What You Need to Know
for Project Three

Dave Eckhardt
Steve Muckle

Synchronization

Project 2 due tonight

Please check "make html doc” and "make
print” are ok

File arranging: mygroup/p2/Makefile should exist
- not mygroup/p2/p2/Makefile

- not mygroup/p2/our_project_2/Makefile

- not mygroup/p2/p2_tar file

Please use the late-day request page to request
ate days (if necessary) — once for each late day

Please don't mail us files

Carnegie Mellon University 2

Synchronization

Exam coordinates
Tuesday, 19:00 (“7:00 p.m.”) - 22:00
GHC 4401 ("Rashid Auditorium™)

Motivation: fewest conflicts (but then hard
to find a room)

If you have not received mail from Eckhardt
about a conflict, we are not aware that you
have one

Carnegie Mellon University 3

Synchronization

Exam study hints
HW1 — out today, due Monday evening

- NOT MIDNIGHT

- Two easy questions for some
concreteness

In-class review Monday
Old exams are on course web site!
- Try actually writing down answers

Synchronization

Project 3 Checkpoint 1 demo

Monday, October 19™: meet in Wean 5207 cluster

Attendance is mandatory (nobody has a conflict!)
- We expect you even if your code isn't quite done
- Regardless of the reason

Synchronization

Reminder: Book report

If end-of-semester won't be the best deadline for
you, it's ok for you to submit it early!

- Thinking about the future
Spring: 15-418 (Parallel
Architecture/Programming); look for a new
Ph.D.-level Systems course (audition required)

Summer internship with SCS Facilities? Google
“Summer of Code™?

Fall: 15-412/612; 15/18-746; 15-411/611; 15-712

(Ph.D. OS/DS - audition.required) .

Overview

Introduction to the Kernel Project

Mundane Details in x86
registers, paging, the life of a memory access, context
switching, system calls, kernel stacks

Loading Executables

Style Recommendations (or pleas)
Attack Strategy

A Quick Debug Story

Carnegie Mellon University 7

Introduction to the Kernel

Project
P3:P2 :: P2:P1!
P2

Stack, registers, stack, race conditions, stack

P3
Stack, registers, page tables, scheduling, races...

You will “become one with” program execution
P1: living without common assumptions
P3: providing those assumptions to users

Carnegie Mellon University 8

The P3 Experience

Goals/challenges

More understanding
- Of OS
Practice with synthesizing design requirements

More code
More planning
More organization

More quality!
Robust

More debugging!

Carnegie Mellon University

Introduction to the Kernel
Project: Kernel Features

Your kernels will feature:
- preemptive multitasking
- multiple virtual address spaces
- a “small” selection of useful system calls
- robustness (hopefully)

Carnegie Mellon University 1 O

Introduction to the Kernel Project:
Preemptive Multitasking

Preemptive multitasking is
forcing multiple user
processes to share the CPU

You will use the timer interrupt
to do this

Reuse your timer code from P1
iIf possible

Carnegie Mellon University 1 1

Introduction to the Kernel Project:
Preemptive Multitasking

Simple round-robin scheduling will suffice
Some system calls will modify the sequence
Think about them before committing to a design

Context switching is tricky but cool

As in P2, creating a new task/thread is hard
Especially given memory sharing

As In P2, exiting is tricky too
At least one “How can | do that???” question

Carnegie Mellon University 1 2

Introduction to the Kernel Project:
Multiple Virtual Address Spaces

The x86 architecture supports paging

You will use this to provide a virtual address
space for each user task

Each user task will be isolated from others
Paging will also protect the kernel from users
Segmentation will not be used for protection

Carnegie Mellon University 1 3

Introduction to the Kernel
Project: System Calls

You used them in P2
Now you get to implement them

Examples include fork(), exec(), thread_fork
There are easier ones like gettid()

- The core cluster — must work solidly
fork(), exec()

vanish(), wait()

Carnegie Mellon University

14

Mundane Details in x86

We looked at some of these for P1

Now it is time to get the rest of the story
How do we control processor features?
What does an x86 page table look like?
What route does a memory access take?

How do you switch from one process to
another?

