
Introduction LFL Insert LFL Delete RCU Conclusion

Lock-free Programming

Nathaniel Wesley Filardo
David A. Eckhardt

November 20, 2015

1 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Context

� Things recently have been confusing!

� Instructions run “out-of-order” on every CPU!
� Single data items are cached many times on many CPUs!
� Causality is violated between variables!

� How can any program work??

2 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Context

� Things recently have been confusing!
� Instructions run “out-of-order” on every CPU!
� Single data items are cached many times on many CPUs!
� Causality is violated between variables!

� How can any program work??

2 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Context

� Within a CPU
� Instructions run “out-of-order”
� Data dependencies delay when instructions start
� Instruction outcomes are published when they are safe
→ It is possible to write single-threaded code.

� Cache coherence
� Caches talk to each other with a MSI-like protocol
→ All caches return an up-to-date version of each cache line

� Memory consistency
� Barrier instructions separate code regions that

import/export data across threads
→ Programs can depend on causality across multiple cache

lines

3 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Context

� Within a CPU
� Instructions run “out-of-order”
� Data dependencies delay when instructions start
� Instruction outcomes are published when they are safe
→ It is possible to write single-threaded code.

� Cache coherence
� Caches talk to each other with a MSI-like protocol
→ All caches return an up-to-date version of each cache line

� Memory consistency
� Barrier instructions separate code regions that

import/export data across threads
→ Programs can depend on causality across multiple cache

lines

3 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Context

� Within a CPU
� Instructions run “out-of-order”
� Data dependencies delay when instructions start
� Instruction outcomes are published when they are safe
→ It is possible to write single-threaded code.

� Cache coherence
� Caches talk to each other with a MSI-like protocol
→ All caches return an up-to-date version of each cache line

� Memory consistency
� Barrier instructions separate code regions that

import/export data across threads
→ Programs can depend on causality across multiple cache

lines

3 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Today

� Lock-free programming
� A particular kind of multi-threaded code
� Multi-threaded access to a single data structure -

without locks!

� Something people might expect you to know about
� An example to help think about modern machines
� (Not a kind of code most people write.)

4 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Today

� Lock-free programming
� A particular kind of multi-threaded code
� Multi-threaded access to a single data structure -

without locks!
� Something people might expect you to know about
� An example to help think about modern machines

� (Not a kind of code most people write.)

4 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Today

� Lock-free programming
� A particular kind of multi-threaded code
� Multi-threaded access to a single data structure -

without locks!
� Something people might expect you to know about
� An example to help think about modern machines
� (Not a kind of code most people write.)

4 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Outline

Introduction

Lock-Free Linked List Insertion

Lock-Free Linked List Deletion

Read-Copy-Update Mutual Exclusion

5 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction

� Suppose some madman says “We shouldn’t use locks!”

� You know that this results (eventually!) in inconsistent
data structures.

� Loss of invariants within the data structure
� Live pointers to dead memory
� Live pointers to undead memory (Hey, my type changed!

Stop poking there!)

6 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction
Locks Might Take A While

� Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)

as their core operation.

� We could spend an unbounded amount of time here
spinning. . .

� Contended locks will have very high latency. . .

� Locks by definition reduce parallelism.

7 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction
Locks Might Take A While

� Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)

as their core operation.

� We could spend an unbounded amount of time here
spinning. . .

� Contended locks will have very high latency. . .

� Locks by definition reduce parallelism.

7 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction
Locks Might Take A While

� Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)

as their core operation.

� We could spend an unbounded amount of time here
spinning. . .

� Contended locks will have very high latency. . .

� Locks by definition reduce parallelism.

7 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction
Locks Might Take A While

� Locks by definition reduce parallelism.
� If N people are contending for a lock, N − 1 of them are

just wasting time.
� “It would be nice” if they could all work at once . . .
� . . . but this requires a way to “handle” data-structure

conflicts.

8 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction
Locks Might Take A While

� For a large data structure, we would like multiple local
(independent) operations to be allowed concurrently.

� e.g. “lookup” and “insert” in parallel threads

� Approaches:
� “Data structure full of locks” — today
� Lock-free data structures — today
� “Hardware transactional memory” [Her] — not today

9 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction
Locks Can Be. . . Not So Bad?

� Instead of a lock around a tree, we could have a tree with
locks:

ROOT

��

LOCK

C

yy %%

LOCK

B LOCK D LOCK

� The protocol: lock the root, then (lock child & unlock
parent) as you go down.

� This kind of lock handoff is a very common design.

10 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction
Locks Can Be. . . Not So Bad?

� Trying to find node A.

