &B
v2 = head.v == 0

CAS2(head, {h2,v2},{n2,v2+1}) | Success!

67 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 o] o] 000 00
000000 00000000000 00000 00000
[e]e] 0000000 00000
000000000 000000000000
0000e0000
[e]e]
Fizing ABA

24 thread popped. . .

A &B B . |

hl v1=0 head,1
hl = head.p h2 = head.p == &A
n2 = h2->next.p == &B
v2 = head.v =0
CAS2(head,{h2,v2},{n2,v2+1}) | Success!

68 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 00000 00000
0o 0000000 00000
000000000 000000000000
000008000
oo
Fizing ABA

1%t thread reads ni

A &B B . |

hl v1=0 head, 1

’ nl = hl->next.p H ‘

e nl and v1 are just local variables in preparation for...
CAS2(head,{h1,v1},{n1,vi+1})

69 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 00000 00000
0o 0000000 00000
000000000 000000000000
000000800
oo
Fizing ABA

1%t thread read nl

A &B B . |

hl v1=0 nl head,1

’ nl = hl->next.p H ‘

e nl and v1 are just local variables in preparation for...
CAS2(head,{h1,v1},{n1,vi+1})

e So if that were to happen right now. ..

70 /101

INTRODUCTION LFL INSERT

LFL DELETE RCU CONCLUSION
000 o o 000 0o
000000 00000000000 00000 00000
0o 0000000 00000
000000000 000000000000
000000080
oo

Fizing ABA
24 thread pushes. .

A &B B . |

hl v1=0 nl head,1

h2 = head.p;

v2 head.v;

A.next = h2;
CAS2(head,{h2,v2},{&A,v2+1})

71 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 o] o] 000 00
000000 00000000000 00000 00000
[e]e] 0000000 00000
000000000 000000000000
00000000 e
[e]e]
Fizing ABA

24 thread pushed; here’s where it broke before

A__ &B B .. |

2
vli=0 nl
h2 = head.p;
v2 = head.v;

A.next.p = h2;
CAS2 (head, {h2 ,v2} R {&A ,v2+1})

e CAS2(head,{h1,vi},{nl,vi+1})
e head == hl but vl == 0 # 2. Hooray!

72 /101

INTRODUCTION LFL INSERT LFL DELETE RCT CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000

000000000 000000000000
000000000
e0

Fixing ABA For Real

o Generation counters kinda stink.
o Be more clever:

e Find some way to wait until the coast is clear.

e Look at [FRO4] or [Mic02a] (or others) for more details.
e Or use different hardware (“make the EEs do it"):

e Old world: “Load-Linked/Store-Conditional /Validate”

e New world: Hardware Transactional Memory

e These assure you of no ABA because the A — B
transition nullifies your ability to successfully store
(aborts the transaction), even if B turns back into A.

e To the EEs in the room: no missed edges!

73 /101

INTRODUCTION LFL INSERT LFL DELETE RCT CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000

000000000 000000000000
000000000
oce

Real-world applications

CAS-based LF algorithms are relatively rare in the wild.

But: motivation for transactional memory, which appears
to finally be here to stay.

So: forever more, you will be able to run a chunk of code
touching (increasingly large amounts of) memory and
“see if it worked.”

A very powerful tool for concurrency design.
e [RHPT] shows potential neat uses of HTM in Linux.

74 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000

(e]e} 0000000 00000

000000000 000000000000

000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
Preliminaries

e The deletion problem would be solved if we could wait for
everyone who might have read what is now a stale pointer
to complete.

e Phrased slightly differently, we need to separate the
memory update (atomic delete or logical delete) phase
from the private use (e.g. free()) phase.

e And ensure that no readers hold a critical section that
might see the update and private phases.

o Seeing one or the other is OK!

75 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] (o] 1o} (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
Preliminaries

e Read-Copy-Update (RCU, [Wikc, McKO03]; earlier papers)
uses techniques from lock-free programming.

o Is used in several OSes, including Linux.

e It's a bit more complicated than the examples given here
and not truly lock-free, but certainly interesting.

76 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] ocoe (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
Preliminaries

e Looks like a reader-writer lock from 30, 000 ft.
e Key assumptions:
e Many more readers than writers.
e Reader critical sections are short:
e No yield(), malloc(), page faults, ...

e One writer at a time is OK.
e Some consistency requirements can be relaxed.

e Use-after-free, pointers to garbage: definitely bad.
e Double-linked-list invariant node->next->prev !=
node may be OK if violated during reader execution.
o Big feature: writers can tell when all “earlier” readers are
done.