Carnegie Mellon University 1 5

Mundane Details in x86:
Registers

General purpose regs (not interesting)

Segment registers (somewhat interesting)
- %cs, %ss, %ds, %es, %fs, %gs

%eip (a little interesting)
EFLAGS (interesting)

Control Registers (very interesting)
- %cr0, %cr1, %cr2, %cr3, %crd
- espO field in the hardware “task segment”

Carnegie Mellon University 1 6

Mundane Details in x86:
General Purpose Registers

The most boring kind of register

%eax, %ebx, %ecx, %edx, %edi, %esi, %ebp,
%esp

%eax, %ebp, and %esp are exceptions, they
are slightly interesting
- %eax is used for return values
- %esp is the stack pointer
- %ebp is the base pointer

Carnegie Mellon University 1 7

Mundane Details in x86:
Segment Selector Registers

Slightly more interesting

%cs specifies the segment used to access
code (also specifies privilege level)

%ss specifies the segment used for stack
related operations (pushl, popl, etc)

%ds, %es, %fs, %gs specify segments used to
access regular data

Mind these during context switches!!!
If something specific breaks, check these

Carnegie Mellon University 1 8

Mundane Details in x86:
The Instruction Pointer (%eip)

It's interesting

Cannot be read from or written to directly
(branch, call, return)

Controls which instructions get executed
‘nuff said.

Carnegie Mellon University 1 9

Mundane Details in x86:
The EFLAGS Register

It's interesting

L)
e

31 222120191817 161514 1312 1110 0 8 7 6 5 4 3 0
|
rl-ul o |o|of
FI?(T] ¢ [F|F

L

Reserved (setto 0) |}, il AN
plF|°

D —IdentificationFlagQ |
VIP — Virtual Interrupt Pending

VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag

IOPL— I/O Privilege Level

T

HEEHBE
FlFIF]F[] F]®

IF — Interrupt Enable Flag
TF — Trap Flag
|:| Reserved

Figure 2-3. System Flags in the EFLAGS Register

Flag city, including interrupt-enable, arithmetic flags
You want “alignment check” off

Carnegie Mellon University 20

Mundane Details in x86:
Control Registers

Very interesting!
An assortment of important flags and values

%cr0 contains powerful system flags that
control things like paging, protected mode

%cr1 is reserved (now that’s really interesting)

%cr2 contains the address that caused the last
page fault

Carnegie Mellon University 21

Mundane Details in x86:
Control Registers, cont.

%cr3 contains the address of the current page
directory, as well as a couple paging related
flags

%crd contains... more flags (not as interesting
though)
- Protected mode virtual interrupts?
- Virtual-8086 mode extensions?
- Most of these are not usefully modified...

...but you should make an inventory.

Carnegie Mellon University 22

Mundane Details in x86:
Registers

How do you write to a special register?
Most of them: mov1 instruction
Some (like %cr's) you need PLO to access
We provide assembly wrappers for some
Maybe we should skip some!
Think about each before using.

EFLAGS is a little different, but you may not be
writing directly to it anyway

Carnegie Mellon University 23

Mundane Details in x86:
The Life of a Memory Access

Logical Address (consists of 16 bit segment selector, 32 bit offset)

I'> Segmentation

L Linear Address (32 bit offset)

| . Paging
I—} Physical Address

(32 bit offset)

Carnegie Mellon University 24

Mundane Details in x86:
The Life of a Memory Access

Logical Address (consists of 16 bit segment selector, 32 bit offset)

L} Segmentation
L} Linear Address (32 bit offset)

The 16 bit segment selector comes from a
segment register (%CS & %SS implied)

The 32 bit offset is added to the base
address of the segment

That gives us a 32 bit offset into the virtual
address space

Carnegie Mellon University 25

Mundane Details in x86: 134
Segmentation

Segments need not be backed by physical
memory and can overlap

Segments defined for these projects:
OxFFFFFFFF

User Code User Data

0x00000000

Carnegie Mellon University 26

Mundane Details in x86:
Segmentation

For Project 3 we are abusing segmentation
All segments “look the same”

Each linear address is just the “low-order
32 bits” of the logical address

Confusing, but simplifies life for you

See 15-410 segmentation guide on web
site

Carnegie Mellon University 27

Mundane Details in x86:
The Life of a Memory Access

Linear Address (32 bit offset)

l—} Physical Address

(32 bit offset)

Top 10 bits index into page directory, point
us to a page table

The next 10 bits index into page table,
point us to a page

The last 12 bits are an offset into that page

Carnegie Mellon University 28

Mundane Details in x86: 02"

Page Directories and Tables s

Current Task’s
Page Directory Address

Logically, PDE's and PTE's are each 20 bits
of frame number and 12 bits of 000.