� Step 1: lock root pointer and top node

ROOT

��

LOCK

C

yy %%

LOCK

B

��

LOCK D

��

LOCK

A LOCK E LOCK

11 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction
Locks Can Be. . . Not So Bad?

� Trying to find node A.

� Step 2: lock left child and unlock parent.

ROOT

��

LOCK

C

yy %%

LOCK

B

��

LOCK D

��

LOCK

A LOCK E LOCK

12 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction
Locks Can Be. . . Not So Bad?

� Trying to find node A.

� Step 3: lock left child and unlock parent

ROOT

��

LOCK

C

yy %%

LOCK

B

��

LOCK D

��

LOCK

A LOCK E LOCK

13 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction

� This dance is sometimes called “hand-over-hand locking”.

� In a binary tree, each traversal by one thread “opens half
of the tree” for other threads.

14 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Introduction

But let’s see what we can do without any locks at all.

15 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Lock-Free Linked List Node

� Node definition is simple:
label t label

void* next

� When drawing, we’ll use a shorthand:
label t label = A

void* next = &B
⇔ A &B

16 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
Insertion Code

insertAfter(after, newlabel) {
//lockList();

new = newNode(newlabel);

prev = findLabel(after);

new->next = prev->next;

prev->next = new;

//unlockList();

}

17 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
“Good trace”

insertAfter(A,B) insertAfter(A,C)

prev = &A
B.next=A.next

A.next=&B

prev = &A

C.next=A.next

A.next=&C

18 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
Race trace

insertAfter(A,B) insertAfter(A,C)

prev = &A

B.next = A.next

prev = &A

C.next = A.next

A.next = &B A.next = &C

� Either of these assignments makes sense in isolation, but
one of them will override the other!

19 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
Precondition

A &D // D NULL

� One list, two items on it: A and D.

20 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
First step

C NULL

A &D // D NULL

B NULL

� Two threads get two nodes, B and C , and want to insert.

new = newNode(B); new = newNode(C);
prev = &A prev = &A

21 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
Second step

C &D

''
A &D // D NULL

B &D

88

� Two threads point their respective nodes C and B into
list at D

B.next=&D C.next=&D

22 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
One thread goes

C &D

''
A &C

``

D NULL

B &D

88

� Suppose the thread owning C completes its assignment
first.

A.next=&C

23 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
And the other. . .

C &D

''
A &B

~~

D NULL

B &D

88

� And the other (owning B) completes second, overwriting

A.next=&B

� Node C is unreachable!

24 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks

� What went wrong?

1. Thread B observed that &A->next == D

2. Thread C observed that &A->next == D

3. Thread C changed &A->next “from D to C”
4. Thread B changed &A->next “from D to B” (oops!)

� How to fix that?
1. Give B and C critical sections and serialize them

� Then there is no gap between observation and changing
� But that requries locking, which we are avoiding...

2. The pattern for today

2.1 Assume update collisions happen rarely
2.2 Detect when they do happen — hardware support
2.3 Figure out how to “try again”

25 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks

� What went wrong?

1. Thread B observed that &A->next == D

2. Thread C observed that &A->next == D

3. Thread C changed &A->next “from D to C”
4. Thread B changed &A->next “from D to B” (oops!)

� How to fix that?

1. Give B and C critical sections and serialize them
� Then there is no gap between observation and changing
� But that requries locking, which we are avoiding...

2. The pattern for today

2.1 Assume update collisions happen rarely
2.2 Detect when they do happen — hardware support
2.3 Figure out how to “try again”

25 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks

� What went wrong?

1. Thread B observed that &A->next == D

2. Thread C observed that &A->next == D

3. Thread C changed &A->next “from D to C”
4. Thread B changed &A->next “from D to B” (oops!)

� How to fix that?
1. Give B and C critical sections and serialize them

� Then there is no gap between observation and changing
� But that requries locking, which we are avoiding...

2. The pattern for today

2.1 Assume update collisions happen rarely
2.2 Detect when they do happen — hardware support
2.3 Figure out how to “try again”

25 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks

� What went wrong?

1. Thread B observed that &A->next == D

2. Thread C observed that &A->next == D

3. Thread C changed &A->next “from D to C”
4. Thread B changed &A->next “from D to B” (oops!)

� How to fix that?
1. Give B and C critical sections and serialize them

� Then there is no gap between observation and changing
� But that requries locking, which we are avoiding...