101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
API

o Reader critical section functions.
e void rcu_read_lock(void);
e void rcu._read_unlock(void);
e Note the absence of parameters (how odd!).
e Accessor function(s):
e void * rcu_assign(void *, void *); is used to
assign a new value to an RCU protected pointer.
e (Other architectures may require more)
e Writer function:

e void rcu_wait(void); called after updates are
complete.

e Move from “update” to “private” phase.

78 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 0@000
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
API: Reader’s View

e Suppose we have a global list, called 1ist, that we want
to read under RCU.

e The code for iteration looks like
rcu_read_lock();
list_head_t *1list = list;
list_node_t *node = llist->head;
while(node != NULL) {
/* Do something reader-like */
node = node->next;

}

rcu_read_unlock();

79 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 (o]e] lele]
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
API: Writer’s View

o Example: delete the head of the same global list, 1ist.
o Use writer exclusion mutex, 1ist_wlock.
e Updates use rcu_assign(), finish with rcu_wait().
void delete head of list() {
list_node_t *head;
mutex_lock(&list_wlock); // No other writers
head = list->head;
list_node_t *next = head->next;
rcu_assign(list, next);
mutex_unlock(&list_wlock) ;
rcuwait();
free(head); /* Reclaim phase */

}

80 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 (o]e]e] le]
(e]e} 0000000 00000

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
API: Summary

e Like rwlock:
e |t allows an arbitrary number of readers to run together.
e |t prevents multiple writers from writing at once.

e It is absolutely unlike a rwlock because
e readers and writers do not exclude each other!

81 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 (o]e]ele]]
(e]e} 0000000 00000
000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
API: Wait, WHAT?

Readers can run alongside (at most one!) writer!
CPU 1 (reader) CPU 2 (writer)
rcu_read_lock(); mutex_lock(...);

1llist = list;

rcu_assign(list, new);
rcuwait();

read 11ist—>head

82 /101

INTRODUCTION

000
000000

LFL INSERT LFL DELETE RCU CONCLUSION

[e] [e] 000 (o]e]
00000000000 00000 00000
(e]e} 0000000 ®0000

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
Implementation: Key Ideas

“All the magic is inside rcu wait ()" ...

The deletion problem (like ABA) was a problem of not
knowing when nobody had a stale reference.

If

e readers agree to drop all references in bounded time
e AND writers can tell when readers have dropped
references

Then we know when it is safe to consider memory private.

Being safe for private use is exactly the same as being
safe for reuse.

83 /101

INTRODUCTION

000
000000

LFL INSERT LFL DELETE RCU CONCLUSION

[e] [e] 000 (o]e]
00000000000 00000 00000
(e]e} 0000000 0@000

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
Implementation: Approximation

Want:

e readers agree to drop all references in bounded time
e AND writers can tell when readers have dropped
references

You can imagine that there's an array of looking[i]

values out there, with each thread having its own index...

Each reader increments 1looking[me] when done.
The writer then scans waiting for each to change.

The writer then knows that no readers have stale
references, and is now OK to free deleted item(s).

Nice idea, but doesn't work (how sad!)

84 /101

INTRODUCTION

000
000000

LFL INSERT LFL DELETE RCU CONCLUSION

[e] [e] 000 (o]e]
00000000000 00000 00000
(e]e} 0000000 (o]e] Jele]

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
Implementation

So how does RCU actually do this?

e “All the magic is inside rcu_wait ()" ...
rcu read_lock() simply disables interrupts.

e So we need readers that won't call yield ().

rcu_assign() ensures ordering of writes.
Too much detail for today's lecture.
It's “the right kind of write”.

(Inserts a write memory barrier before it does the
assignment requested.)

85 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 (o]e]e] le]

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
Implementation

¢ Given all of this, what does rcu wait() do?
e It waits until every CPU takes an interrupt!

e Could just have a counter per CPU and wait for each to
fire, or...

e Or! Each rcu_wait runs sequentially on each CPU.

e Because readers are non-preemptible, waiting until all
CPUs preempt means that all readers must have
dropped their “lock” and so have forgotten any pointers
to memory we want to free.

86 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 [e] [e] 000 (o]e]
000000 00000000000 00000 00000
(e]e} 0000000 (o]e]e]e]]

000000000 000000000000
000000000
e]e]

Read-Copy-Update Mutual Ezxclusion
Confessions of an Instructor

Real-world RCU once upon a time worked this way but more
recent implementations are much fancier. For the really
enthusiastic, see things like Linux's “Sleepable RCU”
implementation [McKO06].