Carnegie Mellon University 29

[X X
= " [X X
Mundane Details in x86: ee
Page Directory
The page directory is
4k in Size Page-Directory Entry (4-KByte Page Table)
i 31 12 11 89876543210
Contains HH RRARRREEHE
. F"::?QE—TEII)l-: Base Addrass Avail |G g DA G W l_ -.ij..- F
pointers e
tO page tables Available for system programmer’s useJ ‘
. Global page (lanored)
EntrIeS may be Page size (0 indicates 4 KBytes)
. . Reserved (set to 0)
|nval|d (See Accessed
Yy . Cache disabled
P b|t) ‘-ﬁf:ite—thrlmjl-gr‘;eE

User/Supervisor
Read/\Write
Present

Figure from page 87 of intel-sys.pdf
This a jumping-off point!

Carnegie Mellon University 30

000
n m X X)
Mundane Details in x86: e
Page Table
Each page table is also 4k
in Size Page-Table Entry (4-KByte Page)
. 31 1211 2876543210
Contains T T 1ol [l
. Page Base Address Avail |c|alo|alclw| |/ |P
pointers [ofrisp
tO pages Available for system programmer’s useJ ‘
ey . : Global P
P blt agaln F’a?]eaTat?lge;eAttribute Index
Dirty
Agclésseci

Cache Disabled
Write-Through
User/Supervisor
Read/\Write
Fresent

Figure from page 87 of intel-sys.pdf
This a jumping-off point!

Carnegie Mellon University 31

Mundane Details in x86:
The Life of a Memory Access

Whoa there, Slick... What if the page directory
entry isn't there?

What happens if the page table entry isn't
there?

It's called a page fault, it's an exception, and it
lives in IDT entry 13

You will have to write a handler for this
exception and do something intelligent

Carnegie Mellon University 32

Mundane Details in x86: sece

Context Switching :

We all know that
processes take turns
running on the CPU

This means they have to
be stopped and started
over and over

How?

Carnegie Mellon University 33

Mundane Details in x86:
Context Switching

The x86 provides a hardware “task” abstraction
This makes context switching “easy”

But...

Often faster to manage processes in software

We can also tailor our process abstraction to our
particular needs

Our OS is more portable if it doesn't rely on one
processor's notion of “task”

Protected mode requires one hardware task
Already set up by 410 boot code

Carnegie Mellon Univ 34

Mundane Details in x86:
Context Switching

Context switching is a very delicate procedure

Great care must be taken so that when the
thread is restarted, it does not know it ever
stopped

“User” reqgisters must be exactly the same
(%cr3 is the key non-user register)

ts stack must be exactly the same
ts page directory must be in place
Please carefully heed the handout warnings!

Carnegie Mellon University 35

Mundane Details in x86:
Context Switching

Hints on context switching:

Use the stack, it is a convenient place to
store things

If you do all your switching in one routine,
you have eliminated one thing you have to
save (%elp)

New threads will require some special care

- Try to confine new-thread code; don't
infect your beautiful pure context-switcher

Carnegie Mellon University 36

Mundane Details in x86:
System Calls

System calls use “software interrupts”
Which are not actually interrupts!
- They are immune to disable interrupts()
- Which defers, not disables, anyway!

Carnegie Mellon University 37

Mundane Details in x86:
System Calls

System calls use “software interrupts”
Which are not actually interrupts!
- They are immune to disable interrupts()
- Which defers, not disables, anyway!

Install handlers just as you did for the timer,
keyboard

Calling convention specified in handout
Matches P2

If you are rusty on the IDT refer back to P1

Carnegie Mellon University 38

Mundane Details in x86: 3
Kernel Stacks

User processes have a separate stack for their
kernel activities

Located in kernel space

How does the stack pointer get switched to the
kernel stack?

s« v |

Carnegie Mellon University 39

Mundane Details in x86:
Kernel Stacks

When the CPU switches from user mode to
kernel mode the stack pointer is changed

The new (kernel) stack pointer to use is stored
in the configuration of the CPU hardware task

Remember: we use only one “x86 task”
We provide a function to change this value
set _espO(void* ptr)
Used during next user = kernel transition
So set_espO() “does nothing” (until later)

Carnegie Mellon University 40

Loading Executables :

Same approach as P2
“RAM disk” file system

But you must write a
loader

Carnegie Mellon University 41

Loading Executables:
The Loader

RAM-disk bytes are part of the kernel data area

You need to load them into the task’s address
space

Code, rodata, data, bss, stack — all up to you!