2. The pattern for today

2.1 Assume update collisions happen rarely
2.2 Detect when they do happen — hardware support
2.3 Figure out how to “try again”

25 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
The Lock Free / Transactional Approach

while(not done)
Determine preconditions for the update
Prepare for update
ATOMICALLY

if(preconditions still hold)
make update;
done = true;

� Does this pattern finish in bounded time?

� No: could “encounter trouble” unboundedly.
� But if threads “almost never” spatially collide...

� We gain “a lot” of parallelism by deleting locks.
� We pay “a little” work handling retries.

26 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks
The Lock Free / Transactional Approach

while(not done)
Determine preconditions for the update
Prepare for update
ATOMICALLY

if(preconditions still hold)
make update;
done = true;

� Does this pattern finish in bounded time?
� No: could “encounter trouble” unboundedly.

� But if threads “almost never” spatially collide...
� We gain “a lot” of parallelism by deleting locks.
� We pay “a little” work handling retries.

26 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Linked List Without Locks

� Re-writing list-insert in this pattern:

insertAfter(A,B) insertAfter(A,C)

while(!done) while(!done)

findLabel(A) findLabel(A)

ATOMICALLY ATOMICALLY

if (A->next == D) if (A->next == D)

A->next = B A->next = C

done = 1 done = 1

� If we do that, one critical section will safely fail out and
tell us to try again.

� How do we do this ATOMICALLY without locking?

27 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Review of Atomic Primitives

� Remember our old friend XCHG?

� XCHG (ptr, val)

ATOMICALLY

// “lock bus” (not really)
old val = *ptr;

*ptr = val;

// “unlock bus” (not really)
return old val;

� Summary: one fetch and one store under (mini) lock.

28 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Review of Atomic Primitives

XCHG(ptr,new) CAS(ptr, expect, new)

ATOMICALLY ATOMICALLY

old = *ptr; old = *ptr;

if(old == expect)

*ptr = new; *ptr = new;

return old; return old;

Note that CAS is no harder:

� Still one read, one write under same lock.

� (logic time � memory time)

29 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Lock-free Linked List

� Our assignments were really supposed to be

insertAfter(A,B) insertAfter(A,C)

while(!done) while(!done)

findLabel(A) findLabel(A)

ATOMICALLY ATOMICALLY

if (A->next == D) if (A->next == D)

A->next = B A->next = C

done = 1 done = 1

� This translates into
while(!done)

prev = B->next = A->next;

done = (CAS(&A->next,prev,B) == prev)
� CAS will assign if match, or bail otherwise.

30 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Lock-free Linked List
Simple case, setup

A &D // D NULL

C NULL

� Some thread constructs the bottom node C ; wishes to
place it between the two above, A and D.

� new = newNode(C);

� prev = findLabel(A); /* == &A */

31 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Lock-free Linked List
Simple case, first step

A &D // D NULL

C NULL

� Thread points C node’s next into list at D.

� C.next = A.next;

A &D // D NULL

C &D

88

32 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Lock-free Linked List
Simple case, second step

A &D // D NULL

C &D

88

� CAS(&A.next, &D, &C);

A &C

~~

// D NULL

C &D

88

33 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Lock-free Linked List
Race case, setup

C NULL

A &D // D NULL

B NULL

� Two threads get their respective nodes B and C .

new = newNode(B); new = newNode(C);
prev = &A prev = &A

34 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Lock-free Linked List
Race case, first step

C &D

''
A &D // D NULL

B &D

88

� Both set their new node’s next pointer.

B.next=&D C.next=&D

35 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Lock-free Linked List
Race case, first thread

C &D

''
A &C

``

D NULL

B &D

88

� Thread C goes first . . .

CAS(&A->next, D, C)

36 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Lock-free Linked List
Race case, second thread

C &D

''
A &C

``

CAS(prev−>next,new−>next,new)~~

D NULL

B &D

OO

� And the other (owning B). . .

CAS(&A->next, D, B)

� . . . fails since A->next == C, not D.

� So this thread tries again.
37 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Insertion into a Lock-free Linked List

� Rewrite the insertion code to be
insertAfter(after, newlabel) {

new = newNode(newlabel);

do {
prev = findLabel(after);

expected = new->next = prev->next;

} while

(CAS(&prev->next, expected, new)

!= expected);

}

38 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

That’s great!

� It works!
� No locks!
� Threads can simultaneously scan and scan the list...
� Threads can simultaneously scan and grow the list!
� Threads can simultaneously grow and grow the list!

� All those while loops... (retrying over and over?)
� Remember, mutexes had while loops too...

� maybe even around CAS()!

� Here, whenever we retry we know somebody else got
work done!

� Are we done?
� Have we implemented all the standard operations?

39 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Deletion is easy?