87 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [e]e)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Conclusion
e Discussed...

e “Tree of locks”
The lock-free pattern

o ‘“replace locks with luck (plus detection and fixup)”
CAS/CAS2 as "mini-transactions”
A simple wrong idea

e ‘“address == meaning”
The "ABA problem”

e “RCU: Wait for people to leave the room”

e Note: “classical” LF may be replaced by HTM (another
lecture)

88 /101

INTRODUCTION LFL INSERT LFL DELETE RCU CONCLUSION

000 (e} (e} 000 [Jo)
000000 00000000000 00000 00000
00 0000000 00000
000000000 000000000000
000000000
[e]e)
Conclusion

Words of Warning

It's extremely hard to roll your own lockfree algorithm.

But moreover, it's almost impossible to debug one.

Thus all the papers are long not because the algorithms
are hard, ...

... but because they prove the correctness of the
algorithm so they at least don’t have to debug that.

89 /101

000000000 000000000000
000000000
00

Thanks. Questions?

90 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY
00 o
0o o
o

[Mikhail Fomitchev and Eric Ruppert, Lock-free linked lists
and skip lists, PODC (2004), no. 1-58113-802-4/04 /0007,
50-60,
http://www.research.ibm.com /people/m /michael /podc-
2002.pdf.

[4 Maurice Herlihy, Does hardware transactional memory
change everything?

[4 Paul McKenney, Kernel Korner - Using RCU in the Linux
2.5 Kernel, http://www.linuxjournal.com/article/6993.

[Paul McKenny, Sleepable RCU,
http://lwn.net/Articles/202847/.

[4 Peter Memishian, On locking, July 2006,
http://blogs.sun.com/meem/entry/on_locking.

90 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY

(e]e} [e]
(o] [e]
[e]

[4 Maged M. Michael, High performance dynamic lock-free
hash tables and list-based sets, SPAA (2002),
no. 1-58113-529-7/02,/0008, 73-83,
http://portal.acm.org/ft_gateway.cfm?id=564881&type=pdf
&coll=GUIDE&dI=ACM& CFID=73232202
&CFTOKEN=1170757.

, Sate memory reclamation for dynamic lock-free
objects using atomic reads and writes, PODC (2002),
no. 1-58113-485-1/02/0007, 1-10,
http://www.research.ibm.com/people/m/michael /podc-
2002.pdf.

, Hazard pointers: Safe memory reclamation for
lock-free objects, IEEECS (2004), no. TPDS-0058-0403,
1-10,

90 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY

(e]e} [e]
(o] [e]
[e]

http://www.research.ibm.com /people/m /michael /podc-
2002.pdf.

[4 Christopher J. Rossbach, Owen S. Hofmann, Donald E.
Porter, Hany E. Ramadan, Bhandari Aditya, and Emmett
Witchel, TxLinux: using and managing hardware
transactional memory in an operating system, ACM
SIGOPS Operating Systems Review, vol. 41, ACM,

p. 87102.

[4 H. Sundell, Wait-free reference counting and memory
management, International Parallel and Distributed
Processing Symposium, no. 1530-2075/05, IEEE, April
2005,
http://ieeexplore.ieee.org/iel5/9722/30685/01419843.pdf?
tp=&arnumber=1419843&isnumber=30685.

90 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY

(e]e} [e]
(o] [e]
[e]

[Wikipedia, Lock-free and wait-free algorithms,
http://en.wikipedia.org/wiki/Lock-free_and_wait-
free_algorithms.

E , Non-blocking synchronization,
http://en.wikipedia.org/wiki/Non-

blocking_synchronization.

El , Read-copy-update,

http://en.wikipedia.org/wiki/Read-copy-update.

91 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY
00 o
0o o
o

Acknowledgements

e Dave Eckhardt (deOu) has seen this lecture about as
often as | have, and has produced useful commentary on
every release.

e Bruce Maggs (bmm) for moral support and big-picture
guidance

¢ Jess Mink (jmink), Matt Brewer (mbrewer), and Mr.
Wright (mrwright) for being victims of beta versions of
this lecture.

e [Nobody on this list deserves any of the blame, but
merely credit, for this lecture. |

91 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM [ISCELLANY

Y
(e]e} [e]
(o] [e]

[e]

Pictures for RCU

Writer view

o Let's again take a linked list, this time a doubly linked

one.
head Al B[] tail

o Now suppose the writer acquires the write lock and
updates to delete B:

head .. tail

o Now the writer synchronizes, forcing all readers with
references to B out of the list. Only then can B be
reclaimed!

head Al C] tail

92 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM [ISCELLANY

Y
(e]e} [e]
(o] [e]

[e]

Pictures for RCU
Reader View

e Looking at that again, from the reader’s side now.
Originally

head AL |BL_ (] tail

e The writer first sets it to

head E- tail

e And then

head -. tail

93 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY

(e]e} [e]
(o] [e]
[e]

Pictures for RCU

Pictures

The writer forced memory consistency (fencing) between
each update.