Executables will be in “simple ELF” format
References to resources are in the handout

Carnegie Mellon University 42

You will re-implement chunks of your kernel
t will be painful if code is holographic
Don't “use a linked list of threads”

Do define a process-list interface
find(), append(), first(), ...
You may need to add a method...

...which changes the implementation entirely...
But most existing interface uses (calls) will be ok

Carnegie Mellon University 43

Machine State Summary

256 MB RAM, keyboard, console, timer
IDT

CPU state
General-purpose registers
Segment registers
EFLAGS, cr0...cr4, esp0

We set up for you
Hardware task
GDT (global descriptor table) — 4 segments

Carnegie Mellon University 44

Warning :

Carnegie Mellon University 45

Attack Strategy

There is an attack
strategy in the handout

It represents where we
think you should be in
particular weeks

You WILL have to turn in
checkpoints

Excellent data indicate...

Missing one checkpoint
IS dangerous...don't
miss two!

Carnegie Mellon University 46

Attack Strategy

Please read the handout a couple times over
the next few days
Create doxygen-only files
scheduler.c, process.c, ...
Document major functions
Document key data structures
A very iterative process

Suggestion: doxygen tentative responsibilities
For a good time, estimate #lines, #days

Carnegie Mellon University 47

Partnership

Make an explicit partnership plan

How often you'll meet, for how long

- Reqular, fixed meetings are vital!

Information flow

- When will you read each other's code?
- Meeting agenda suggestions

Last time's open issues

New issues

Who will do whatbwynext meeting?

48

Grading Approach

These numbers are not final!

Weight Section
5 Kernel builds as directed
45 Shell loads, runs test programs
10 Concurrency
10 Style/structure
10 Basic tests
15 Non-basic tests
5 Thread tests (not using your P2)

Carnegie Mellon University

49

“Hurdle” Model

We will release a test suite
~15 "basic” tests
~15 “solidity” tests
~2 “stability” tests

Successful completion of Project 3 requires
~80% of each section of test suite
Acceptable preemptibility

You will self-test your P3 when you turn it in

Carnegie Mellon University 50

“Hurdle” Model

Leap the P3 hurdle?

Work on Project 4

- ~2 weeks after P3

- ~5% of course grade

A modification/extension of your kernel

- Goal: “interesting”, more than “hard”

Thwarted?

Extra time for P3 (~1 week)

0% will be assigned for P4 grade

egie Mellon Univ 51

Warning!

To continue to P4, kernel must be complete
We will publish criteria

Seemingly “trivial” things on the checklist
cost 20% of grade!

P3extra is not optional if kernel isn't complete

We won't assign a P4 grade, so p3extra is
the only option

This Is serious
Please be serious about it

Carnegie Mellon University 52

A Quick Debug Story

Ha! You’ll have to have
been to lecture to hear
this story.

Carnegie Mellon University 53

A Quick Debug Story

The moral is, please start

early. / £
\
QL i

/ ////// "y /

Carnegie Mellon University 54

\

~

Our Hopes for You

Project 3 can be a transformative experience

You may become a different programmer
- Techniques, attitudes

Employers care about this experience

Alumni care about this experience
#include <end_of 412 concern_stories>

Carnegie Mellon University 55

Exhortation

Please read the project handout ASAP!

You need to plan how to get to Checkpoint 1
Simple loader
Dummy VM
- please write (encapsulated) bad code!!
Getting from kernel mode to user mode
Getting from user mode to kernel mode
Lots of faults

- Solving them will requwe “story telling”
negie Mellon 56

Encouragement

This can be done

Stay on track
Make all checkpoints
Don't ignore the plan of attack
Don't postpone merges

Spring 2012
2 groups dropped, two groups split (3 kernels)
All other groups turned in working kernels
Let's do it again!

Carnegie Mellon University 57

Good Luck on
Project 3!

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Overview
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Luck!