� Suppose we have

C &E

&&
A &C

``

E NULL

� And want to get rid of C .

� So CAS(&A.next, &C, &E)

40 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Deletion is easy?

� Now we have

C &E

&&
A &E // E NULL

� Great, looks like deletion to me!
� It’s off the data-structure (logically deleted) · · ·

� But not freed (“actually” deleted / reclaimed).

41 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Deletion is easy?
Continued

� Imagine there was another thread accessing C (say,
scanning the list).

Some
other

thread

// C next

$$
A next // E next

� We don’t know when that thread is done with C !

� So we can never free(C);

42 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Deletion is easy?
What’s to be done?

� We need some way to reclaim that memory for reuse..

� Some implementations cheat and assume a stop-the-world
garbage collector.

� (That’s like a giant lock!)

� Doing deletion honestly is remarkably tricky!
� We’re not going to really have time to cover it.

43 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Deletion is easy?
What’s to be done?

� Assume: once some memory is committed to being a LF
list node that it’s OK if it’s always a LF list node.

� So we can have two lists: the “real” list and a “free” list.
� This is not real free() but is hard enough.

� In particular, we run into the “ABA problem”.

44 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Introduction

� A problem of confused identity

global = malloc(sizeof(Foo))
local1 = global local2 = global
global = NULL

free(local1)
global = malloc(sizeof(Foo))

/* Validity check */
if (global == local2)
global->foo baz = . . .

45 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Introduction

� A problem of confused identity

global = malloc(sizeof(Foo)) //0x1337
local1 = global local2 = global
global = NULL

free(local1) //0x1337
global = malloc(sizeof(Foo)) //0x1337

/* Validity check */
if (global == local2)
global->foo baz = . . .

� Even though local2 and global might point to the same
address, they don’t really mean the same thing.

46 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Introduction
Preliminaries

� We begin with an innocent linked list:

head

A &B B &C ...C

� Where head is a a global pointer to the list.

� We’re just going to do operations at the head – treating
the list like a stack.

47 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Introduction
Pop

� We begin with a linked list:

head

A &B B &C ...C

� Removing the head looks like
ohead = head /* == &A */

onext = ohead->next /* == &B */

CAS(head, ohead, onext);

� If not, retry.

48 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Introduction
Pop

� If successful,

A &B B &C ...C

headohead

� is the result of
ohead = head /* == &A */

onext = ohead->next /* == &B */

CAS(head, ohead, onext);

� If not, retry.

49 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Introduction
Push

� We begin with a linked list and private item

A B &C ...C

head

NULL

� Inserting at the head looks like
ohead = head /* == &B */

A.next = ohead /* A points at B */

CAS(head, ohead, &A);

� If not, retry.

50 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Introduction
Push

� If that works, we get

head

A &B B &C ...C

ohead

� from
ohead = head /* == &B */

A.next = ohead /* A points at B */

CAS(head, ohead, &A);

� If not, retry.

51 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south
And now it breaks!

Here’s a 30,000-foot look at how this is going to break.
Thread 1 Thread 2 Thread 3

Pop
Pop Pop

Push
BANG!

� An extremely slow pop is racing against
� A thread which pops and then immediately pushes.
� A third which thread executes a pop.

52 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

head

A &B B &C ...C

� The first thread gets one instruction into its pop, while

� The second thread completes its pop operation:

h1 = head h2 = head == &A

n2 = h2->next == &B

CAS(head, h2, n2) Success!

53 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

headh1

A &B B &C ...C

h2

� The first thread got one instruction into its pop, while

� The second thread completed its pop operation.

h1 = head h2 = head == &A

n2 = h2->next == &B

CAS(head, h2, n2) Success!

54 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

headh1

A &B B &C ...C

h2

� The third thread executes a pop operation.

55 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

h1 head

A &B B &C ...C

h3h2

� The third thread executed a pop operation.

56 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

h1 head

A &B B &C ...C

h3h2

And the slower thread gets a few more instructions:

n1 = h1->next; == &B

57 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

h1 head

A &B B &C ...C

n1h2 h3

And the slower thread got a few more instructions:

n1 = h1->next; == &B

58 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

h1 head

A &B B &C ...C

n1h2 h3

Now the second thread does its push operation...

h2 = head; == &C

h2->next = h2; A.next ← &C

CAS(head, h2, &A) Success!

59 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

h1 head

A &C B &C ...C

h3n1

Now the second thread did its push operation...

h2 = head; == &C

h2->next = h2; A.next ← &C

CAS(head, h2, &A) Success!

60 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

h1 head

A &C B &C ...C

h3n1

And the slower thread finally completes its pop operation...