So each reader's dereference occurred entirely before or
entirely after each write.

So the reader’s traversal in either direction is entirely
consistent!

e (moving back and forth might expose the writer's
action.)

But it’s OK, because we'll just see a disconnected node.
It's not gone yet, just disconnected.
It won't be reclaimed until we drop our critical section.

94 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY
[1o} o
00 o
o

Full fledged deletion € reclaim

e Even though we might be able to solve ABA, it still
doesn’t solve memory reclaim!

e Imagine that instead of being reclaimed by the list, the
deleted node before had been reclaimed by something
else...

e A different list
e A tree
e For use as a thread control block

95 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY

oe [e]
(o] [e]
[e]

Full fledged deletion € reclaim

e What if we looked at ABA differently ...
e It only matters if there is the possibility of confusion.

e In particular, might demonstrate strong interest in things
that might confuse me

e Hazard Pointers (“Safe Memory Reclaimation” or just
“SMR") [Mic02b] and [Mic04]
e Wait-free reference counters [Sun05]
o These are ways of asking “If I, Thread 189236, were to
put something here, would anybody be confused?”
o This solves ABA, but really as a side effect: it lets us
reclaim address space (and therefore memory) because we
know nobody's using it!

96 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY

(e]e} [e]
e0 [e]
[e]

Some real algorithms?

[Mic02a] specifies a CAS-based lock-free list-based sets and
hash tables using a technique called SMR to solve ABA and
allow reuse of memory.

e SMR actually solves ABA as a side effect of safely
reclaiming memory. Instead of blocking the writer until
everybody leaves a critical section, it can efficiently scan
to see if threads are interested in a particular chunk of
memory.

e Their performance figures are worth looking at.
Summary: fine-grained locks (lock per node) show
linear-time increase with # threads, their algorithm shows
essentially constant time.

97 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY

(e]e} [e]
oe [e]
[e]

The SMR Algorithm

e Every thread comes pre-equipped with a finite list of
“hazards”

e Memory reclaim involves scanning everybody's hazards to
see if there's a collision

e Threads doing reclaim yield() (to the objecting thread)
until the hazard is clear
o Difficulty
e Show that hazards can only decrease when deletions are
pending
e Show that deletions eventually succeed (can’t deadlock
on hazards)
e Managing the list of threads’ hazards is difficult

8 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY

(e]e} o
(o] [e]
[e]

Observation On Object Lifetime

Instance of a general problem [Mem06]:

Things get tricky when the object must go away. [...]
Any thread looking up the object — by definition —
does not yet have the object and thus cannot hold
the object’s lock during the lookup operation. [...]
Thus, whatever higher-level synchronization is used
to coordinate the threads looking up the object must
also be used as part of removing the object from
visibility.

99 /101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM Misc

(e]e} [e]
(o] °
[e]

Mascellany
Locking vs. RCU

Interestingly, this kind of RCU tends to decrease the
number of (bus) atomic operations.

e Uses scheduler to get per-CPU atomicity.
RCU requires the ability to force a thread to run on every
CPU or at least observe when every CPU has context
switched.

e Difficult to use RCU in userland!
RCU, like lockfree, suffers a slowdown from cache line
shuffling, but will make progress due to having at most
one writer.

ELLANY

100 / 101

(e]e} [e]
(o] [e]
o

Mascellany
Lockfree vs. Locking.

Most lock-free algorithms increase the number of atomic
operations, compared to the lockful variants.

Thus we may starve processors for bus activity on
bus-locking systems.
On systems with cache coherency protocols, we might
livelock with no processor able to make progress due to
cacheline stealing and high transit times.
e Nobody can get all the cachelines to execute an
instruction before a request comes in and and steals one
of the ones they had.

101

ACKNOWLEDGEMENTS RCUPIcs RECLAIM MISCELLANY

101

	Introduction
	Locks Might Take A While
	Locks Can Be…Not So Bad?

	Lock-Free Linked List Insertion
	Lock-Free Linked List Node
	Insertion into a Linked List Without Locks
	Review of Atomic Primitives
	Insertion into a Lock-free Linked List

	Lock-Free Linked List Deletion
	That's great!
	Deletion is easy?
	ABA Problem: Introduction
	ABA Problem: Things go south
	Fixing ABA
	Fixing ABA For Real

	Read-Copy-Update Mutual Exclusion
	Preliminaries
	API
	Implementation
	Words of Warning

	Appendix
	Acknowledgements
	Pictures for RCU
	Memory Reclaimation
	Full fledged deletion & reclaim
	The SMR Algorithm

	Miscellany
	Observation On Object Lifetime
	Locking vs. RCU
	Lockfree vs. Locking.