CAS(head, h1, n1) Success!

61 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

��������A &C B &C ...C

h3head

And the slower thread finally completed its pop operation...

CAS(head, h1, n1) Success?

B , which was well and quite off the list, and not owned by
Thread 1, is now at the head!

62 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

ABA Problem: Things go south

� Thread 1 missed its chance to be notifed of having stale
data.

� All that matters is that A ended up back on the list head
when Thread 1 was CAS-ing.

� There’s relatively little that thread 1 can do about this!

� For fun, try designing a different failure case.
� Try getting a circular list.

63 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA

� Generation counters are a simple way to solve ABA
� Let’s replace all pointers with
struct versioned ptr {

void * p; /* Pointer */

unsigned int v; /* Version */

};
� This will allow a “reasonably large” number of pointer

updates before we have to worry.

64 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA

� Suppose we had a primitive which let us write things like
ATOMICALLY

if ((head.p == &C) && (head.v == 4))

head.p = &D

head.v = 5

65 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA

� Like CAS, we want a CAS2, which operates on two
(adjacent) words at once:
CAS2(*curs, *expects, *news) atomically:
olds[0] = curs[0]; olds[1] = curs[1];

if (curs[0]==expects[0] && curs[1]==expects[1])

curs[0] = news[0]; curs[1]= news[1];

return { olds[0], olds[1] };
� CAS2 looks more expensive than CAS?

� Two reads, two writes.
� With luck, it’s one cache line; without, it could be two.
� May be (1 + ε) times as hard as CAS...
� May be ∞ times as hard as CAS...

66 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA
2nd thread pops. . .

head,0

A &B B ...

h1 = head.p h2 = head.p == &A

v1 = head.v

n2 = h2->next.p == &B

v2 = head.v == 0

CAS2(head,{h2,v2},{n2,v2+1}) Success!

67 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA
2nd thread popped. . .

A &B B ...

head,1h1 v1 = 0

h1 = head.p h2 = head.p == &A

n2 = h2->next.p == &B

v2 = head.v == 0

CAS2(head,{h2,v2},{n2,v2+1}) Success!

68 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA
1st thread reads n1

A &B B ...

head,1h1 v1 = 0

n1 = h1->next.p

� n1 and v1 are just local variables in preparation for...
CAS2(head,{h1,v1},{n1,v1+1})

69 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA
1st thread read n1

A &B B ...

head,1h1 v1 = 0 n1

n1 = h1->next.p

� n1 and v1 are just local variables in preparation for...
CAS2(head,{h1,v1},{n1,v1+1})

� So if that were to happen right now. . .

70 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA
2nd thread pushes. . .

A &B B ...

head,1h1 v1 = 0 n1

h2 = head.p;

v2 = head.v;

A.next = h2;

CAS2(head,{h2,v2},{&A,v2+1})

71 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA
2nd thread pushed; here’s where it broke before

A &B B ...

n1h1 v1 = 0

head ,2

h2 = head.p;

v2 = head.v;

A.next.p = h2;

CAS2(head,{h2,v2},{&A,v2+1})

� CAS2(head,{h1,v1},{n1,v1+1})
� head == h1 but v1 == 0 6= 2. Hooray!

72 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Fixing ABA For Real

� Generation counters kinda stink.

� Be more clever:
� Find some way to wait until the coast is clear.
� Look at [FR04] or [Mic02a] (or others) for more details.

� Or use different hardware (“make the EEs do it”):
� Old world: “Load-Linked/Store-Conditional/Validate”
� New world: Hardware Transactional Memory
� These assure you of no ABA because the A→ B

transition nullifies your ability to successfully store
(aborts the transaction), even if B turns back into A.

� To the EEs in the room: no missed edges!

73 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Real-world applications

� CAS-based LF algorithms are relatively rare in the wild.

� But: motivation for transactional memory, which appears
to finally be here to stay.

� So: forever more, you will be able to run a chunk of code
touching (increasingly large amounts of) memory and
“see if it worked.”

� A very powerful tool for concurrency design.
� [RHP+] shows potential neat uses of HTM in Linux.

74 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
Preliminaries

� The deletion problem would be solved if we could wait for
everyone who might have read what is now a stale pointer
to complete.

� Phrased slightly differently, we need to separate the
memory update (atomic delete or logical delete) phase
from the private use (e.g. free()) phase.

� And ensure that no readers hold a critical section that
might see the update and private phases.

� Seeing one or the other is OK!

75 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
Preliminaries

� Read-Copy-Update (RCU, [Wikc, McK03]; earlier papers)
uses techniques from lock-free programming.

� Is used in several OSes, including Linux.

� It’s a bit more complicated than the examples given here
and not truly lock-free, but certainly interesting.

76 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
Preliminaries

� Looks like a reader-writer lock from 30, 000 ft.

� Key assumptions:
� Many more readers than writers.
� Reader critical sections are short:

� No yield(), malloc(), page faults, . . .

� One writer at a time is OK.
� Some consistency requirements can be relaxed.

� Use-after-free, pointers to garbage: definitely bad.
� Double-linked-list invariant node->next->prev !=

node may be OK if violated during reader execution.

� Big feature: writers can tell when all “earlier” readers are
done.

77 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
API

� Reader critical section functions.
� void rcu read lock(void);

� void rcu read unlock(void);

� Note the absence of parameters (how odd!).

� Accessor function(s):
� void * rcu assign(void *, void *); is used to

assign a new value to an RCU protected pointer.
� (Other architectures may require more)

� Writer function:
� void rcu wait(void); called after updates are

complete.
� Move from “update” to “private” phase.

78 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
API: Reader’s View

� Suppose we have a global list, called list, that we want
to read under RCU.

� The code for iteration looks like
rcu read lock();

list head t *llist = list;

list node t *node = llist->head;

while(node != NULL) {
... /* Do something reader-like */

node = node->next;

}
rcu read unlock();

79 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
API: Writer’s View

� Example: delete the head of the same global list, list.
� Use writer exclusion mutex, list wlock.
� Updates use rcu assign(), finish with rcu wait().
void delete head of list() {

list node t *head;

mutex lock(&list wlock); // No other writers

head = list->head;

list node t *next = head->next;

rcu assign(list, next);

mutex unlock(&list wlock);

rcu wait();

free(head); /* Reclaim phase */

}
80 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
API: Summary

� Like rwlock:
� It allows an arbitrary number of readers to run together.
� It prevents multiple writers from writing at once.

� It is absolutely unlike a rwlock because
� readers and writers do not exclude each other!

81 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
API: Wait, WHAT?

Readers can run alongside (at most one!) writer!
CPU 1 (reader) CPU 2 (writer)

rcu read lock(); mutex lock(...);

llist = list; . . .
rcu assign(list, new);

rcu wait();

read llist->head

82 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
Implementation: Key Ideas

� “All the magic is inside rcu wait()” . . .

� The deletion problem (like ABA) was a problem of not
knowing when nobody had a stale reference.

� If
� readers agree to drop all references in bounded time
� AND writers can tell when readers have dropped

references

� Then we know when it is safe to consider memory private.

� Being safe for private use is exactly the same as being
safe for reuse.

83 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
Implementation: Approximation

� Want:
� readers agree to drop all references in bounded time
� AND writers can tell when readers have dropped

references

� You can imagine that there’s an array of looking[i]
values out there, with each thread having its own index...

� Each reader increments looking[me] when done.

� The writer then scans waiting for each to change.

� The writer then knows that no readers have stale
references, and is now OK to free deleted item(s).

� Nice idea, but doesn’t work (how sad!)

84 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
Implementation

� So how does RCU actually do this?
� “All the magic is inside rcu wait()” . . .

� rcu read lock() simply disables interrupts.
� So we need readers that won’t call yield().

� rcu assign() ensures ordering of writes.

� Too much detail for today’s lecture.

� It’s “the right kind of write”.

� (Inserts a write memory barrier before it does the
assignment requested.)

85 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
Implementation

� Given all of this, what does rcu wait() do?

� It waits until every CPU takes an interrupt!
� Could just have a counter per CPU and wait for each to

fire, or...

� Or! Each rcu wait runs sequentially on each CPU.
� Because readers are non-preemptible, waiting until all

CPUs preempt means that all readers must have
dropped their “lock” and so have forgotten any pointers
to memory we want to free.

86 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Read-Copy-Update Mutual Exclusion
Confessions of an Instructor

Real-world RCU once upon a time worked this way but more
recent implementations are much fancier. For the really
enthusiastic, see things like Linux’s “Sleepable RCU”
implementation [McK06].

87 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Conclusion

� Discussed...
� “Tree of locks”
� The lock-free pattern

� “replace locks with luck (plus detection and fixup)”

� CAS/CAS2 as “mini-transactions”
� A simple wrong idea

� “address == meaning”

� The “ABA problem”
� “RCU: Wait for people to leave the room”

� Note: “classical” LF may be replaced by HTM (another
lecture)

88 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Conclusion
Words of Warning

� It’s extremely hard to roll your own lockfree algorithm.

� But moreover, it’s almost impossible to debug one.

� Thus all the papers are long not because the algorithms
are hard, . . .

� . . . but because they prove the correctness of the
algorithm so they at least don’t have to debug that.

89 / 101

Introduction LFL Insert LFL Delete RCU Conclusion

Thanks. Questions?

90 / 101

Acknowledgements RCUPics Reclaim Miscellany

Mikhail Fomitchev and Eric Ruppert, Lock-free linked lists
and skip lists, PODC (2004), no. 1-58113-802-4/04/0007,
50–60,
http://www.research.ibm.com/people/m/michael/podc-
2002.pdf.

Maurice Herlihy, Does hardware transactional memory
change everything?

Paul McKenney, Kernel Korner - Using RCU in the Linux
2.5 Kernel, http://www.linuxjournal.com/article/6993.

Paul McKenny, Sleepable RCU,
http://lwn.net/Articles/202847/.

Peter Memishian, On locking, July 2006,
http://blogs.sun.com/meem/entry/on locking.

90 / 101

Acknowledgements RCUPics Reclaim Miscellany

Maged M. Michael, High performance dynamic lock-free
hash tables and list-based sets, SPAA (2002),
no. 1-58113-529-7/02/0008, 73–83,
http://portal.acm.org/ft gateway.cfm?id=564881&type=pdf
&coll=GUIDE&dl=ACM&CFID=73232202
&CFTOKEN=1170757.

, Safe memory reclamation for dynamic lock-free
objects using atomic reads and writes, PODC (2002),
no. 1-58113-485-1/02/0007, 1–10,
http://www.research.ibm.com/people/m/michael/podc-
2002.pdf.

, Hazard pointers: Safe memory reclamation for
lock-free objects, IEEECS (2004), no. TPDS-0058-0403,
1–10,

90 / 101

Acknowledgements RCUPics Reclaim Miscellany

http://www.research.ibm.com/people/m/michael/podc-
2002.pdf.

Christopher J. Rossbach, Owen S. Hofmann, Donald E.
Porter, Hany E. Ramadan, Bhandari Aditya, and Emmett
Witchel, TxLinux: using and managing hardware
transactional memory in an operating system, ACM
SIGOPS Operating Systems Review, vol. 41, ACM,
p. 87102.

H. Sundell, Wait-free reference counting and memory
management, International Parallel and Distributed
Processing Symposium, no. 1530-2075/05, IEEE, April
2005,
http://ieeexplore.ieee.org/iel5/9722/30685/01419843.pdf?
tp=&arnumber=1419843&isnumber=30685.

90 / 101

Acknowledgements RCUPics Reclaim Miscellany

Wikipedia, Lock-free and wait-free algorithms,
http://en.wikipedia.org/wiki/Lock-free and wait-
free algorithms.

, Non-blocking synchronization,
http://en.wikipedia.org/wiki/Non-
blocking synchronization.

, Read-copy-update,
http://en.wikipedia.org/wiki/Read-copy-update.

91 / 101

Acknowledgements RCUPics Reclaim Miscellany

Acknowledgements

� Dave Eckhardt (de0u) has seen this lecture about as
often as I have, and has produced useful commentary on
every release.

� Bruce Maggs (bmm) for moral support and big-picture
guidance

� Jess Mink (jmink), Matt Brewer (mbrewer), and Mr.
Wright (mrwright) for being victims of beta versions of
this lecture.

� [Nobody on this list deserves any of the blame, but
merely credit, for this lecture.]

91 / 101

Acknowledgements RCUPics Reclaim Miscellany

Pictures for RCU
Writer view

� Let’s again take a linked list, this time a doubly linked
one.

head // A
//
B

//
oo Coo tailoo

� Now suppose the writer acquires the write lock and
updates to delete B :

head // A
��

B
//

oo COO tailoo

� Now the writer synchronizes, forcing all readers with
references to B out of the list. Only then can B be
reclaimed!

head // A
//
Coo tailoo

92 / 101

Acknowledgements RCUPics Reclaim Miscellany

Pictures for RCU
Reader View

� Looking at that again, from the reader’s side now.
Originally

head // A
//
B

//
oo Coo tailoo

� The writer first sets it to

head // A
��

B
//

oo Coo tailoo

� And then

head // A
��

B
//

oo COO tailoo

93 / 101

Acknowledgements RCUPics Reclaim Miscellany

Pictures for RCU
Pictures

� The writer forced memory consistency (fencing) between
each update.

� So each reader’s dereference occurred entirely before or
entirely after each write.

� So the reader’s traversal in either direction is entirely
consistent!

� (moving back and forth might expose the writer’s
action.)

� But it’s OK, because we’ll just see a disconnected node.

� It’s not gone yet, just disconnected.

� It won’t be reclaimed until we drop our critical section.

94 / 101

Acknowledgements RCUPics Reclaim Miscellany

Full fledged deletion & reclaim

� Even though we might be able to solve ABA, it still
doesn’t solve memory reclaim!

� Imagine that instead of being reclaimed by the list, the
deleted node before had been reclaimed by something
else...

� A different list
� A tree
� For use as a thread control block

95 / 101

Acknowledgements RCUPics Reclaim Miscellany

Full fledged deletion & reclaim

� What if we looked at ABA differently . . .

� It only matters if there is the possibility of confusion.

� In particular, might demonstrate strong interest in things
that might confuse me

� Hazard Pointers (“Safe Memory Reclaimation” or just
“SMR”) [Mic02b] and [Mic04]

� Wait-free reference counters [Sun05]

� These are ways of asking “If I, Thread 189236, were to
put something here, would anybody be confused?”

� This solves ABA, but really as a side effect: it lets us
reclaim address space (and therefore memory) because we
know nobody’s using it!

96 / 101

Acknowledgements RCUPics Reclaim Miscellany

Some real algorithms?

[Mic02a] specifies a CAS-based lock-free list-based sets and
hash tables using a technique called SMR to solve ABA and
allow reuse of memory.

� SMR actually solves ABA as a side effect of safely
reclaiming memory. Instead of blocking the writer until
everybody leaves a critical section, it can efficiently scan
to see if threads are interested in a particular chunk of
memory.

� Their performance figures are worth looking at.
Summary: fine-grained locks (lock per node) show
linear-time increase with # threads, their algorithm shows
essentially constant time.

97 / 101

Acknowledgements RCUPics Reclaim Miscellany

The SMR Algorithm

� Every thread comes pre-equipped with a finite list of
“hazards”

� Memory reclaim involves scanning everybody’s hazards to
see if there’s a collision

� Threads doing reclaim yield() (to the objecting thread)
until the hazard is clear

� Difficulty
� Show that hazards can only decrease when deletions are

pending
� Show that deletions eventually succeed (can’t deadlock

on hazards)
� Managing the list of threads’ hazards is difficult

98 / 101

Acknowledgements RCUPics Reclaim Miscellany

Observation On Object Lifetime

Instance of a general problem [Mem06]:

Things get tricky when the object must go away. [...]
Any thread looking up the object – by definition –
does not yet have the object and thus cannot hold
the object’s lock during the lookup operation. [...]
Thus, whatever higher-level synchronization is used
to coordinate the threads looking up the object must
also be used as part of removing the object from
visibility.

99 / 101

Acknowledgements RCUPics Reclaim Miscellany

Miscellany
Locking vs. RCU

� Interestingly, this kind of RCU tends to decrease the
number of (bus) atomic operations.

� Uses scheduler to get per-CPU atomicity.

� RCU requires the ability to force a thread to run on every
CPU or at least observe when every CPU has context
switched.

� Difficult to use RCU in userland!

� RCU, like lockfree, suffers a slowdown from cache line
shuffling, but will make progress due to having at most
one writer.

100 / 101

Acknowledgements RCUPics Reclaim Miscellany

Miscellany
Lockfree vs. Locking.

� Most lock-free algorithms increase the number of atomic
operations, compared to the lockful variants.

� Thus we may starve processors for bus activity on
bus-locking systems.

� On systems with cache coherency protocols, we might
livelock with no processor able to make progress due to
cacheline stealing and high transit times.

� Nobody can get all the cachelines to execute an
instruction before a request comes in and and steals one
of the ones they had.

101 / 101

	Introduction
	Locks Might Take A While
	Locks Can Be…Not So Bad?

	Lock-Free Linked List Insertion
	Lock-Free Linked List Node
	Insertion into a Linked List Without Locks
	Review of Atomic Primitives
	Insertion into a Lock-free Linked List

	Lock-Free Linked List Deletion
	That's great!
	Deletion is easy?
	ABA Problem: Introduction
	ABA Problem: Things go south
	Fixing ABA
	Fixing ABA For Real

	Read-Copy-Update Mutual Exclusion
	Preliminaries
	API
	Implementation
	Words of Warning

	Appendix
	Acknowledgements
	Pictures for RCU
	Memory Reclaimation
	Full fledged deletion & reclaim
	The SMR Algorithm

	Miscellany
	Observation On Object Lifetime
	Locking vs. RCU
	Lockfree vs. Locking.

